1,453
Views
83
CrossRef citations to date
0
Altmetric
Review Article

Applications of mid-infrared spectroscopy in the clinical laboratory setting

, &
Pages 1-20 | Received 26 Jul 2017, Accepted 03 Dec 2017, Published online: 14 Dec 2017

References

  • Andrew Chan KL, Kazarian SG. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem Soc Rev. 2016;45:1850–1864.
  • Zelig U, Barlev E, Bar O, et al. Early detection of breast cancer using total biochemical analysis of peripheral blood components: a preliminary study. BMC Cancer. 2015;15:408.
  • Nawrocka A, Lamorska J. Determination of food quality by using spectroscopic methods. In: Grundas S, Stepniewski A, editors. Advances in agrophysical research. Rijeka (Croatia): InTech; 2013. p. 347–368.
  • Kravdal G, Helgo D, Moe MK. Infrared spectroscopy is the gold standard for kidney stone analysis. Tidsskriftet. 2015;4:313–314.
  • Baker MJ, Trevisan J, Bassan P, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9:1771–1791.
  • Fox MA, Whitesell JK. Organic Chemistry. 3rd ed. Sudbury (MA): Jones And Bartlett Publishers; 2015.
  • Bunaciu AA, Hoang VD, Aboul-Enein HY. Applications of FT-IR spectrophotometry in cancer diagnostics. Crit Rev Anal Chem. 2015;45:156–165.
  • Zapata F, Fernández de la Ossa MÁ, García-Ruiz C. Emerging spectrometric techniques for the forensic analysis of body fluids. TrAC – Trends Anal Chem. 2015;64:53–63.
  • Cloutier J, Villa L, Traxer O, et al. Kidney stone analysis: “Give me your stone, I will tell you who you are!”. World J Urol. 2015;33:157–169.
  • Hoşafçi G, Klein O, Oremek G, et al. Clinical chemistry without reagents? An infrared spectroscopic technique for determination of clinically relevant constituents of body fluids. Anal Bioanal Chem. 2007;387:1815–1822.
  • Perez-Guaita D, Ventura-Gayete J, Pérez-Rambla C, et al. Evaluation of infrared spectroscopy as a screening tool for serum analysis. Impact of the nature of samples included in the calibration set. Microchem J. 2013;106:202–211.
  • Petibois C, Rigalleau V, Melin AM, et al. Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy. Clin Chem. 1999;45:1530–1535.
  • Petibois C, Melin AM, Perromat A, et al. Glucose and lactate concentration determination on single microsamples by Fourier-transform infrared spectroscopy. J Lab Clin Med. 2000;135:210–215.
  • Shaw RA, Kotowich S, Leroux M, et al. Multianalyte serum analysis using mid-infrared spectroscopy. Ann Clin Biochem. 1998;35:624–632.
  • Petibois C, Cazorla G, Cassaigne A, et al. Plasma protein contents determined by Fourier-transform infrared spectrometry. Clin Chem. 2001;47:730–738.
  • Jessen TE, Höskuldsson AT, Bjerrum PJ, et al. Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: Direct clinical biochemistry without reagents. Clin Biochem. 2014;47:1306–1312.
  • Shaw R, Low-Ying S, Leroux M, et al. Toward reagent-free clinical analysis: quantitation of urine urea, creatinine, and total protein from the mid-infrared spectra of dried urine films. Clin Chem. 2000;46:1493–1495.
  • Liu K-Z, Dembinski TC, Mantsch HH. Rapid determination of fetal lung maturity from infrared spectra of amniotic fluid. Am J Obstet Gynecol. 1998;178:234–241.
  • Liu KZ, Shaw RA, Dembinski TC, et al. Comparison of infrared spectroscopic and fluorescence depolarization assays for fetal lung maturity. Am J Obstet Gynecol. 2000;183:181–187.
  • Khaustova S, Shkurnikov M, Tonevitsky E, et al. Noninvasive biochemical monitoring of physiological stress by Fourier transform infrared saliva spectroscopy. Analyst. 2010;135:3183.
  • Griebe M, Daffertshofer M, Stroick M, et al. Infrared spectroscopy: A new diagnostic tool in Alzheimer disease. Neurosci Lett. 2007;420:29–33.
  • Bottoni U, Tiriolo R, Pullano SA, et al. Infrared saliva analysis of psoriatic and diabetic patients: Similarities in protein components. IEEE Trans Biomed Eng. 2016;63:379–384.
  • Hans KMC, Müller S, Sigrist MW. Infrared attenuated total reflection (IR-ATR) spectroscopy for detecting drugs in human saliva. Drug Test Anal. 2012;4:420–429.
  • Mordechai S, Shufan E, Porat Katz BS, et al. Early diagnosis of Alzheimer’s disease using infrared spectroscopy of isolated blood samples followed by multivariate analyses. Analyst. 2017;142:1276–1284.
  • Carmona P, Molina M, Calero M, et al. Infrared spectroscopic analysis of mononuclear leukocytes in peripheral blood from Alzheimer’s disease patients. Anal Bioanal Chem. 2012;402:2015–2021.
  • Carmona P, Molina M, López-Tobar E, et al. Vibrational spectroscopic analysis of peripheral blood plasma of patients with Alzheimer’s disease. Anal Bioanal Chem. 2015;407:7747–7756.
  • Ogruc Ildiz G, Arslan M, Unsalan O, et al. FT-IR spectroscopy and multivariate analysis as an auxiliary tool for diagnosis of mental disorders: Bipolar and schizophrenia cases. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2016;152:551–556.
  • Sun X, Xu Y, Wu J, et al. Detection of lung cancer tissue by attenuated total reflection-Fourier transform infrared spectroscopy – A pilot study of 60 samples. J Surg Res. 2013;179:33–38.
  • Staniszewska-Slezak E, Fedorowicz A, Kramkowski K, et al. Plasma biomarkers of pulmonary hypertension identified by Fourier transform infrared spectroscopy and principal component analysis. Analyst. 2015;140:2273–2279.
  • Li Q-B, Xu Z, Zhang N-W, et al. In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy. World J Gastroenterol. 2005;11:327–330.
  • Khanmohammadi M, Garmarudi AB, Ghasemi K, et al. Diagnosis of colon cancer by attenuated total reflectance-Fourier transform infrared microspectroscopy and soft independent modeling of class analogy. Med Oncol. 2009;26:292–297.
  • Dong L, Sun X, Chao Z, et al. Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2014;122:288–294.
  • Titus J, Ghimire H, Viennois E, et al. Protein secondary structure analysis of dried blood serum using infrared spectroscopy to identify markers for colitis screening. J Biophotonics. 2017 [cited 2017 Jul 26]; [8 p.]. doi: 10.1002/jbio.201700057.
  • Titus J, Viennois E, Merlin D, et al. Minimally invasive screening for colitis using attenuated total internal reflectance Fourier transform infrared spectroscopy. J Biophotonics. 2017;10:465–472.
  • Peng C, Kaščáková S, Chiappini F, et al. Discrimination of cirrhotic nodules, dysplastic lesions and hepatocellular carcinoma by their vibrational signature. J Transl Med. 2016;14:9.
  • Zhang X, Thiéfin G, Gobinet C, et al. Profiling serologic biomarkers in cirrhotic patients via high-throughput Fourier transform infrared spectroscopy: Toward a new diagnostic tool of hepatocellular carcinoma. Transl Res. 2013;162:279–286.
  • Yu MC, Rich P, Foreman L, et al. Label free detection of sensitive mid-infrared biomarkers of glomerulonephritis in urine using Fourier transform infrared spectroscopy. Sci Rep. 2017;7:4601.
  • Khanmohammadi M, Garmarudi AB, Ramin M, et al. Diagnosis of renal failure by infrared spectrometric analysis of human serum samples and soft independent modeling of class analogy. Microchem J. 2013;106:67–72.
  • Roth A, Dornuf F, Klein O, et al. Infrared spectroscopy in hemodialysis: Reagent-free monitoring of patient detoxification by infrared spectroscopy. Anal Bioanal Chem. 2012;403:391–399.
  • Ollesch J, Drees SL, Heise HM, et al. FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification. Analyst. 2013;138:4092.
  • Theophilou G, Lima KMG, Martin-Hirsch PL, et al. ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: classifying subtypes of human cancer. Analyst. 2016;141:585–594.
  • Gajjar K, Trevisan J, Owens G, et al. Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer. Analyst. 2013;138:3917.
  • Purandare NC, Patel II, Trevisan J, et al. Biospectroscopy insights into the multi-stage process of cervical cancer development: probing for spectral biomarkers in cytology to distinguish grades. Analyst. 2013;138:3909.
  • Gajjar K, Ahmadzai AA, Valasoulis G, et al. Histology verification demonstrates that biospectroscopy analysis of cervical cytology identifies underlying disease more accurately than conventional screening: Removing the confounder of discordance. PLoS One. 2014;9:e82416.
  • Autino B, Noris A, Russo R, et al. Epidemiology of malaria in endemic areas. Mediterr J Hematol Infect Dis. 2012;4:e2012060
  • Martin M, Perez-Guaita D, Andrew DW, et al. The effect of common anticoagulants in detection and quantification of malaria parasitemia in human red blood cells by ATR-FTIR spectroscopy. Analyst. 2017;139:4719–5036.
  • Roy S, Perez-Guaita D, Andrew DW, et al. Simultaneous ATR-FTIR based determination of malaria parasitemia, glucose and urea in whole blood dried onto a glass slide. Anal Chem. 2017;89:5238–5245.
  • Wan JH, Tian PL, Yin H, et al. A preliminary evaluation of attenuated total reflection Fourier transform infrared spectroscopy for the hematological analysis of thalassemias. Clin Biochem. 2013;46:128–132.
  • Bellisola G, Cinque G, Vezzalini M, et al. Rapid recognition of drug-resistance/sensitivity in leukemic cells by Fourier transform infrared microspectroscopy and unsupervised hierarchical cluster analysis. Analyst. 2013;138:3934–3945.
  • Lima CA, Goulart VP, Côrrea L, et al. ATR-FTIR spectroscopy for the assessment of biochemical changes in skin due to cutaneous squamous cell carcinoma. Int J Mol Sci. 2015;16:6621–6630.
  • Varma VK, Kajdacsy-Balla A, Akkina SK, et al. A label-free approach by infrared spectroscopic imaging for interrogating the biochemistry of diabetic nephropathy progression. Kidney Int. 2016;89:1153–1159.
  • Berthomieu C, Hienerwadel R. Fourier transform infrared (FTIR) spectroscopy. Photosyn Res. 2009;101:157–170.
  • Stuart BH. Infrared spectroscopy: fundamentals and applications. Chichester (UK): Wiley; 2004.
  • Wenning M, Scherer S. Identification of microorganisms by FTIR spectroscopy: Perspectives and limitations of the method. Appl Microbiol Biotechnol. 2013;97:7111–7120.
  • Bassan P, Lee J, Sachdeva A, et al. The inherent problem of transflection-mode infrared spectroscopic microscopy and the ramifications for biomedical single point and imaging applications. Analyst. 2013;138:144–157.
  • Gradolnik J. ATR-FTIR spectroscopy: its advantages and limitations. Acta Chim Slov. 2002;49:631–642.
  • Kazarian SG, Chan KLA. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst. 2013;138:1940.
  • Bellisola G, Sorio C. Infrared spectroscopy and microscopy in cancer research and diagnosis. Am J Cancer Res. 2012;2:1–21.
  • Pilling M, Gardner P. Fundamental developments in infrared spectroscopic imaging for biomedical applications. Chem Soc Rev. 2016;45:1935–1957.
  • Lasch P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst. 2012;117:100–114.
  • Singh I, Juneja P, Kaur B, et al. Pharmaceutical applications of chemometric techniques. ISRN Anal Chem. 2013;2013:1–13.
  • Roggo Y, Chalus P, Maurer L, et al. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal. 2007;44:683–700.
  • Zarnowiec P, Lechowicz Ł, Czerwonka G, et al. Fourier transform infrared spectroscopy (FTIR) as a tool for the identification and differentiation of pathogenic bacteria. Curr Med Chem. 2015;22:1710–1718.
  • Zou Y, Ma G. A new criterion to evaluate water vapor interference in protein secondary structural analysis by FTIR spectroscopy. Int J Mol Sci. 2014;15:10018–10033.
  • Hughes C, Brown M, Clemens G, et al. Assessing the challenges of Fourier transform infrared spectroscopic analysis of blood serum. J Biophoton. 2014;7:180–188.
  • Groszerüschkamp F, Kallenbach-Thieltges A, Behrens T, et al. Marker-free automated histopathological annotation of lung tumour subtypes by FTIR imaging. Analyst. 2015;140:2114–2120.
  • Hughes C, Baker MJ. Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm. Analyst. 2016;141:467–475.
  • Pavlidis N, Fizazi K. Cancer of unknown primary (CUP). Crit Rev Oncol Hematol. 2005;54:243–250.
  • Hands JR, Clemens G, Stables R, et al. Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy. J Neurooncol. 2016;127:463–472.
  • Gajjar K, Heppenstall LD, Pang W, et al. Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Methods. 2013;5:89–102.
  • Hands JR, Dorling KM, Abel P, et al. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples. J Biophoton. 2014;7:189–199.
  • Owens GL, Gajjar K, Trevisan J, et al. Vibrational biospectroscopy coupled with multivariate analysis extracts potentially diagnostic features in blood plasma/serum of ovarian cancer patients. J Biophoton. 2014;7:200–209.
  • Lima KMG, Gajjar KB, Martin-Hirsch PL, et al. Segregation of ovarian cancer stage exploiting spectral biomarkers derived from blood plasma or serum analysis: ATR-FTIR spectroscopy coupled with variable selection methods. Biotechnol Progress. 2015;31:832–839.
  • AlRabiah H, Correa E, Upton M, et al. High-throughput phenotyping of uropathogenic E. coli isolates with Fourier transform infrared spectroscopy. Analyst. 2013;138:1363–1369.
  • Lechowicz L, Urbaniak M, Adamus-Białek W, et al. The use of infrared spectroscopy and artificial neural networks for detection of uropathogenic Escherichia coli strains’ susceptibility to cephalothin. Acta Biochim Pol. 2013;60:713–718.
  • Rebuffo-Scheer CA, Schmitt J, Scherer S. Differentiation of Listeria monocytogenes serovars by using artificial neural network analysis of fourier-transformed infrared spectra. Appl Environ Microbiol. 2007;73:1036–1040.
  • Grunert T, Wenning M, Barbagelata MS, et al. Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier transform infrared spectroscopy. J Clin Microbiol. 2013;51:2261–2266.
  • Rebuffo CA, Schmitt J, Wenning M, et al. Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy. Appl Environ Microbiol. 2006;72:994–1000.
  • Maquelin K, Kirschner C, Choo-Smith LP, et al. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol. 2003;41:324–329.
  • Sandt C, Sockalingum GD, Aubert D, et al. Use of Fourier-transform infrared spectroscopy for typing of Candida albicans strains isolated in intensive care units. J Clin Microbiol. 2003;41:954–959.
  • Toubas D, Essendoubi M, Adt I, et al. FTIR spectroscopy in medical mycology: Applications to the differentiation and typing of Candida. Anal Bioanal Chem. 2007;387:1729–1737.
  • Ergin Ç, Ilkit M, Gök Y, et al. Fourier transform infrared spectral evaluation for the differentiation of clinically relevant Trichophyton species. J Microbiol Methods. 2013;93:218–223.
  • Bosch A, Miñán A, Vescina C, et al. Fourier transform infrared spectroscopy for rapid identification of nonfermenting gram-negative bacteria isolated from sputum samples from cystic fibrosis patients. J Clin Microbiol. 2008;46:2535–2546.
  • Hesse A, Kruse R, Geilenkeuser WJ, et al. Quality control in urinary stone analysis: Results of 44 ring trials (1980-2001). Clin Chem Lab Med. 2005;43:298–303.
  • Türk C, Knoll T, Petrik A, et al. Guidelines on urolithiasis. Arnhem (Netherlands): EAU Guidelines Office; 2014. Chapter 3, Diagnosis; p. 12-19.
  • Primiano A, Persichilli S, Gambaro G, et al. FT-IR analysis of urinary stones: a helpful tool for clinician comparison with the chemical spot test. Dis Markers. 2014;2014:176165.
  • Tonannavar J, Deshpande G, Yenagi J, et al. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2016;154:20–26.
  • Mulready KJ, McGoldrick D. The establishment of a standard and real patient kidney stone library utilizing Fourier transform-infrared spectroscopy with a diamond ATR accessory. Urol Res. 2012;40:483–498.
  • Asplin JR, Lingeman J, Kahnoski R, et al. Metabolic urinary correlates of calcium oxalate dihydrate in renal stones. J Urol. 1998;159:664–668.
  • Farhan KM, Sastry TP, Mandal AB. Comparative study on secondary structural changes in diabetic and non-diabetic human finger nail specimen by using FTIR spectra. Clin Chim Acta. 2011;412:386–389.
  • Sowa MG, Wang J, Schultz CP, et al. Infrared spectroscopic investigation of in-vivo and ex-vivo human nails. Vib Spectrosc.1995;10:49–56.
  • Walters KA, Abdalghafor HM, Lane ME. The human nail-barrier characterisation and permeation enhancement. Int J Pharm. 2012;435:10–21.
  • Coopman R, Van de Vyver T, Kishabongo AS, et al. Glycation in human fingernail clippings using ATR-FTIR spectrometry, a new marker for the diagnosis and monitoring of diabetes mellitus. Clin Biochem. 2017;50:62–67.
  • Coroaba A, Pinteala T, Chiriac A, et al. Degradation mechanism induced by psoriasis in human fingernails: A different approach. J Invest Dermatol. 2016;136:311–313.
  • Sakudo A, Kuratsune H, Kato YH, et al. Secondary structural changes of proteins in fingernails of chronic fatigue syndrome patients from Fourier-transform infrared spectra. Clin Chim Acta. 2009;402:75–78.
  • Kishabongo AS, Katchunga P, Van Aken EH, et al. Glycated nail proteins: A new approach for detecting diabetes in developing countries. Trop Med Int Health. 2014;19:58–64.
  • Cribier B, Mena ML, Rey D, et al. Nail changes in patients infected with human immunodeficiency virus. A prospective controlled study. Arch Dermatol. 1998;134:1216–1220.
  • Mann RJ, Burton JL. Nail dystrophy due to diabetic neuropathy. Br Med J (Clin Res Ed). 1982;284:1445.
  • Gupta AK, Konnikov N, MacDonald P, et al. Prevalence and epidemiology of toenail onychomycosis in diabetic subjects: A multicentre survey. Br J Dermatol. 1998;139:665–671.
  • Bakan E, Bakan N. Glycosylation of nail in diabetics: possible marker of long-term hyperglycemia. Clin Chim Acta. 1985;147:1–5.
  • Márová I, Záhejský J, Sehnalová H. Non-enzymatic glycation of epidermal proteins of the stratum corneum in diabetic patients. Acta Diabetol. 1995;32:38–43.
  • Masuta S, Sakai M, Ohara T, et al. Clinical application of hair protein glycation in the assessment of blood glucose control and diabetic neuropathy. Kobe J Med Sci. 1989;35:1–9.
  • De Koninck AS, Nys K, Vandenheede B, et al. Detailed faecal fat analysis using Fourier transform infrared spectroscopy: Exploring the possibilities. Clin Biochem. 2016;49:1283–1287.
  • Franck P, Sallerin JL, Schroeder H, et al. Rapid determination of fecal fat by Fourier transform infrared analysis (FTIR) with partial least-squares regression and an attenuated total reflectance accessory. Clin Chem. 1996;42:2015–2020.
  • Jakobs BS, Volmer DM, Swinkels DW, et al. New method for faecal fat determination by mid-infrared spectroscopy, using a transmission cell: an improvement in standardization. Ann Clin Biochem. 2000;37:343–349.
  • Voortman G, Gerrits J, Altavilla M, et al. Quantitative determination of faecal fatty acids and triglycerides by Fourier transform infrared analysis with a sodium chloride transmission flow cell. Clin Chem Lab Med. 2002;40:795–798.
  • Volmer M, Kingma AW, Borsboom PC, et al. Investigation of applicability of a mid-infrared spectroscopic method using an attenuated total reflection accessory and a new near-infrared transmission method for determination of faecal fat. Ann Clin Biochem. 2001;38:256–263.
  • Kim SS, Young C, Vidakovic B, et al. Potential and challenges for mid-infrared sensors in breath diagnostics. IEEE Sensors J. 2010;10:145–158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.