626
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Niche point-of-care endocrine testing – Reviews of intraoperative parathyroid hormone and cortisol monitoring

&
Pages 115-128 | Received 18 Sep 2017, Accepted 07 Jan 2018, Published online: 22 Jan 2018

References

  • Ehrenkranz J. Point-of-care endocrine diagnostics. Endocrinol Metab Clin North Am. 2017;46:615–630.
  • Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta. 2012;750:16–27.
  • Price CP, St. John A. Innovation in healthcare. The challenge for laboratory medicine. Clin Chim Acta. 2014;427:71–78.
  • Peeling RW, Holmes KK, Mabey D, et al. Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect. 2006;82:v1–v6.
  • John AS, Price CP. Economic evidence and point-of-care testing. Clin Biochem Rev. 2013;34:61–74.
  • Luppa PB, Bietenbeck A, Beaudoin C, et al. Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotechnol Adv. 2016;34:139–160.
  • Nussbaum SR, Thompson AR, Hutcheson KA, et al. Intraoperative measurement of parathyroid hormone in the surgical management of hyperparathyroidism. Surgery. 1988;104:1121–1127.
  • Irvin GL, Dembrow VD, Prudhomme DL. Operative monitoring of parathyroid gland hyperfunction. Am J Surg. 1991;162:299–302.
  • Irvin GL, Carneiro DM, Solorzano CC. Progress in the operative management of sporadic primary hyperparathyroidism over 34 years. Ann Surg. 2004;239:704–708; discussion 708–711.
  • Patel KN, Caso R. Intraoperative parathyroid hormone monitoring. Optimal utilization. Surg Oncol Clin N Am. 2016;25:91–101.
  • Bilezikian JP, Cusano NE, Khan AA, et al. Primary hyperparathyroidism. Nat Rev Dis Primers. 2016;2:16033.
  • Wilhelm SM, Wang TS, Ruan DT, et al. The American Association of Endocrine Surgeons Guidelines for Definitive Management of Primary Hyperparathyroidism. JAMA Surg. 2016;151:959.
  • Pradeep PV, Jayashree B, Mishra A, et al. Systematic review of primary hyperparathyroidism in India: the past, present, and the future trends. Int J Endocrinol. 2011;2011:92814.
  • Zhao L, Liu J-M, He X-Y, et al. The changing clinical patterns of primary hyperparathyroidism in Chinese patients: data from 2000 to 2010 in a single clinical center. J Clin Endocrinol Metab. 2013;98:721–728.
  • Marcocci C, Cetani F. Clinical practice. Primary hyperparathyroidism. N Engl J Med. 2011;365:2389–2397.
  • Obara T, Okamoto T, Kanbe M, et al. Functioning parathyroid carcinoma: clinicopathologic features and rational treatment. Semin Surg Oncol. 1997; 13:134–141.
  • Fraker DL, Harsono H, Lewis R. Minimally invasive parathyroidectomy: benefits and requirements of localization, diagnosis, and intraoperative PTH monitoring. long-term results. World J Surg. 2009;33:2256–2265.
  • Inabnet WB. Intraoperative parathyroid hormone monitoring. World J Surg. 2004;28:1212–1215.
  • Laird AM, Libutti SK. Minimally invasive parathyroidectomy versus bilateral neck exploration for primary hyperparathyroidism. Surg Oncol Clin N Am. 2016;25:103–118.
  • Lew JI, Solorzano CC, Montano RE, et al. Role of intraoperative parathormone monitoring during parathyroidectomy in patients with discordant localization studies. Surgery. 2008;144:299–306.
  • McGill J, Sturgeon C, Kaplan SP, et al. How does the operative strategy for primary hyperparathyroidism impact the findings and cure rate? A Comparison of 800 Parathyroidectomies. J Am Coll Surg. 2008;207:246–249.
  • Riss P, Kaczirek K, Heinz G, et al. A “defined baseline” in PTH monitoring increases surgical success in patients with multiple gland disease”. Surgery. 2007; 142:398–404.
  • Barczyński M, Bränström R, Dionigi G, et al. Sporadic multiple parathyroid gland disease-a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbecks Arch Surg. 2015;400:887–905.
  • Applewhite MK, White MG, Tseng J, et al. Normohormonal primary hyperparathyroidism is a distinct form of primary hyperparathyroidism. Surgery (United States). 2017;161:62–69.
  • Javid M, Callender G, Quinn C, et al. Primary hyperparathyroidism with normal baseline intraoperative parathyroid hormone: a challenging population. Surgery (United States). 2017;161:493–498.
  • Bieglmayer C, Kaczirek K, Prager G, et al. Parathyroid hormone monitoring during total parathyroidectomy for renal hyperparathyroidism: pilot study of the impact of renal function and assay specificity. Clin Chem. 2006;52:1112–1119.
  • Barczynski M, Konturek A, Hubalewska-Dydejczyk A, et al. Utility of intraoperative bilateral internal jugular venous sampling with rapid parathyroid hormone testing in guiding patients with a negative sestamibi scan for minimally invasive parathyroidectomy – a randomized controlled trial. Langenbecks Arch Surg. 2009;394:827–835.
  • Pitt SC, Panneerselvan R, Chen H, et al. Secondary and tertiary hyperparathyroidism: the utility of ioPTH monitoring. World J Surg. 2010;34:1343–1349.
  • Matsuoka S, Tominaga Y, Sato T, et al. QuiCk-IntraOperative Bio-Intact PTH assay at parathyroidectomy for secondary hyperparathyroidism. World J Surg. 2007;31:824–831.
  • Kim WY, Lee JB, Kim HY. Efficacy of intraoperative parathyroid hormone monitoring to predict success of parathyroidectomy for secondary hyperparathyroidism. J Korean Surg Soc. 2012;83:1–6.
  • Hiramitsu T, Tominaga Y, Okada M, et al. A retrospective study of the impact of intraoperative intact parathyroid hormone monitoring during total parathyroidectomy for secondary hyperparathyroidism: STARD Study. Medicine (Baltimore). 2015;94:e1213.
  • Zhang L, Xing C, Shen C, et al. Diagnostic accuracy study of intraoperative and perioperative serum intact PTH level for successful parathyroidectomy in 501 secondary hyperparathyroidism patients. Sci Rep. 2016;6:26841.
  • Elaraj DM, Remaley AT, Simonds WF, et al. Utility of rapid intraoperative parathyroid hormone assay to predict severe postoperative hypocalcemia after reoperation for hyperparathyroidism. Surgery. 2002;132:1028–1034.
  • Noordzij JP, Lee SL, Bernet VJ, et al. Early prediction of hypocalcemia after thyroidectomy using parathyroid hormone: an analysis of pooled individual patient data from nine observational studies. J Am Coll Surg. 2007;205:748–754.
  • Schneider DF, Mazeh H, Chen H, et al. Predictors of recurrence in primary hyperparathyroidism: an analysis of 1386 cases. Ann Surg. 2014;259:563–568.
  • Wharry LI, Yip L, Armstrong MJ, et al. The final intraoperative parathyroid hormone level: How low should it go? World J Surg. 2014;38:558–563.
  • Wachtel H, Cerullo I, Bartlett EK, et al. What can we learn from intraoperative parathyroid hormone levels that do not drop appropriately? Ann Surg Oncol. 2015;22:1781–1788.
  • Richards ML, Thompson GB, Farley DR, et al. Reoperative parathyroidectomy in 228 patients during the era of minimal-access surgery and intraoperative parathyroid hormone monitoring. Am J Surg. 2008;196:937–943.
  • Barczyński M, Gołkowski F, Nawrot I. The current status of intraoperative iPTH assay in surgery for primary hyperparathyroidism. Gland Surg. 2015;4:36–43.
  • Garbutt L, Sigvaldason H, Sharaf Eldin MHT, et al. What is the most appropriate intraoperative baseline parathormone? A prospective cohort study. Int J Surg. 2016;25:49–53.
  • Bieglmayer C, Prager G, Niederle B. Kinetic analyses of parathyroid hormone clearance as measured by three rapid immunoassays during parathyroidectomy. Clin Chem. 2002;48:1731–1738.
  • Richards ML. An optimal algorithm for intraoperative parathyroid hormone monitoring. Arch Surg. 2011;146:280
  • Udelsman R, Donovan P, Shaw C. Cure predictability during parathyroidectomy. World J Surg. 2014;38:525–533.
  • Sokoll LJ, Wians FH, Remaley AT. Rapid intraoperative immunoassay of parathyroid hormone and other hormones: a new paradigm for point-of-care testing. Clin Chem. 2004;7:1126–1135.
  • Yamashita H, Gao P, Cantor T, et al. Comparison of parathyroid hormone levels from the intact and whole parathyroid hormone assays after parathyroidectomy for primary and secondary hyperparathyroidism. Surgery. 2004;135:149–156.
  • Ikeda Y, Kurihara H, Morita N, et al. The role of quick bio-intact PTH(1-84) assay during parathyroidectomy for secondary hyperparathyroidism. J Surg Res. 2007;141:306–310.
  • Stack BC, Spencer H, Moore E, et al. Outpatient parathyroid surgery data from the University Health System Consortium. Otolaryngol Head Neck Surg. 2012; 147:438–443.
  • Morris LF, Zanocco K, Ituarte PH, et al. The value of intraoperative parathyroid hormone monitoring in localized primary hyperparathyroidism: a cost analysis. Ann Surg Oncol. 2010;17:679–685.
  • Jarrige V, Nieuwenhuis JH, Van Son JPHF, et al. A fast intraoperative PTH point-of-care assay on the Philips handheld magnotech system. Langenbecks Arch Surg. 2011;396:337–343.
  • Özcan B, Demirbakan B, Yeşiller G, et al. Introducing a new method for evaluation of the interaction between an antigen and an antibody: single frequency impedance analysis for biosensing systems. Talanta. 2014;125:7–13.
  • Özcan HM, Yildiz K, Çakar C, et al. Ultrasensitive impedimetric biosensor fabricated by a new immobilisation technique for parathyroid hormone. Appl Biochem Biotechnol. 2015;176:1251–1262.
  • Inder WJ, Dimeski G, Russell A. Measurement of salivary cortisol in 2012 – laboratory techniques and clinical indications. Clin Endocrinol (Oxf). 2012;77:645–651.
  • Guignat L, Bertherat J. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline: commentary from a European perspective. Eur J Endocrinol. 2010;163:9–13.
  • Holsboer F, Ising M. Stress hormone regulation: biological role and translation into therapy. Annu Rev Psychol. 2010;61:81–109.
  • Leung W, Chan P, Bosgoed F, et al. One-step quantitative cortisol dipstick with proportional reading. J Immunol Methods. 2003;281:109–118.
  • Shirtcliff EA, Buck RL, Laughlin MJ, et al. Salivary cortisol results obtainable within minutes of sample collection correspond with traditional immunoassays. Clin Ther. 2015;37:505–514.
  • Fisher R, McLellan C, Sinclair, et al. The validity and reliability for a salivary cortisol point of care test. J Athl Enhanc. 2015;4:2–7.
  • Kempers MJ, Lenders JW, van Outheusden L, et al. Systematic review: diagnostic procedures to differentiate unilateral from bilateral adrenal abnormality in primary aldosteronism. Ann Intern Med. 2009;151:329–337.
  • Vonend O, Ockenfels N, Gao X, et al. Adrenal venous sampling: evaluation of the German Conn's registry. Hypertension. 2011;57:990–995.
  • Rossi GP, Barisa M, Allolio B, et al. The adrenal vein sampling International study (avis) for identifying the major subtypes of primary aldosteronism. J Clin Endocrinol Metab. 2012;97:1606–1614.
  • Young WF, Stanson AW. What are the keys to successful adrenal venous sampling (AVS) in patients with primary aldosteronism? Clin Endocrinol (Oxf). 2009;70:14–17.
  • Lacroix A, Feelders RA, Stratakis CA, et al. Cushing's syndrome. Lancet. 2015;386:913–927.
  • Young WF, Du Plessis H, Thompson GB, et al. The clinical conundrum of corticotropin-independent autonomous cortisol secretion in patients with bilateral adrenal masses. World J Surg. 2008;32:856–862.
  • Auchus RJ, Michaelis C, Wians FH, et al. Rapid cortisol assays improve the success rate of adrenal vein sampling for primary aldosteronism. Ann Surg. 2009;249:318–321.
  • Takada A, Suzuki K, Mori Y, et al. Comparison of the central adrenal vein and the common trunk of the left adrenal vein for adrenal venous sampling. J Vasc Interv Radiol. 2013;24:550–557.
  • Betz MJ, Degenhart C, Fischer E, et al. Adrenal vein sampling using rapid cortisol assays in primary aldosteronism is useful in centers with low success rates. Eur J Endocrinol. 2011;165:301–306.
  • Viste K, Grytaas M. a, Jørstad MD, et al. Efficacy of adrenal venous sampling is increased by point of care cortisol analysis. Endocr Connect. 2013;2:236–242.
  • Mengozzi G, Rossato D, Bertello C, et al. Rapid cortisol assay during adrenal vein sampling in patients with primary aldosteronism. Clin Chem. 2007;53:1968–1971.
  • Yoneda T, Karashima S, Kometani M, et al. Impact of new quick gold nanoparticle-based cortisol assay during adrenal vein sampling for primary aldosteronism. J Clin Endocrinol Metab. 2016;101:2554–2561.
  • Seccia TM, Miotto D, De Toni R, et al. Adrenocorticotropic hormone stimulation during adrenal vein sampling for identifying surgically curable subtypes of primary aldosteronism comparison of 3 different protocols. Hypertension. 2009;53:761–766.
  • Liu X, Lin TY, Lillehoj PB. Smartphones for cell and biomolecular detection. Ann Biomed Eng. 2014;42:2205–2217.
  • You DJ, Park TS, Yoon JY. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron. 2013;40:180–185.
  • Choi S, Kim S, Yang J, et al. Real-time measurement of human salivary cortisol for the assessment of psychological stress using a smartphone. Sens Bio-Sensing Res. 2014;2:8–11.
  • Zangheri M, Cevenini L, Anfossi L, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron. 2015;64:63–68.
  • Singh A, Kaushik A, Kumar R, et al. Electrochemical sensing of cortisol: a recent update. Appl Biochem Biotechnol. 2014;174:1115–1126.
  • Vasudev A, Kaushik A, Tomizawa Y, et al. An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol. Sensors Actuators B Chem. 2013;182:139–146.
  • Vabbina PK, Kaushik A, Pokhrel N, et al. Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes. Biosens Bioelectron. 2015;63:124–130.
  • Martin JA, Smith JE, Warren M, et al. A method for selecting structure-switching aptamers applied to a colorimetric gold nanoparticle assay. J Vis Exp. [Internet]. 2015;e52545. doi:10.3791/52545. Available from: http://www.jove.com/video/52545/a-method-for-selecting-structure-switching-aptamers-applied-to
  • Sanghavi BJ, Moore JA, Chávez JL, et al. Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens Bioelectron. 2016;78:244–252.
  • Shi RZ, El Gierari ETM, Manicke NE, et al. Rapid measurement of tacrolimus in whole blood by paper spray-tandem mass spectrometry (PS-MS/MS). Clin Chim Acta. 2015;441:99–104.
  • Espy RD, Teunissen SF, Manicke NE, et al. Paper spray and extraction spray mass spectrometry for the direct and simultaneous quantification of eight drugs of abuse in whole blood. Anal Chem. 2014;86:7712–7718.
  • Liu J, Wang H, Manicke NE, et al. Development, characterization, and application of paper spray ionization. Anal Chem. 2010;82:2463–2471.
  • Lavrynenko O, Nedielkov R, Moller HM, et al. Girard derivatization for LC-MS/MS profiling of endogenous ecdysteroids in Drosophila. J Lipid Res. 2013;54:2265–2272.
  • Ferreira CR, Yannell KE, Jarmusch AK, et al. Ambient ionization mass spectrometry for point-of-care diagnostics and other clinical measurements. Clin Chem. 2016;62:99–110.
  • Manz A, Harrison DJ, Verpoorte EMJ, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip. J Chromatogr A. 1992;593:253–258.
  • Sharma S, Zapatero-Rodriguez J, Estrela P, et al. Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors. 2015;3:577–601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.