2,411
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Clinical and molecular aspects of lead toxicity: An update

, , &
Pages 506-528 | Received 24 Sep 2017, Accepted 20 Nov 2017, Published online: 07 Dec 2017

References

  • Navas-Acien A, Guallar E, Silbergeld EK, et al. Lead exposure and cardiovascular disease-a systematic review. Environ Health Perspect. 2007;115:472–482.
  • Skoczynska A, Skoczynska M. Low-level exposure to lead as a cardiovascular risk factor. In: Gasparyan A, editor. Cardiovascular Risk Factors. Croatia: InTech Open; 2012.
  • Gillis BS, Arbieva Z, Gavin IM. Analysis of lead toxicity in human cells. BMC Genomics. 2012;13:344.
  • Lu CF, Yuan XY, Li LZ, et al. Combined exposure to nano-silica and lead induced potentiation of oxidative stress and DNA damage in human lung epithelial cells. Ecotoxicol Environ Saf. 2015;122:537–544.
  • Gump BB, MacKenzie JA, Bendinskas K, et al. Low-level Pb and cardiovascular responses to acute stress in children: the role of cardiac autonomic regulation. Neurotoxicol Teratol. 2011;33:212–219.
  • Zyśko D, Chlebda E, Gajek J. Effect of lead on the cardiovascular system. Pol Merkur Lekarski 2004;17:512–515.
  • Pollack AZ, Mumford SL, Mendola P, et al. Kidney biomarkers associated with blood lead, mercury, and cadmium in premenopausal women: a prospective cohort study. J Toxicol Environ Health. 2015;78:119–131.
  • Orr SO, Bridges CC. Chronic kidney disease and exposure to nephrotoxic metals. Int J Mol Sci. 2017;18:1039.
  • Pfadenhauer LM, Burns J, Rohwer A, et al. A protocol for a systematic review of the effectiveness of interventions to reduce exposure to lead through consumer products and drinking water. Syst Rev. 2014;3:36.
  • Wani AA, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol. 2015;8:55–64.
  • Lead, Elevated Blood Levels | 2016 Case Definition [Internet]. wwwn.cdc.gov. 2017 [cited 19 September 2017]. Available from: https://wwwn.cdc.gov/nndss/conditions/lead-elevated-blood-levels/case-definition/2016
  • Vaziri ND, Gonick HC. Cardiovascular effects of lead exposure. Indian J Med Res. 2008;128:426–431.
  • Sharma P, Purohit P. Lead exposure exacerbates cardiovascular risk. Indian J Clin Biochem. 2014;29:117–118.
  • Alissa E, Ferns GA. Heavy metal poisoning and cardiovascular disease. J Toxicol. 2011;2011:870125.
  • Lu Y, Liu X, Deng Q, et al. Continuous lead exposure increases blood pressure but does not alter kidney function in adults 20-44 years of age in a lead-polluted Region of China. Kidney Blood Press Res. 2015;40:207–214.
  • Geraldes V, Carvalho M, Goncalves-Rosa N, et al. Lead toxicity promotes autonomic dysfunction with increased chemoreceptor sensitivity. Neurotoxicology. 2016;54:170–177.
  • Xu LH, Mu FF, Zhao JH, et al. Lead induces apoptosis and histone hyperacetylation in rat cardiovascular tissues. PLoS One. 2015;10:e0129091.
  • Loghman-Adham M. Renal effects of environmental and occupational lead exposure. Environ Health Perspect. 1997;105:928–939.
  • Muntner P, He J, Vupputuri S, et al. Blood lead and chronic kidney disease in the general United States population: results from NHANES III. Kidney Int. 2003;63:1044–1050.
  • Yu CC, Lin JL, Lin-Tan DT. Environmental exposure to lead and progression of chronic renal diseases: a four-year prospective longitudinal study. J Am Soc Nephrol. 2004;15:1016–1022.
  • Wang VS, Lee MT, Chiou JY, et al. Relationship between blood lead levels and renal function in lead battery workers. Int Arch Occup Environ Health. 2002;75:569.
  • Fadrowski JJ, Abraham AG, Navas-Acien A, et al. Blood lead level and measured glomerular filtration rate in children with chronic kidney disease. Environ Health Perspect. 2013;121:965–970.
  • Cleveland LM, Minter ML, Cobb KA, et al. Lead hazards for pregnant women and children. Am J Nurs. 2008;108:40–49.
  • Bellinger DC. Very low lead exposures and children's neurodevelopment. Curr Opin Pediatr. 2008;20:172–177.
  • Needleman HL, Schell A, Bellinger D, et al. The long term effects of exposure to low doses of lead in childhood – an 11-year follow-up report. N Engl J Med. 1990;322:83–88.
  • Liu J, Li L, Wang Y, et al. Impact of low blood lead concentrations on IQ and school performance in chinese children. PLoS One. 2013;8:e65230.
  • Liu J, Liu X, Wang W, et al. Blood lead concentrations and children's behavioral and emotional problems: a cohort study. JAMA Pediatr. 2014;168:737–745.
  • Sanders T, Liu Y, Buchner V, et al. Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health. 2009;24:15–45.
  • CDC – Lead – New Blood Lead Level Information [Internet]. Cdc.gov. 2017 [cited 19 September 2017]. Available from: https://www.cdc.gov/nceh/lead/acclpp/blood_lead_levels.htm
  • Wright JP, Dietrich KN, Ris MD, et al. Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med. 2008;5:e101.
  • Basha MR, Wei W, Bakheet SA, et al. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci. 2005;25:823–829.
  • Patrick L. Mechanisms of lead toxicity: the effect of lead on oxidant/antioxidant balance. Altern Med Rev. 2006;11:114–126.
  • Sharma P, Chambial S, Shukla KK. Lead and neurotoxicity. Ind J Clin Biochem. 2015;30:1–2.
  • Reuben A, Caspi A, Belsky DW, et al. Association of childhood blood-lead levels with cognitive function and socioeconomic status at age 38 years and with IQ change and socioeconomic mobility between childhood and adulthood. JAMA. 2017;317:1244–1251.
  • Morris BJ, Willcox DC, Donlon TA, et al. FOXO3: a major gene for human longevity – a mini-review. Gerontology. 2015;61:515–525.
  • Pfisterer U, Khodosevich K. Neuronal survival in the brain: neuron type-specific mechanisms. Cell Death Dis. 2017;8:e2643
  • Zheng W, Aschner M, Ghersi-Egea JF. Brain barrier systems: a newfrontier in metal neurotoxicological research. Toxicol Appl Pharmacol. 2003;192:1–11.
  • Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. Biomed Res Int. 2015;2015:320941.
  • Markovac J, Goldstein GW. Picomolar concentrations of lead stimulate brain protein kinase C. Nature. 1988;334:71–73.
  • Guilarte TR, Miceli RC, Jett DA. Neurochemical aspects of hippocampal and cortical Pb2+ neurotoxicity. Neurotoxicology. 1994;15:459–466.
  • Sadiq S, Ghazala Z, Chowdhury A, et al. Metal toxicity at the synapse: presynaptic, postsynaptic, and long-term effects. J Toxicol. 2012;2012:132671
  • Toscano CD, Guilarte TR. Lead neurotoxicity: from exposure to molecular effects. Brain Res Brain Res Rev. 2005;49:529–554.
  • Neal AP, Worley PF, Guilarte TR. Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology. 2011;32:281–289.
  • Stansfield KH, Pilsner JR, Lu Q, et al. Dysregulation of BDNF-TrkB signaling in developing hippocampal neurons by Pb(2+): implications for an environmental basis of neurodevelopmental disorders. Toxicol Sci. 2012;127:277–295.
  • Chen WW, Zhang X, Huang WJ. Neural stem cells in lead toxicity. Eur Rev Med Pharmacol Sci. 2016;20:5174–5177.
  • Baranowska-Bosiacka I, Gutowska I, Rybicka M, et al. Neurotoxicity of lead. Hypothetical molecular mechanisms of synaptic function disorders. Neurol Neurochir Pol. 2012;46:569–578.
  • Thomson RM, Parry GJ. Neuropathies associated with excessive exposure to lead. Muscle Nerve. 2006;33:732–741.
  • Rubens O, Logina I, Kravale I, et al. Peripheral neuropathy in chronic occupational inorganic lead exposure: a clinical and electrophysiological study. J Neurol Neurosurg Psychiatry. 2001;71:200–204.
  • Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 2012;5:47–58.
  • Kim HC, Jang TW, Chae HJ, et al. Evaluation and management of lead exposure. Ann Occup Environ Med. 2015;27:30.
  • Pounds JG, Long GJ, Rosen JF. Cellular and molecular toxicity of lead in bone. Environ Health Perspect. 1991;91:17–32.
  • Hass GM, Brown DVL, Eisenstein R, et al. Relations between lead poisoning in rabbit and man. Am J Pathol. 1964;45:691–727.
  • Mazumdar I, Goswami K, Ali MS. Status of serum calcium, vitamin d and parathyroid hormone and hematological indices among lead exposed jewellery workers in Dhaka, Bangladesh. Ind J Clin Biochem. 2017;32:110–116.
  • Lead (Pb) toxicity: what are the physiologic effects of lead exposure? | ATSDR – Environmental Medicine & Environmental Health Education – CSEM [Internet]. Atsdr.cdc.gov. 2017 [cited 14 September 2017]. Available from: https://www.atsdr.cdc.gov/csem/csem.asp?csem =34&po =10
  • Kemp FW, Neti PVSV, Howell RW, et al. Elevated blood lead concentrations and vitamin D deficiency in winter and summer in young urban children. Environ Health Perspect. 2007;115:630–635.
  • Vij AG. Hemopoietic, hemostatic and mutagenic effects of lead and possible prevention by zinc and vitamin C. Al Ameen J Med Sci. 2009;2:27–36.
  • Ahamed M, Verma S, Kumar A, et al. Environmental exposure to lead and its correlation with biochemical indices in children. Sci Total Environ. 2005;346:48–55.
  • Jangid AP, John PJ, Yadav D, et al. Impact of chronic lead exposure on selected biological markers. Indian J Clin Biochem. 2012;27:83–89.
  • Carocci A, Catalano A, Lauria G, et al. Lead toxicity, antioxidant defense and environment. Rev Environ Contam Toxicol. 2015;238:45–67.
  • Liu J, Jia DY, Cai SZ, et al. Mitochondria defects are involved in lead-acetate-induced adult hematopoietic stem cell decline. Toxicol Lett. 2015;235:37–44.
  • Dobrakowski M, Boron M, Czuba ZP, et al. Blood morphology and the levels of selected cytokines related to hematopoiesis in occupational short-term exposure to lead. Toxicol Appl Pharmacol. 2016;305:111–117.
  • Niu Y, Yu W, Fang S, et al. Lead poisoning influences TCR-related gene expression patterns inperipheral blood T-lymphocytes of exposed workers. J Immunotoxicol. 2015;12:92–97.
  • Di Lorenzo L, Silvestroni A, Martino MG, et al. Evaluation of peripheral blood neutrophil leucocytes in lead-exposed workers. Int Arch Occup Environ Health. 2006;79:491–498.
  • Theron AJ, Tintinger GR, Anderson R. Harmful interactions of non-essential heavy metals with cells of the innate immune system. J Clin Toxicol. 2012;S3:005.
  • Flohé SB, Brüggemann J, Herder C, et al. Enhanced proinflammatory response to endotoxin after priming of macrophages with lead ions. J Leukoc Biol. 2002;71:417–424.
  • Valentino MV, Rapisarda L, Santarelli M, et al. Effect of lead on the levels of some immunoregulatory cytokines in occupationally exposed workers. Hum Exp Toxicol. 2007;26:551–556.
  • Kasten-Jolly J, Lawrence DA. Lead modulation of macrophages causes multiorgan detrimental health effects. J Biochem Mol Toxicol. 2014;28:355–372.
  • Kasten-Jolly J, Heo Y, Lawrence DA. Impact of developmental lead exposure on splenic factors. Toxicol Appl Pharmacol. 2010;247:105–115.
  • Dietert RR, Piepenbrink MS. Lead and immune function. Crit Rev Toxicol. 2006;36:359–385.
  • Heo YBK, Lee KD, Ahn D, et al. Serum IgE elevation correlates with blood lead levels in battery manufacturing workers. Hum Exp Toxicol. 2004;23:209–213.
  • Karmaus W, Brooks KR, Nebe T, et al. Immune function biomarkers in children exposed to lead and organochlorine compounds: a cross-sectional study. Environ Health. 2005;4:5.
  • Mishra KP, Chauhan UK, Naik S. Effect of lead exposure on serum immunoglobulins and reactive nitrogen and oxygen intermediate. Hum Exp Toxicol. 2006;25:661–665.
  • Gao D, Mondal TK, Lawrence DA. Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses. Toxicol Appl Pharmacol. 2007;222:69–79.
  • Mishra KP, Rani R, Yadav VS, et al. Effect of lead exposure on lymphocyte subsets and activation markers. Immunopharmacol Immunotoxicol. 2010;32:446–449.
  • Lob S, Konigsrainer A, Rammensee HG, et al. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer. 2009;9:445–452.
  • Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev. 2008;222:206–221.
  • Mishra KP. Lead exposure and its impact on immune system: a review. Toxicol In Vitro. 2009;23:969–972.
  • Li S, Zhengyan Z, Rong L, et al. Decrease of CD4+ T-lymphocytes in children exposed to environmental lead. Biol Trace Elem Res. 2005;105:19–25.
  • Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol. 2015;135:626–635.
  • Dobrakowski M, Boroń M, Czuba ZP, et al. Cytokines related to three major types of cell-mediated immunity in short- and long-term exposures to lead compounds. J Immunotoxicol. 2016;13:770–774.
  • Khazdair MR, Boskabady MH, Afshari R, et al. Respiratory symptoms and pulmonary function testes in lead exposed workers. Iran Red Crescent Med J. 2012;14:737–742.
  • Leem AY, Kim SK, Chang J, et al. Relationship between blood levels of heavy metals and lung function based on the Korean national health and nutrition examination survey IV-V. Int J Chron Obstruct Pulmon Dis. 2015;10:1559–1570.
  • Dietert RR, Lee JE, Hussain I, et al. Developmental immunotoxicology of lead. Toxicol Appl Pharmacol. 2004;198:86.
  • Min JY, Min KB, Kim R, et al. Blood lead levels and increased bronchial responsiveness. Biol Trace Elem Res. 2008;123:41–46.
  • Smith PP, Nriagu JO. Lead poisoning and asthma among low-income and African American children in Saginaw, Michigan. Environ Res. 2011;111:81–86.
  • Mohammed AA, Mohamed FY, El-Okda ES, et al. Blood lead levels and childhood asthma. Indian Pediatr. 2015;52:305–306.
  • Hong YC, Hwang SS, Kim JH, et al. Metals in particulate pollutants affect peak expiratory flow of schoolchildren. Environ Health Perspect. 2007;115:430–434.
  • Madaniyazi L, Guo Y, Ye X, et al. Effects of airborne metals on lung function in inner Mongolian schoolchildren. J Occup Environ Med. 2013;55:80–86.
  • Rokadia HK, Agarwal S. Serum heavy metals and obstructive lung disease: results from the national health and nutrition examination survey. Chest. 2013;143:388–397.
  • Mushak P. Gastro-intestinal absorption of lead in children and adults: overview of biological and biophysico-chemical aspects. Chem Speciat Bioavail. 1991;3:87–104.
  • Mudipalli A. Lead hepatotoxicity & potential health effects. Indian J Med Res. 2007;126:518–527.
  • Janin Y, Couinaud C, Stone A, et al. The “ "lead-induced colic" syndrome in lead intoxication”. Surg Annu. 1985;17:287–307.
  • Mazumdar I, Goswami K. Chronic exposure to lead: a cause of oxidative stress and altered liver function in plastic industry workers in Kolkata, India. Ind J Clin Biochem. 2014;29:89–92.
  • Yang CC, Chuang CS, Chia-I L, et al. The association of the blood lead level and serum lipid concentrations may be modified by the genetic combination of the metallothionein 2A polymorphisms rs10636 GC and rs28366003 AA. J Clin Lipidol. 2017;11:234–241.
  • Xiao X, Zhang C, Liu D, et al. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein. Sci Rep. 2016;6:23716.
  • Gao B, Chi L, Mahbub R, et al. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol. 2017;30:996–1005.
  • Pant N, Upadhyay G, Pandey S, et al. Lead and cadmium concentration in the seminal plasma of men in the general population: correlation with sperm quality. Reprod Toxicol. 2003;17:447–450.
  • Vigeh M, Smith DR, Hsu P-C. How does lead induce male infertility? Iran J Reprod Med. 2011;9:1–8.
  • Martínez JM, Rosales PC, Mario Morales-Vallarta MM, et al. Chronic environmental exposure to lead affects semen quality in a Mexican men population. Iran J Reprod Med. 2013;11:267–274.
  • Guzikowski W, Szynkowska MI, Pochrzęst HM, et al. Trace elements in seminal plasma of men from infertile couples. Arch Med Sci. 2015;11:591–598.
  • Taha EA, Sayed SK, Ghandour NM, et al. Correlation between seminal lead and cadmium and seminal parameters in idiopathic oligoasthenozoospermic males. Cent Eur J Urol. 2013;66:84–92.
  • Lia CJ, Yeha CY, Chena RY, et al. Biomonitoring of blood heavy metals and reproductive hormone level related to low semen quality. J Hazard Mater. 2015;300:815–822.
  • Yu T, Li Z, Wang X, et al. Effect of lead exposure on male sexual hormone. Wei Sheng Yan Jiu. 2010;39:413–415.
  • Hosni H, Selim O, Abbas M, et al. Semen quality and reproductive endocrinal function related to blood lead levels in infertile painters. Andrologia. 2013;45:120–127.
  • Haghighi SK, Aminian O, Chavoshi F, et al. Relationship between blood lead level and male reproductive hormones in male lead exposed workers of a battery factory: a cross-sectional study. Iran J Reprod Med. 2013;11:673–676.
  • Chen C, Wang N, Zhai H, et al. Associations of blood lead levels with reproductive hormone levels in men and postmenopausal women: results from the SPECT-China study. Sci Rep. 2016;6:37809.
  • Mendola P, Messer LC, Rappazzo K. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult female. Fertil Steril. 2008;89:e81–e94.
  • Balabanič D, Rupnik M, Klemenčič AK. Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod Fertil Dev. 2011;23:403–416.
  • Lei HL, Wei HJ, Ho HY, et al. Relationship between risk factors for infertility in women and lead, cadmium, and arsenic blood levels: a cross-sectional study from Taiwan. BMC Public Health. 2015;15:1220.
  • Park SK, O’Neill MS, Vokonas PS, et al. Air pollution and heart rate variability: effect modification by chronic lead exposure. Epidemiology. 2008;19:111–120.
  • Lamadrid-Figueroa H, Téllez-Rojo MM, Hernández-Avila M, et al. Association between the plasma/whole blood lead ratio and history of spontaneous abortion: a nested cross-sectional study. BMC Pregnancy Childbirth. 2007;7:22.
  • Vigeh M, Yokoyama K, Shinohara A, et al. Early pregnancy blood lead levels and the risk of premature rupture of the membranes. Reprod Toxicol. 2010;30:477–480.
  • Zhu M, Fitzgerald EF, Gelberg KH, et al. Maternal low-level lead exposure and fetal growth. Environ Health Perspect. 2010;118:1471–1475.
  • Rzymski P, Tomczyk K, Rzymski P, et al. Impact of heavy metals on the female reproductive system. Ann Agric Environ Med. 2015;22:259–264.
  • Seyom E, Abera M, Tesfaye M, et al. Maternal and fetal outcome of pregnancy related hypertension in Mettu Karl Referral Hospital, Ethiopia. J Ovarian Res. 2015;8:10.
  • Bayat F, Akbari SAA, Dabirioskoei A, et al. The relationship between blood lead level and preeclampsia. Electron Physician. 2016;8:3450–3455.
  • Yazbeck C, Thiebaugeorges O, Moreau T, et al. Maternal blood lead levels and the risk of pregnancy-induced hypertension: the EDEN cohort study. Environ Health Perspect. 2009;117:1526–1530.
  • Hong YC, Kulkarni SS, Lim YH, et al. Postnatal growth following prenatal lead exposure and calcium intake. Pediatrics. 2014;134:1151–1159.
  • Dyer CA. Heavy metals as endocrine-disrupting chemicals. In: Gore AC, editor. Endocrine-disrupting chemicals: from basic research to clinical practice. Totowa (NJ): Humana Press Inc.; 2007. p. 111–133.
  • Selevan SG, Rice DC, Hogan KA, et al. Blood lead concentration and delayed puberty in girls. N Engl J Med. 2003;348:1527–1536.
  • Dearth RK, Hiney JK, Srivastava V, et al. Effects of lead (Pb) exposure during gestation and lactation on female pubertal development in the rat. Reprod Toxicol. 2002;16:343–352.
  • Eum K-D, Weisskopf MG, Nie LH, et al. Cumulative lead exposure and age at menopause in the nurses’ health study cohort. Environ Health Perspect. 2014;122:229–234.
  • Doumouchtsis KK, Doumouchtsis SK, Doumouchtsis EK, et al. The effect of lead intoxication on endocrine functions. J Endocrinol Invest. 2009;32:175–183.
  • Schantz SL, Widholm JJ. Cognitive effects of endocrine-disrupting chemicals in animals. Environ Health Perspect. 2001;109:1197–1206.
  • Hirsch HV, Possidente D, Possidente B. Pb2+: an endocrine disruptor in Drosophila? Physiol Behav. 2010;99:254–259.
  • Dobrakowsaki M, Kasperczyk A, Czuba ZP, et al. The influence of chronic and subacute exposure to lead on the levels of prolactin, leptin, osteopontin and follistantin in humans. Hum Exp Toxicol. 2017;36:587–593.
  • Peschke E, Kaiser HU, Schrank F, etet al. Morphological studies on the adrenal cortex of Wistar rats following lead poisoning and experimental hypothyroidism. Gegenbaurs Morphol Jahrb. 1981;127:869–900.
  • Thang NQ, Huy BT, Van Tan L, et al. Lead and arsenic accumulation and its effects on plasma cortisol levels in Oreochromis sp. Bull Environ Contam Toxicol. 2017;99:187–193.
  • Kim D, Lawrence DA. Immunotoxic effects of inorganic lead on host resistance of mice with different circling behaviour preferences. Brain Behav Immun. 2000;14:305–317.
  • Singh B, Chandran V, Bandhu HK, et al. Impact of lead exposure on pituitary-thyroid axis in humans. Biometals. 2000;13:187–192.
  • López CM, Piñeiro AE, Núñez N, et al. Thyroid hormone changes in males exposed to lead in the Buenos Aires area (Argentina). Pharmacol Res. 2000;42:599–602.
  • Pekcici R, Kavlakoğlu B, Yilmaz S, et al. Effects of lead on thyroid functions in lead-exposed workers. Central Eur J Med. 2010;5:215–218.
  • Chen A, Kim SS, Chung E, et al. Thyroid hormones in relation to lead, mercury, and cadmium exposure in the national health and nutrition examination survey, 2007–2008. Environ Health Perspect. 2013;121:181–186.
  • Tasmin S, Furusawa H, Ahmad S, et al. Delta-aminolevulinic acid dehydratase (ALAD) polymorphism in lead exposed Bangladeshi children and its effect on urinary aminolevulinic acid (ALA). Environ Res. 2015;136:318–323.
  • Pérez-Bravo F, Ruz M, Morán-Jiménez MJ, et al. Association between aminolevulinate dehydrase genotypes and BLLs in children from a lead-contaminated area in Antofagasta, Chile. Arch Environ Contam Toxicol. 2004;47:276–280.
  • Shen XM, Wu SH, Yan CH, et al. Delta-aminolevulinate dehydratase polymorphism and BLLs in Chinese children. Environ Res. 2001;85:185–190.
  • Sobin C, Flores-Montoya MG, Guttierrez M, et al. delta-Aminolevulinic acid dehydratase single nucleotide polymorphism 2 and peptide transporter 2*2 haplotype may differentially mediate lead exposure in male children. Arch Environ Contam Toxicol. 2011; 61:521–529.
  • Taha MM, Gaber OAEA, Sabbah NA, et al. Association between δ-aminolevulinate dehydratase G177C polymorphism and BLLs in brain tumor patients. Mol Clin Oncol. 2015;3:995–1000.
  • Chia S, Zhou HJ, Yap E, et al. Association of renal function and delta-aminolevulinic acid dehydratase polymorphism among Vietnamese and Singapore workers exposed to inorganic lead. Occup Environ Med. 2006;63:180–186.
  • Yang CC, Chen HI, Chiu YW, et al. Metallothionein 1A polymorphisms may influence urine uric acid and N-acetyl-beta-D-glucosaminidase (NAG) excretion in chronic lead-exposed workers. Toxicology. 2013;306:68–73.
  • Fernandes KCM, Martins Jr, AC, Oliveira, AAS, et al. Polymorphism of metallothionein 2A modifies lead body burden in workers chronically exposed to the metal. Public Health Genomics. 2015;19:47–52.
  • Gundacker C, Wittmann KJ, Kukuckova M, et al. Genetic background of lead and mercury metabolism in a group of medical students in Austria. Environ Res. 2009;109:786–796.
  • Krzeslak A, Forma E, Chwatko G, et al. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer. Toxicol Appl Pharmacol. 2013;268:278–285.
  • Kayaaltı Z, Aliyev V, Soylemezoğlu T. The potential effect of Metallothionein 2A -5A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels . Toxicol Appl Pharmacol. 2011;256:1–7.
  • Tekin D, Kayaalti Z, Soylemezoglu T. The effects of metallothionein 2A polymorphism on lead metabolism: are pregnant women with a heterozygote genotype for metallothionein 2A polymorphism and their newborns at risk of having higher blood lead levels?. Int Arch Occup Environ Health. 2012;85:631–637.
  • Chen H-I, Chiu Y-W, Hsu YK, et al. The Association of Metallothionein-4 gene polymorphism and renal function in long-term lead-exposed workers. Biol Trace Elem Res. 2010;137:55–62.
  • Sirivarasai J, Wananukul W, Kaojarern S, et al. Association between inflammatory marker, environmental lead exposure, and Glutathione S-transferase gene. BioMed Res Int. 2013;2013:1–6.
  • Kaya-Akyüzlü D, Kayaaltı Z, Söylemez E, et al. Does maternal VDR FokI single nucleotide polymorphism have an effect on lead levels of placenta, maternal and cord bloods? Placenta. 2015;36:870–875.
  • Pawlas N, Broberg K, Olewinska E, et al. Modification by the genes ALAD and VDR of lead-induced cognitive effects in children. Neurotoxicology. 2012;33:37–43.
  • Garcia-Leston J, Roma-Torres J, Vilares M, et al. Genotoxic effects of occupational exposure to lead and influence of polymorphisms in genes involved in lead toxicokinetics and in DNA repair. Environ Int. 2012;43:29–36.
  • Krieg EF, Jr., Butler MA, Chang MH, et al. Lead and cognitive function in VDR genotypes in the third national health and nutrition examination survey. Neurotoxicol Teratol. 2010;32:262–272.
  • Rezende VB, Barbosa F, Jr., Montenegro MF, et al. Haplotypes of vitamin D receptor modulate the circulating levels of lead in exposed subjects. Arch Toxicol. 2008;82:29–36.
  • Weaver VM, Lee BK, Todd AC, et al. Effect modification by delta-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase gene polymorphisms on associations between patella lead and renal function in lead workers. Environ Res. 2006;102:61–69.
  • Cantonwine D, Hu H, Tellez-Rojo MM, et al. HFE gene variants modify the association between maternal lead burden and infant birthweight: a prospective birth cohort study in Mexico City, Mexico. Environ Health. 2010;9:43.
  • Wright RO, Silverman EK, Schwartz J, et al. Association between hemochromatosis genotype and lead exposure among elderly men: the normative aging study. Environ Health Perspect. 2004;112:746–750.
  • Wang FT, Hu H, Schwartz J, et al. Modifying effects of the HFE polymorphisms on the association between lead burden and cognitive decline. Environ Health Perspect. 2007;115:1210–1215.
  • Roy A, Ettinger AS, Hu H, et al. Effect modification by transferrin C2 polymorphism on lead exposure, hemoglobin levels, and IQ. Neurotoxicology 2013;38:17–22.
  • Hopkins MR, Ettinger AS, Hernandez-Avila M, et al. Variants in iron metabolism genes predict higher blood lead levels in young children. Environ Health Perspect. 2008;116:1261–1266.
  • Kim K-N, Lee M-R, Lim Y-H, et al. Blood lead levels, iron metabolism gene polymorphisms and homocysteine: a gene-environment interaction study. Occup Environ Med. 2017;74:899–904.
  • Kayaaltı Z, Akyüzlü DK, Söylemezoğlu T. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels. Environ Res. 2015;137:8–13.
  • Liang HJ, Yan YL, Liu ZM, et al. Association of XRCC3 Thr241Met polymorphisms and gliomas risk: evidence from a meta-analysis. Asian Pac J Cancer Prev. 2013;14:4243–4247.
  • Eom S-Y, Hwang MS, Lim J-A, et al. Exome-wide association study identifies genetic polymorphisms of C12orf51, MYL2, and ALDH2 associated with BLLs in the general Korean population. Environ Health. 2017;16:11.
  • Kelada SN, Shelton E, Kaufmann RB, et al. Delta aminolevulinic acid dehydratase genotype and lead toxicity: a HuGE review. Am J Epidemiol. 2001;154:1–13.
  • Montenegro MF, Barbosa F, Jr, Sandrim VC, et al. Ethnicity affects the distribution of delta-aminolevulinic acid dehydratase (ALAD) genetic variants. Clin Chim Acta. 2006;367:192–195.
  • Zhao Y, Wang L, Shen HB, et al. Association between delta amino levulinic acid dehydratase (ALAD) polymorphism and BLLs: a meta regression analysis. J Toxicol Environ Health A. 2007;70:1986–1994.
  • Shaik A, Sultana S, Alsaeed A. Lead exposure: a summary of global studies and the need for new studies from Saudi Arabia. Dis Mark. 2014;2014:1–7.
  • Raudenska M, Gumulec J, Podlaha O, et al. Metallothionein polymorphisms in pathological processes. Metallomics. 2014;6:55–68.
  • Kim J, Lee Y, Yang M. Environmental exposure to lead (Pb) and variations in its susceptibility. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2014;32:159–185.
  • Eum KD, Wang FT, Schwartz J, et al. Modifying roles of glutathione S-transferase polymorphisms on the association between cumulative lead exposure and cognitive function. Neurotoxicology. 2013;39:65–71.
  • Lee BK, Lee SJ, Joo JS, et al. Association of Glutathione S-transferase genes (GSTM1 and GSTT1) polymorphisms with hypertension in lead exposed workers. Mol Cell Toxicol. 2012;8:203–208.
  • Kim JH, Lee KH, Yoo DH, et al. GSTM1 and TNF-alpha gene polymorphisms and relations between blood lead and inflammatory markers in a non-occupational population. Mutat Res. 2007;629:32–39.
  • Rukin NJ, Luscombe C, Moon S, et al. Prostate cancer susceptibility is mediated by interactions between exposure to ultraviolet radiation and polymorphisms in the 50 haplotype block of the vitamin D receptor gene. Cancer Lett. 2007;247:328–335.
  • Park SK, Hu H, Wright RO, et al. Iron Metabolism genes, low-level lead exposure, and QT interval. Environ Health Perspect. 2009;117:80–85.
  • Hanson EH, Imperatore G, Burke W. HFE gene and hereditary hemochromatosis: a HuGE review. Human Genome Epidemiology. Am J Epidemiol. 2001;154:193–206.
  • Szymańska-Chabowska A, Łaczmański Ł, Jędrychowska I, et al. The relationship between selected VDR, HFE and ALAD gene polymorphisms and several basic toxicological parameters among persons occupationally exposed to lead. Toxicology. 2015;334:12–21.
  • Athiyarath R, Arora N, Fuster F, et al. Two novel missense mutations in iron transport protein transferrin causing hypochromic microcytic anaemia and haemosiderosis: molecular characterization and structural implications. Br J Haematol. 2013;163:404–407.
  • Mackenzie B, Garrick MD. Iron Imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastrointest Liver Physiol. 2005;289:G981–G986.
  • Garrick MD, Singleton ST, Vargas F, et al. DMT1: which metals does it transport? Biol Res. 2006;39:79–85.
  • Martinez-Zamudio R, Ha HC. Environmental epigenetics in metal exposure. Epigenetics. 2011;6:820–827.
  • Li YY, Chen T, Wan Y, et al. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ Toxicol. 2012;27:495–502.
  • Zawia NH, Lahiri DK, Cardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med. 2009;46:1241–1249.
  • Hanna CW, Bloom MS, Robinson WP, et al. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod. 2012;27:1401–1410.
  • Pilsner JR, Hu H, Ettinger A, et al. Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect. 2009;117:1466–1471.
  • Wright RO, Schwartz J, Wright RJ, et al. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect. 2010;118:790–795.
  • Kovatsi L, Georgiou E, Ioannou A, et al. p16 promoter methylation in Pb2+-exposed individuals. Clin Toxicol (Phila). 2010;48:124–128.
  • Tsai Y-T, Chang C-M, Wang J-Y, et al. Function of DNA methyltransferase 3a in lead (Pb2+) -induced cyclooxygenase-2 gene: involvement of DNMTS 3a in lead (Pb2+)-induced cyclooxygenase-2 gene. Environ Toxicol. 2015;30:1024–1032.
  • Luo M, Xu Y, Cai R, et al. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicol Lett. 2014;225:78–85.
  • Bihaqi SW, Huang H, Wu J, et al. Infant exposure to lead (Lead) and epigenetic modifications in the aging primate brain: implications for Alzheimer’sdisease. J Alzheimers Dis. 2011;27:819–833.
  • Bollati V, Marinelli B, Apostoli P, et al. Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect. 2010;118:763–768.
  • Sanders AP, Burris HH, Just AC, et al. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure. Epigenomics. 2015; 7:885–896.
  • Dosunmu R, Alashwal H, Zawia NH. Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging. Mech Ageing Dev. 2012;133:435–443.
  • Sen A, Heredia N, Senut MC, et al. Early life lead exposure causes gender-specific changes in the DNA methylation profile of DNA extracted from dried blood spots. Epigenomics. 2015;7:379–393.
  • Wu J, Basha MR, Brock B, et al. Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci. 2008;28:3–9.
  • Watanabe D, Suetake I, Tada T, et al. Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech Dev. 2002;118:187–190.
  • Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–257.
  • Senut MC, Cingolani P, Sen A, et al. Epigenetics of early-life lead exposure and effects on brain development. Epigenomics. 2012;4:665–674.
  • Li C, Xu M, Wang S, et al. Lead exposure suppressed ALAD transcription by increasing methylation level of the promoter CpG islands. Toxicol Lett. 2011;203:48–53.
  • Romero R, Friel LA, Velez Edwards DR, et al. A genetic association study of maternal and fetal candidate genes that predispose to preterm prelabor rupture of membranes (PROM). Am J Obstet Gynecol. 2010;203:361e1–36e30.
  • Yang AS, Estecio MR, Doshi K, et al. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004;32:e38.
  • Ray PD, Yosim A, Fry RC. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front Genet. 2014;5:201.
  • LeSage C, Nagel R, Egan DA, et al. Regulation of the p27 (Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 2007;6:3699–3708.
  • Boldin MP, Taganov KD, Rao DS, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208:1189–1201.
  • Taganov KD, Boldin MP, Chang K-J, et al. NF- B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103:12481–12486.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.