1,507
Views
80
CrossRef citations to date
0
Altmetric
Review Article

Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes

, , , , &
Pages 21-32 | Received 02 Jun 2017, Accepted 03 Dec 2017, Published online: 14 Dec 2017

References

  • Nalysnyk L, Hernandez-Medina M, Krishnarajah G. Glycaemic variability and complications in patients with diabetes mellitus: evidence from a systematic review of the literature. Diabetes Obes Metab. 2010;12:288–298.
  • (NCD-RisC) NRFC. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016; 387:1513–1530.
  • Seuring T, Archangelidi O, Suhrcke M. The economic costs of type 2 diabetes: a global systematic review. Pharmacoeconomics. 2015;33:811–831.
  • da Rocha Fernandes J, Ogurtsova K, Linnenkamp U, et al. IDF diabetes atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract. 2016;117:48–54.
  • Ginter E, Simko V. Global prevalence and future of diabetes mellitus. Adv Exp Med Biol. 2012;771:35–41.
  • Adeghate E, Schattner P, Dunn E. An update on the etiology and epidemiology of diabetes mellitus. Ann N Y Acad Sci. 2006;1084:1–29.
  • Waugh N, Scotland G, McNamee P, et al. Screening for type 2 diabetes: literature review and economic modelling. Health Technol Assess. 2007;11:iii–iiv, ix–xi, 1–125.
  • Waugh NR, Shyangdan D, Taylor-Phillips S, et al. Screening for type 2 diabetes: a short report for the national screening committee. Health Technol Assess. 2013;17:1–90.
  • Saudek CD, Herman WH, Sacks DB, et al. A new look at screening and diagnosing diabetes mellitus. J Clin Endocrinol Metab. 2008;93:2447–2453.
  • Pippitt K, Li M, Gurgle HE. Diabetes mellitus: screening and diagnosis. Am Fam Physician. 2016;93: 103–109.
  • Kramer CK, Zinman B, Choi H, et al. Predictors of sustained drug-free diabetes remission over 48 weeks following short-term intensive insulin therapy in early type 2 diabetes. BMJ Open Diabetes Res Care. 2016;4:e000270.
  • Gregg EW, Chen H, Wagenknecht LE, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308: 2489–2496.
  • Redmon JB, Bertoni AG, Connelly S, et al. Effect of the look AHEAD study intervention on medication use and related cost to treat cardiovascular disease risk factors in individuals with type 2 diabetes. Diabetes Care. 2010;33:1153–1158.
  • Tildesley HD, Conway ME, Deng L, et al. The effectiveness of internet intervention on 926 patients with diabetes mellitus for up to 30 months. Can J Diabetes. 2015;39:216–220.
  • Ramli AS, Selvarajah S, Daud MH, et al. Effectiveness of the EMPOWER-PAR intervention in improving clinical outcomes of type 2 diabetes mellitus in primary care: a pragmatic cluster randomised controlled trial. BMC Fam Pract. 2016;17:157.
  • Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res. 2011;81:101–107.
  • Chung ST, Hsia DS, Chacko SK, et al. Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes. Diabetologia. 2015;58:596–603.
  • Basu R, Chandramouli V, Dicke B, et al. Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes. 2005;54:1942–1948.
  • Bender DA. The metabolism of “surplus” amino acids. Br J Nutr. 2012;108(2):S113–S121.
  • Wester TJ, Kraft G, Dardevet D, et al. Nutritional regulation of the anabolic fate of amino acids within the liver in mammals: concepts arising from in vivo studies. Nutr Res Rev. 2015;28:22–41.
  • Jungas RL, Halperin ML, Brosnan JT. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev. 1992;72:419–448.
  • Brooks GA. Amino acid and protein metabolism during exercise and recovery. Med Sci Sports Exerc. 1987;19:S150–S156.
  • Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17.
  • Gannon MC, Nuttall FQ. Amino acid ingestion and glucose metabolism-a review. IUBMB Life. 2010;62: 660–668.
  • Unger RH, Orci L. Physiology and pathophysiology of glucagon. Physiol Rev. 1976;56:778–826.
  • Berger S, Vongaraya N. Insulin response to ingested protein in diabetes. Diabetes. 1966;15:303–306.
  • Fajans SS, Floyd JC Jr. Knopf RF, et al. Effect of amino acids and proteins on insulin secretion in man. Recent Prog Horm Res. 1967;23:617–662.
  • Davids M, Peters JH, de Jong S, et al. Measurement of nitric oxide-related amino acids in serum and plasma: effects of blood clotting and type of anticoagulant. Clin Chim Acta. 2013;421:164–167.
  • Denery JR, Nunes AA, Dickerson TJ. Characterization of differences between blood sample matrices in untargeted metabolomics. Anal Chem. 2011;83: 1040–1047.
  • Liu L, Aa J, Wang G, et al. Differences in metabolite profile between blood plasma and serum. Anal Biochem. 2010;406:105–112.
  • Xia T, Gao S, Shu C, et al. Analysis of amino acids in human blood using UHPLC-MS/MS: potential interferences of storage time and vacutainer tube in pre-analytical procedure. Clin Biochem. 2016;49: 1372–1378.
  • Lopez-Bascon MA, Priego-Capote F, Peralbo-Molina A, et al. Influence of the collection tube on metabolomic changes in serum and plasma. Talanta. 2016;150:681–689.
  • Barri T, Dragsted LO. UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: effect of experimental artefacts and anticoagulant. Anal Chim Acta. 2013;768:118–128.
  • Wedge DC, Allwood JW, Dunn W, et al. Is serum or plasma more appropriate for intersubject comparisons in metabolomic studies? An assessment in patients with small-cell lung cancer. Anal Chem. 2011;83:6689–6697.
  • Jobard E, Tredan O, Postoly D, et al. A systematic evaluation of blood serum and plasma Pre-analytics for metabolomics cohort studies. Int J Mol sci. 2016;17:E2035.
  • Breier M, Wahl S, Prehn C, et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS One. 2014;9:e89728.
  • Tessari P, Zanetti M, Barazzoni R, et al. Mechanisms of postprandial protein accretion in human skeletal muscle. Insight from leucine and phenylalanine forearm kinetics. J Clin Invest. 1996;98:1361–1372.
  • Synge RL. Analysis of a partial hydrolysate of gramicidin by partition chromatography with starch. Biochem J. 1944;38:285–294.
  • Moore S, Stein WH. Procedures for the chromatographic determination of amino acids on four per cent cross-linked sulfonated polystyrene resins. J Biol Chem. 1954;211:893–906.
  • Moore S, Stein WH. Partition chromatography of amino acids on starch. Ann N Y Acad Sci. 1948;49: 265–278.
  • Stein WH, Moore S. The free amino acids of human blood plasma. J Biol Chem. 1954;211:915–926.
  • Stein WH, Moore S. Chromatographic determination of the amino acid composition of proteins. Cold Spring Harb Symp Quant Biol. 1950;14:179–190.
  • Moore S, Stein WH. Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem. 1948;176:367–388.
  • Moore S, Stein WH. Chromatography of amino acids; colorimetric ninhydrin method for analysis of the effluent. Fed Proc. 1948;7:174.
  • Ogden G. Analysis in the ion exchange tradition. Nature. 1986;320:771.
  • Hirs CH, Moore S, Stein WH. Isolation of amino acids by chromatography on ion exchange columns; use of volatile buffers. J Biol Chem. 1952;195:669–696.
  • Spackman DH, Stein WH, Moore S. Automatic recording apparatus for use in the chromatography of amino acids. Fed Proc. 1958;17:1107–1115.
  • Masuda A, Dohmae N. Amino acid analysis of sub-picomolar amounts of proteins by precolumn fluorescence derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Biosci Trends. 2011; 5:231–238.
  • Wernisch S, Pennathur S. Evaluation of coverage, retention patterns, and selectivity of seven liquid chromatographic methods for metabolomics. Anal Bioanal Chem. 2016;408:6079–6091.
  • Periat A, Boccard J, Veuthey J-L, et al. Systematic comparison of sensitivity between hydrophilic interaction liquid chromatography and reversed phase liquid chromatography coupled with mass spectrometry. J Chromatogr A. 2013;1312:49–57.
  • Zhang A, Sun H, Wang P, et al. Modern analytical techniques in metabolomics analysis. Analyst. 2012;137:293–300.
  • Dai W, Yin P, Zeng Z, et al. Nontargeted modification-specific metabolomics study based on liquid chromatography-high-resolution mass spectrometry. Anal Chem. 2014;86:9146–9153.
  • Ghaste M, Mistrik R, Shulaev V. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. Int J Mol Sci. 2016;17:E816.
  • Liu Y, Smirnov K, Lucio M, et al. MetICA: independent component analysis for high-resolution mass-spectrometry based non-targeted metabolomics. BMC Bioinformatics. 2016;17:114.
  • Rubert J, Zachariasova M, Hajslova J. Advances in high-resolution mass spectrometry based on metabolomics studies for food–a review. Food Addit Contam Part A Chem Anal Control Exp Risk Assess. 2015;32:1685–1708.
  • Castro-Perez J, Plumb R, Granger JH, et al. Increasing throughput and information content for in vitro drug metabolism experiments using ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer. Rapid Commun Mass Spectrom. 2005;19:843–848.
  • Plumb R, Castro-Perez J, Granger J, et al. Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:2331–2337.
  • Banoei MM, Donnelly SJ, Mickiewicz B, et al. Metabolomics in critical care medicine: a new approach to biomarker discovery. Clin Invest Med. 2014;37:E363–E376.
  • Wang X, Sun H, Zhang A, et al. Ultra-performance liquid chromatography coupled to mass spectrometry as a sensitive and powerful technology for metabolomic studies. J Sep Sci. 2011;34:3451–3459.
  • Lee DY, Bowen BP, Northen TR. Mass spectrometry-based metabolomics, analysis of metabolite-protein interactions, and imaging. Biotechniques. 2010;49: 557–565.
  • Smilde AK, van der Werf MJ, Schaller JP, et al. Characterizing the precision of mass-spectrometry-based metabolic profiling platforms. Analyst. 2009;134:2281–2285.
  • Nováková L, Vlčková H. A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta. 2009;656:8–35.
  • Wolak JE, Esther CR Jr, O'Connell TM. Metabolomic analysis of bronchoalveolar lavage fluid from cystic fibrosis patients. Biomarkers. 2009;14:55–60.
  • Malet-Martino M, Holzgrabe U. NMR techniques in biomedical and pharmaceutical analysis. J Pharm Biomed Anal. 2011;55:1–15.
  • Serkova NJ, Niemann CU. Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics. Expert Rev Mol Diagn. 2006; 6:717–731.
  • Tang H, Xiao C, Wang Y. Important roles of the hyphenated HPLC-DAD-MS-SPE-NMR technique in metabonomics. Magn Reson Chem. 2009;47(1): S157–S162.
  • Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem. 2007;387:525–527.
  • Zhang J, Yan L, Chen W, et al. Metabonomics research of diabetic nephropathy and type 2 diabetes mellitus based on UPLC-oaTOF-MS system. Anal Chim Acta. 2009;650:16–22.
  • Zhang X, Wang Y, Hao F, et al. Human serum metabonomic analysis reveals progression axes for glucose intolerance and insulin resistance statuses. J Proteome Res. 2009;8:5188–5195.
  • Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–326.
  • Tai ES, Tan ML, Stevens RD, et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia. 2010;53:757–767.
  • Fiehn O, Garvey WT, Newman JW, et al. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One. 2010;5:e15234.
  • Gall WE, Beebe K, Lawton KA, et al. Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One. 2010;5:e10883.
  • Suhre K, Meisinger C, Doring A, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010;5:e13953.
  • Wurtz P, Tiainen M, Makinen VP, et al. Circulating metabolite predictors of glycemia in middle-aged men and women. Diabetes Care. 2012;35:1749–1756.
  • Zhou Y, Qiu L, Xiao Q, et al. Obesity and diabetes related plasma amino acid alterations. Clin Biochem. 2013;46:1447–1452.
  • Menni C, Fauman E, Erte I, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes. 2013;62:4270–4276.
  • Xu F, Tavintharan S, Sum CF, et al. Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J Clin Endocrinol Metab. 2013;98:E1060–E1065.
  • Kaur P, Rizk N, Ibrahim S, et al. Quantitative metabolomic and lipidomic profiling reveals aberrant amino acid metabolism in type 2 diabetes. Mol Biosyst. 2013;9:307–317.
  • Thalacker-Mercer AE, Ingram KH, Guo F, et al. BMI, RQ, diabetes, and sex affect the relationships between amino acids and clamp measures of insulin action in humans. Diabetes. 2014;63:791–800.
  • Geidenstam N, Spegel P, Mulder H, et al. Metabolite profile deviations in an oral glucose tolerance test-a comparison between lean and obese individuals. Obesity (Silver Spring, MD). 2014;22:2388–2395.
  • Mook-Kanamori DO, de Mutsert R, Rensen PC, et al. Type 2 diabetes is associated with postprandial amino acid measures. Arch Biochem Biophys. 2016;589:138–144.
  • Ho JE, Larson MG, Ghorbani A, et al. Metabolomic profiles of body mass index in the framingham heart study reveal distinct cardiometabolic phenotypes. PLoS One. 2016;11:e0148361.
  • Badoud F, Lam KP, Perreault M, et al. Metabolomics reveals metabolically healthy and unhealthy obese individuals differ in their response to a caloric challenge. PLoS One. 2015;10:e0134613.
  • Tulipani S, Palau-Rodriguez M, Minarro Alonso A, et al. Biomarkers of morbid obesity and prediabetes by metabolomic profiling of human discordant phenotypes. Clin Chim Acta. 2016;463:53–61.
  • Messana I, Forni F, Ferrari F, et al. Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients. Clin Chem. 1998;44:1529–1534.
  • Zhang AH, Sun H, Yan GL, et al. Metabolomics study of type 2 diabetes using ultra-performance LC-ESI/quadrupole-TOF high-definition MS coupled with pattern recognition methods. J Physiol Biochem. 2014;70:117–128.
  • Cheng S, Rhee EP, Larson MG, et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125:2222–2231.
  • Guasch-Ferre M, Hruby A, Toledo E, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. 2016;39:833–846.
  • Allam-Ndoul B, Guenard F, Garneau V, et al. Association between metabolite profiles, metabolic syndrome and obesity status. Nutrients. 2016;8:E324.
  • Bremer AA, Mietus-Snyder M, Lustig RH. Toward a unifying hypothesis of metabolic syndrome. Pediatrics. 2012;129:557–570.
  • Kamaura M, Nishijima K, Takahashi M, et al. Lifestyle modification in metabolic syndrome and associated changes in plasma amino acid profiles. Circ J. 2010;74:2434–2440.
  • Korsholm AS, Kjaer TN, Ornstrup MJ, et al. Comprehensive metabolomic analysis in blood, urine, fat, and muscle in men with metabolic syndrome: a randomized, placebo-controlled clinical trial on the effects of resveratrol after four months’ treatment. IJMS. 2017;18:E554.
  • Org E, Blum Y, Kasela S, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017;18:70.
  • Yamakado M, Nagao K, Imaizumi A, et al. Plasma free amino acid profiles predict four-year risk of developing diabetes, metabolic syndrome, dyslipidemia, and hypertension in Japanese population. Sci Rep. 2015;5:11918.
  • Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–453.
  • Shah SH, Crosslin DR, Haynes CS, et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012;55:321–330.
  • Stancakova A, Civelek M, Saleem NK, et al. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes. 2012;61:1895–1902.
  • Wang-Sattler R, Yu Z, Herder C, et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol. 2012;8:615.
  • Ferrannini E, Natali A, Camastra S, et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes. 2013;62:1730–1737.
  • Floegel A, Stefan N, Yu Z, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–648.
  • tWurtz P, Soininen P, Kangas AJ, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36:648–655.
  • Palmer ND, Stevens RD, Antinozzi PA, et al. Metabolomic profile associated with insulin resistance and conversion to diabetes in the insulin resistance atherosclerosis study. J Clin Endocrinol Metabol. 2015;100:E463–E468.
  • Tillin T, Hughes AD, Wang Q, et al. Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) study. Diabetologia. 2015;58:968–979.
  • Yan-Do R, Duong E, Manning Fox JE, et al. A glycine-insulin autocrine feedback loop enhances insulin secretion from human beta-cells and is impaired in type 2 diabetes. Diabetes. 2016;65:2311–2321.
  • Gonzalez-Ortiz M, Medina-Santillan R, Martinez-Abundis E, et al. Effect of glycine on insulin secretion and action in healthy first-degree relatives of type 2 diabetes mellitus patients. Horm Metab Res. 2001;33:358–360.
  • Cochrane WA, Payne WW, Simpkiss MJ, et al. Familial hypoglycemia precipitated by amino acids. J Clin Invest. 1956;35:411–422.
  • Sekhar RV, McKay SV, Patel SG, et al. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011;34:162–167.
  • Takashina C, Tsujino I, Watanabe T, et al. Associations among the plasma amino acid profile, obesity, and glucose metabolism in Japanese adults with normal glucose tolerance. Nutr Metab (Lond). 2016;13:5.
  • El Hafidi M, Perez I, Zamora J, et al. Glycine intake decreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1387–R1393.
  • Adeva MM, Calvino J, Souto G, et al. Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids. 2012;43:171–181.
  • Chevalier S, Marliss EB, Morais JA, et al. Whole-body protein anabolic response is resistant to the action of insulin in obese women. Am J Clin Nutr. 2005;82:355–365.
  • Mahendran Y, Jonsson A, Have CT, et al. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia. 2017;60:873–878.
  • O’Connell TM. The complex role of branched chain amino acids in diabetes and cancer. Metabolites. 2013;3:931–945.
  • Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10:723–736.
  • Burrage LC, Nagamani SC, Campeau PM, et al. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. 2014;23:R1–R8.
  • Shin AC, Fasshauer M, Filatova N, et al. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metab. 2014;20:898–909.
  • Morris C, O’Grada C, Ryan M, et al. The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc. 2012;71:634–638.
  • DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32(2):S157–S163.
  • Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabolism. 2008;7:45–56.
  • Zoppi CC, Silveira LR, Oliveira CA, et al. Insulin release, peripheral insulin resistance and muscle function in protein malnutrition: a role of tricarboxylic acid cycle anaplerosis. Br J Nutr. 2010; 103:1237–1250.
  • Drabkova P, Sanderova J, Kovarik J, et al. An assay of selected serum amino acids in patients with type 2 diabetes mellitus. Adv Clin Exp Med. 2015; 24:447–451.
  • Kelly A, Stanley CA. Disorders of glutamate metabolism. Ment Retard Dev Disabil Res Rev. 2001;7:287–295.
  • Otter S, Lammert E. Exciting times for pancreatic islets: glutamate signaling in endocrine cells. Trends Endocrinol Metabol. 2016;27:177–188.
  • Bertrand G, Gross R, Puech R, et al. Glutamate stimulates glucagon secretion via an excitatory amino acid receptor of the AMPA subtype in rat pancreas. Eur J Pharmacol. 1993;237:45–50.
  • Adams SH. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr (Bethesda, MD). 2011;2:445–456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.