1,376
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research

ORCID Icon, , &
Pages 294-328 | Received 09 Dec 2017, Accepted 01 Apr 2018, Published online: 18 Apr 2018

References

  • Johnston SC, Mendis S, Mathers CD. Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling. Lancet Neurol. 2009;8:345–354.
  • Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, et al. Heart Disease and Stroke Statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.
  • Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart Disease and Stroke Statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–e603.
  • Amarenco P, Bogousslavsky J, Caplan LR, et al. Classification of stroke subtypes. Cerebrovasc Dis. 2009;27:493–501.
  • Adams HP Jr, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24:35–41.
  • Bamford J, Sandercock P, Dennis M, et al. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet. 1991;337:1521–1526.
  • Mohr JP, Caplan LR, Melski JW, et al. The Harvard Cooperative Stroke Registry: a prospective registry. Neurology. 1978;28:754–762.
  • Bogousslavsky J, Van Melle G, Regli F. The Lausanne Stroke Registry: analysis of 1000 consecutive patients with first stroke. Stroke. 1988;19:1083–1092.
  • Touboul PJ, Elbaz A, Koller C, et al. Common carotid artery intima-media thickness and brain infarction: the Etude du Profil Génétique de l’Infarctus Cérébral (GENIC) case-control study. The GENIC Investigators. Circulation. 2000;102:313–318.
  • Freeman WD, Aguilar MI. Stroke prevention in atrial fibrillation and other major cardiac sources of embolism. Neurol Clin. 2008;26:1129–1160.
  • Freeman WD, Aguilar MI. Prevention of cardioembolic stroke. Neurotherapeutics. 2011;8:488–502.
  • O’Carroll CB, Barrett KM. Cardioembolic Stroke. Continuum (Minneap, Minn). 2017;23:111–132.
  • Arboix A, Marti-Vilalta JL. Lacunar stroke. Expert Rev Neurother. 2009;9:179–196.
  • Auer RN, Sutherland GR. Primary intracerebral hemorrhage: pathophysiology. Can J Neurol Sci. 2005;32 Suppl 2:S3–S12.
  • Donnan GA, Fisher M, Macleod M, et al. Stroke. Lancet. 2008;371:1612–1623.
  • Ikram MA, Wieberdink RG, Koudstaal PJ. International epidemiology of intracerebral hemorrhage. Curr Atheroscler Rep. 2012;14:300–306.
  • Poon MT, Bell SM, Al-Shahi Salman R. Epidemiology of intracerebral haemorrhage. Front Neurol Neurosci. 2015;37:1–12.
  • Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 2010;17:197–218.
  • Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–397.
  • Jovin TG, Demchuk A, Gupta R. Pathophysiology of acute ischemic stroke. Continuum Lifelong Learn Neurol. 2008;14:28–45.
  • Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67:181–198.
  • Moustafa RR, Baron JC. Pathophysiology of ischaemic stroke: insights from imaging, and implications for therapy and drug discovery. Br J Pharmacol. 2008;153 (Suppl 1):S44–S54.
  • Cipolla MJ, Smith J, Kohlmeyer MM, et al. SKCa and IKCa Channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. Stroke. 2009;40:1451–1457.
  • Cipolla MJ. The cerebral circulation. In: Granger DN, Granger JP, editors. Integrated systems physiology: from molecule to function. San Rafael (CA): Morgan & Claypool Life Sciences; 2009. p. 19–46.
  • Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990;66:8–17.
  • Aries MJ, Elting JW, De Keyser J, et al. Cerebral autoregulation in stroke: a review of transcranial Doppler studies. Stroke. 2010;41:2697–2704.
  • Salinet AS, Panerai RB, Robinson TG. The longitudinal evolution of cerebral blood flow regulation after acute ischaemic stroke. Cerebrovasc Dis Extra. 2014;4:186–197.
  • Salinet AS, Robinson TG, Panerai RB. Effects of cerebral ischemia on human neurovascular coupling, CO2 reactivity, and dynamic cerebral autoregulation. J Appl Physiol. 2015;118:170–177.
  • Attwell D, Buchan AM, Charpak S, et al. Glial and neuronal control of brain blood flow. Nature. 2010;468:232–243.
  • Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981;12:723–725.
  • Symon L, Branston NM, Strong AJ, et al. The concepts of thresholds of ischaemia in relation to brain structure and function. J Clin Pathol Suppl (R Coll Pathol). 1977;11:149–154.
  • Bandera E, Botteri M, Minelli C, et al. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke. 2006;37:1334–1339.
  • Hossmann KA. Experimental models for the investigation of brain ischemia. Cardiovasc Res. 1998;39:106–120.
  • Lee JM, Grabb MC, Zipfel GJ, et al. Brain tissue responses to ischemia. J Clin Invest. 2000;106:723–731.
  • Brouns R, Sheorajpanday R, Wauters A, et al. Evaluation of lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA. Clin Chim Acta Int J Clin Chem. 2008;397:27–31.
  • Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47:122–129.
  • Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–188.
  • Rodrigo R, Fernandez-Gajardo R, Gutierrez R, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 2013;12:698–714.
  • Rodrigo R, Libuy M, Feliu F, et al. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Disease Markers. 2013;35:773–790.
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.
  • Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.
  • Saeed SA, Shad KF, Saleem T, et al. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res. 2007;182:1–10.
  • Chamorro A, Hallenbeck J. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke. 2006;37:291–293.
  • Chamorro A, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke. 2007;38:1097–1103.
  • Esenwa CC, Elkind MS. Inflammatory risk factors, biomarkers and associated therapy in ischaemic stroke. Nat Rev Neurol. 2016;12:594–604.
  • Grau AJ, Urbanek C, Palm F. Common infections and the risk of stroke. Nat Rev Neurol. 2010;6:681–694.
  • Lindsberg PJ, Grau AJ. Inflammation and infections as risk factors for ischemic stroke. Stroke. 2003;34:2518–2532.
  • Muir KW, Tyrrell P, Sattar N, et al. Inflammation and ischaemic stroke. Curr Opin Neurol. 2007;20:334–342.
  • Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;7:97.
  • Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184:53–68.
  • Kim JY, Kawabori M, Yenari MA. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets. Curr Med Chem. 2014;21:2076–2097.
  • Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87:779–789.
  • Liesz A, Dalpke A, Mracsko E, et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J Neurosci. 2015;35:583–598.
  • Bonaventura A, Liberale L, Vecchie A, et al. Update on inflammatory biomarkers and treatments in ischemic stroke. Int J Mol Sci. 2016;17:E1967.
  • Fumagalli S, Perego C, Pischiutta F, et al. The ischemic environment drives microglia and macrophage function. Front Neurol. 2015;6:81.
  • Li L, Lundkvist A, Andersson D, et al. Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab. 2008;28:468–481.
  • Brouns R, De Deyn PP. The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg. 2009;111:483–495.
  • Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–837.
  • Famakin BM. The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression: a focused review. Aging Dis. 2014;5:307–326.
  • Bustamante A, Simats A, Vilar-Bergua A, et al. Blood/brain biomarkers of inflammation after stroke and their association with outcome: from C-reactive protein to damage-associated molecular patterns. Neurotherapeutics. 2016;13:671–684.
  • Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–162.
  • Harris HE, Andersson U, Pisetsky DS. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol. 2012;8:195–202.
  • Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med. 2014;20:138–146.
  • Martinotti S, Patrone M, Ranzato E. Emerging roles for HMGB1 protein in immunity, inflammation, and cancer. Immunotargets Ther. 2015;4:101–109.
  • Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871–882.
  • Spite M, Serhan CN. Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res. 2010;107:1170–1184.
  • Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796–808.
  • Kamel H, Iadecola C. Brain-immune interactions and ischemic stroke: clinical implications. Arch Neurol. 2012;69:576–581.
  • Liesz A, Hu X, Kleinschnitz C, et al. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke. 2015;46:1422–1430.
  • Simats A, Garcia-Berrocoso T, Montaner J. Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy. Biochim Biophys Acta. 2016;1862:411–424.
  • Chamorro A, Amaro S, Vargas M, et al. Catecholamines, infection, and death in acute ischemic stroke. J Neurol Sci. 2007;252:29–35.
  • Bellinger DL, Millar BA, Perez S, et al. Sympathetic modulation of immunity: relevance to disease. Cell Immunol. 2008;252:27–56.
  • Winklewski PJ, Radkowski M, Demkow U. Cross-talk between the inflammatory response, sympathetic activation and pulmonary infection in the ischemic stroke. J Neuroinflammation. 2014;11:213.
  • Tang Y, Shankar R, Gamelli R, et al. Dynamic norepinephrine alterations in bone marrow: evidence of functional innervation. J Neuroimmunol. 1999;96:182–189.
  • Klehmet J, Harms H, Richter M, et al. Stroke-induced immunodepression and post-stroke infections: lessons from the preventive antibacterial therapy in stroke trial. Neuroscience. 2009;158:1184–1193.
  • Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med. 1995;332:1351–1362.
  • Szczudlik A, Dziedzic T, Bartus S, et al. Serum interleukin-6 predicts cortisol release in acute stroke patients. J Endocrinol Invest. 2004;27:37–41.
  • Woiciechowsky C, Schoning B, Cobanov J, et al. Early IL-6 plasma concentrations correlate with severity of brain injury and pneumonia in brain-injured patients. J Trauma. 2002;52:339–345.
  • Wilckens T, De Rijk R. Glucocorticoids and immune function: unknown dimensions and new frontiers. Immunol Today. 1997;18:418–424.
  • Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335:2–13.
  • Westendorp WF, Nederkoorn PJ, Vermeij JD, et al. Post-stroke infection: a systematic review and meta-analysis. BMC Neurol. 2011;11:110.
  • Ovbiagele B, Hills NK, Saver JL, et al. Frequency and determinants of pneumonia and urinary tract infection during stroke hospitalization. J Stroke Cerebrovasc Dis. 2006;15:209–213.
  • Heuschmann PU, Kolominsky-Rabas PL, Misselwitz B, et al. Predictors of in-hospital mortality and attributable risks of death after ischemic stroke: the German Stroke Registers Study Group. Arch Intern Med. 2004;164:1761–1768.
  • Kimura K, Minematsu K, Kazui S, Japan Multicenter Stroke Investigators C, et al. Mortality and cause of death after hospital discharge in 10,981 patients with ischemic stroke and transient ischemic attack. Cerebrovasc Dis. 2005;19:171–178.,.
  • Corrado E, Rizzo M, Tantillo R, et al. Markers of inflammation and infection influence the outcome of patients with baseline asymptomatic carotid lesions: a 5-year follow-up study. Stroke. 2006;37:482–486.
  • Ulm L, Harms H, Ohlraun S, et al. Impact of infections on long-term outcome after severe middle cerebral artery infarction. J Neurol Sci. 2012;319:15–17.
  • Wilson RD. Mortality and cost of pneumonia after stroke for different risk groups. J Stroke Cerebrovasc Dis. 2012;21:61–67.
  • Langhorne P, Stott DJ, Robertson L, et al. Medical complications after stroke: a multicenter study. Stroke. 2000;31:1223–1229.
  • Vernino S, Brown RD Jr, Sejvar JJ, et al. Cause-specific mortality after first cerebral infarction: a population-based study. Stroke. 2003;34:1828–1832.
  • Miller CM, Behrouz R. Impact of infection on stroke morbidity and outcomes. Curr Neurol Neurosci Rep. 2016;16:83.
  • Kaplan ZS, Jackson SP. The role of platelets in atherothrombosis. Hematology Am Soc Hematol Educ Program. 2011;2011:51–61.
  • Stockschlaeder M, Schneppenheim R, Budde U. Update on von Willebrand factor multimers: focus on high-molecular-weight multimers and their role. Hemost Blood Coagul Fibrinol. 2014;25:206–216.
  • Lenting PJ, Casari C, Christophe OD, et al. von Willebrand factor: the old, the new and the unknown. J Thromb Haemost. 2012;10:2428–2437.
  • Reininger AJ. Function of von Willebrand factor in haemostasis and thrombosis. Haemophilia. 2008;14 Suppl 5:11–26.
  • Flood VH. Platelet-derived VWF in the stroke spotlight. Blood. 2015;126:1640–1641.
  • De Meyer SF, Stoll G, Wagner DD, et al. von Willebrand factor: an emerging target in stroke therapy. Stroke. 2012;43:599–606.
  • Furlan M. Von Willebrand factor: molecular size and functional activity. Ann Hematol. 1996;72:341–348.
  • Keightley AM, Lam YM, Brady JN, et al. Variation at the von Willebrand factor (vWF) gene locus is associated with plasma vWF:Ag levels: identification of three novel single nucleotide polymorphisms in the vWF gene promoter. Blood. 1999;93:4277–4283.
  • Ruggeri ZM. Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation. Best Pract Res Clin Haematol. 2001;14:257–279.
  • Goto S. Role of von Willebrand factor for the onset of arterial thrombosis. Clin Lab. 2001;47:327–334.
  • Cooney MT, Dudina AL, O’Callaghan P, et al. von Willebrand Factor in CHD and stroke: relationships and therapeutic implications. Curr Treat Options Cardio Med. 2007;9:180–190.
  • Hanson E, Jood K, Karlsson S, et al. Plasma levels of von Willebrand factor in the etiologic subtypes of ischemic stroke. J Thromb Haemost. 2011;9:275–281.
  • Bongers TN, de Maat MP, van Goor ML, et al. High von Willebrand factor levels increase the risk of first ischemic stroke: influence of ADAMTS13, inflammation, and genetic variability. Stroke. 2006;37:2672–2677.
  • Qizilbash N, Duffy S, Prentice CR, et al. Von Willebrand factor and risk of ischemic stroke. Neurology. 1997;49:1552–1556.
  • Catto AJ, Carter AM, Barrett JH, et al. von Willebrand factor and factor VIII: C in acute cerebrovascular disease. Relationship to stroke subtype and mortality. Thromb Haemost. 1997;77:1104–1108.
  • van Schie MC, De Maat MP, Dippel DW, et al. von Willebrand factor propeptide and the occurrence of a first ischemic stroke. J Thromb Haemost. 2010;8:1424–1426.
  • Wieberdink RG, van Schie MC, Koudstaal PJ, et al. High von Willebrand factor levels increase the risk of stroke: the Rotterdam study. Stroke. 2010;41:2151–2156.
  • Roldan V, Marin F, Garcia-Herola A, et al. Correlation of plasma von Willebrand factor levels, an index of endothelial damage/dysfunction, with two point-based stroke risk stratification scores in atrial fibrillation. Thromb Res. 2005;116:321–325.
  • Lip GY, Lane D, Van Walraven C, et al. Additive role of plasma von Willebrand factor levels to clinical factors for risk stratification of patients with atrial fibrillation. Stroke. 2006;37:2294–2300.
  • Conway DS, Pearce LA, Chin BS, et al. Prognostic value of plasma von Willebrand factor and soluble P-selectin as indices of endothelial damage and platelet activation in 994 patients with nonvalvular atrial fibrillation. Circulation. 2003;107:3141–3145.
  • Tzoulaki I, Murray GD, Lee AJ, et al. Relative value of inflammatory, hemostatic, and rheological factors for incident myocardial infarction and stroke: the Edinburgh Artery Study. Circulation. 2007;115:2119–2127.
  • Folsom AR, Rosamond WD, Shahar E, et al. Prospective study of markers of hemostatic function with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) study investigators. Circulation. 1999;100:736–742.
  • Sonneveld MA, de Maat MP, Portegies ML, et al. Low ADAMTS13 activity is associated with an increased risk of ischemic stroke. Blood. 2015;126:2739–2746.
  • Andersson HM, Siegerink B, Luken BM, et al. High VWF, low ADAMTS13, and oral contraceptives increase the risk of ischemic stroke and myocardial infarction in young women. Blood. 2012;119:1555–1560.
  • Zhao BQ, Chauhan AK, Canault M, et al. von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood. 2009;114:3329–3334.
  • Banno F, Chauhan AK, Kokame K, et al. The distal carboxyl-terminal domains of ADAMTS13 are required for regulation of in vivo thrombus formation. Blood. 2009;113:5323–5329.
  • Chauhan AK, Kisucka J, Brill A, et al. ADAMTS13: a new link between thrombosis and inflammation. J Exp Med. 2008;205:2065–2074.
  • Chauhan AK, Motto DG, Lamb CB, et al. Systemic antithrombotic effects of ADAMTS13. J Exp Med. 2006;203:767–776.
  • Chauhan AK, Walsh MT, Zhu G, et al. The combined roles of ADAMTS13 and VWF in murine models of TTP, endotoxemia, and thrombosis. Blood. 2008;111:3452–3457.
  • Tersteeg CD, Meyer SF, Deckmyn H. Inhibitors of Platelet Adhesion to VWF and Collagen. In: Gresele P, Kleiman N, Lopez J, Page C, editors. Platelets in thrombotic and non-thrombotic disorders. Cambridge: Springer; 2017. p. 1313–1323.
  • Wang L, Fan W, Cai P, et al. Recombinant ADAMTS13 reduces tissue plasminogen activator-induced hemorrhage after stroke in mice. Ann Neurol. 2013;73:189–198.
  • Luissint AC, Artus C, Glacial F, et al. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9:23.
  • Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25.
  • Abbott NJ. Anatomy and physiology of the blood–brain barriers. In: Hammarlund-Udenaes M, de Lange ECM, Thorne RG, editors. Drug delivery to the brain: physiological concepts, methodologies and approaches. New York (NY): Springer; 2014. p. 3–21.
  • Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19:1584–1596.
  • Marchi N, Cavaglia M, Fazio V, et al. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. 2004;342:1–12.
  • Serlin Y, Shelef I, Knyazer B, et al. Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol. 2015;38:2–6.
  • Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36:437–449.
  • Muoio V, Persson PB, Sendeski MM. The neurovascular unit – concept review. Acta Physiol (Oxf). 2014;210:790–798.
  • McConnell HL, Kersch CN, Woltjer RL, et al. The translational significance of the neurovascular unit. J Biol Chem. 2017;292:762–770.
  • Lakhan SE, Kirchgessner A, Tepper D, et al. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol. 2013;4:32.
  • Neuwelt EA, Abbott NJ, Drewes L, et al. Cerebrovascular Biology and the various neural barriers: challenges and future directions. Neurosurgery. 1999;44:604–608. discussion 8–9.
  • Grant GA, Abbott NJ, Janigro D. Understanding the physiology of the blood-brain barrier: in vitro models. News Physiol Sci. 1998;13:287–293.
  • Merali Z, Huang K, Mikulis D, et al. Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS One. 2017;12:e0171558.
  • Strbian D, Durukan A, Pitkonen M, et al. The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience. 2008;153:175–181.
  • Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids. 2011;41:271–290.
  • Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci. 2006;11:1696–1701.
  • Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015;1623:30–38.
  • Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia. 2002;39:279–291.
  • Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci. 2005;6:931–944.
  • Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2:737–744.
  • Abdelnaseer MM, Elfauomy NM, Esmail EH, et al. Matrix metalloproteinase-9 and recovery of acute ischemic stroke. J Stroke Cerebrovasc Dis. 2017;26:733–740.
  • Zhao BQ, Wang S, Kim HY, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12:441–445.
  • Chaturvedi M, Kaczmarek L. Mmp-9 inhibition: a therapeutic strategy in ischemic stroke. Mol Neurobiol. 2014;49:563–573.
  • Bhardwaj A, Alkayed NJ, Kirsch JR, et al. Mechanisms of ischemic brain damage. Curr Cardiol Rep. 2003;5:160–167.
  • Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008;55:310–318.
  • Guegan C, Onteniente B, Makiura Y, et al. Reduction of cortical infarction and impairment of apoptosis in NGF-transgenic mice subjected to permanent focal ischemia. Brain Res Mol Brain Res. 1998;55:133–140.
  • Linnik MD, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke. 1993;24:2002–2008. discussion 8–9.
  • Charriaut-Marlangue C, Aggoun-Zouaoui D, Represa A, et al. Apoptotic features of selective neuronal death in ischemia, epilepsy and gp 120 toxicity. Trends Neurosci. 1996;19:109–114.
  • Charriaut-Marlangue C, Margaill I, Represa A, et al. Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab. 1996;16:186–194.
  • Graham SH, Chen J. Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab. 2001;21:99–109.
  • Fiorelli M, Bastianello S, von Kummer R, et al. Hemorrhagic transformation within 36 hours of a cerebral infarct: relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort. Stroke. 1999;30:2280–2284.
  • Berger C, Fiorelli M, Steiner T, et al. Hemorrhagic transformation of ischemic brain tissue: asymptomatic or symptomatic? Stroke. 2001;32:1330–1335.
  • Jickling GC, Liu D, Stamova B, et al. Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab. 2014;34:185–199.
  • Terruso V, D’Amelio M, Di Benedetto N, et al. Frequency and determinants for hemorrhagic transformation of cerebral infarction. Neuroepidemiology. 2009;33:261–265.
  • van der Worp HB, Kappelle LJ. Complications of acute ischaemic stroke. Cerebrovasc Dis. 1998;8:124–132.
  • Oppenheimer S, Hachinski V. Complications of acute stroke. Lancet. 1992;339:721–724.
  • Balami JS, Sutherland BA, Buchan AM. Complications associated with recombinant tissue plasminogen activator therapy for acute ischaemic stroke. CNS Neurol Disord Drug Targets. 2013;12:155–169.
  • Edgell RC, Vora NA. Neuroimaging markers of hemorrhagic risk with stroke reperfusion therapy. Neurology. 2012;79:S100–S104.
  • Hacke W, Kaste M, Fieschi C, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet. 1998;352:1245–1251.
  • Kase CS, Furlan AJ, Wechsler LR, et al. Cerebral hemorrhage after intra-arterial thrombolysis for ischemic stroke: the PROACT II trial. Neurology. 2001;57:1603–1610.
  • Park JH, Ko Y, Kim WJ, et al. Is asymptomatic hemorrhagic transformation really innocuous?. Neurology. 2012;78:421–426.
  • Dzialowski I, Pexman JH, Barber PA, et al. Asymptomatic hemorrhage after thrombolysis may not be benign: prognosis by hemorrhage type in the Canadian alteplase for stroke effectiveness study registry. Stroke. 2007;38:75–79.
  • Prabhakaran S, Ruff I, Bernstein RA. Acute stroke intervention: a systematic review. JAMA. 2015;313:1451–1462.
  • Balami JS, Chen RL, Grunwald IQ, et al. Neurological complications of acute ischaemic stroke. Lancet Neurol. 2011;10:357–371.
  • Khatri IA, Rana A, Kulsoom A. Intraarterial thrombolysis with reteplase in acute ischaemic stroke in a Pakistani center. J Pak Med Assoc. 2008;58:408–411.
  • Jickling GC, Manolescu BN. Breaking down barriers to identify hemorrhagic transformation in ischemic stroke. Neurology. 2012;79:1632–1633.
  • Tawil SE, Muir KW. Thrombolysis and thrombectomy for acute ischaemic stroke. Clin Med (Lond). 2017;17:161–165.
  • Lu G, He Q, Shen Y, et al. Potential biomarkers for predicting hemorrhagic transformation of ischemic stroke. Int J Neurosci. 2017;128:79–89.
  • Aviv RI, d’Esterre CD, Murphy BD, et al. Hemorrhagic transformation of ischemic stroke: prediction with CT perfusion. Radiology. 2009;250:867–877.
  • Lyden PD, Zivin JA. Hemorrhagic transformation after cerebral ischemia: mechanisms and incidence. Cerebrovasc Brain Metab Rev. 1993;5:1–16.
  • Kerenyi L, Kardos L, Szasz J, et al. Factors influencing hemorrhagic transformation in ischemic stroke: a clinicopathological comparison. Eur J Neurol. 2006;13:1251–1255.
  • Emberson J, Lees KR, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384:1929–1935.
  • Rosell A, Foerch C, Murata Y, et al. Mechanisms and markers for hemorrhagic transformation after stroke. Acta Neurochir Suppl. 2008;105:173–178.
  • Lee SR, Wang X, Tsuji K, et al. Extracellular proteolytic pathophysiology in the neurovascular unit after stroke. Neurol Res. 2004;26:854–861.
  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.
  • Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation. 2006;113:2335–2362.
  • El Husseini N, Laskowitz DT. Clinical application of blood biomarkers in cerebrovascular disease. Expert Rev Neurother. 2010;10:189–203.
  • Saenger AK, Christenson RH. Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin Chem. 2010;56:21–33.
  • Laborde CM, Mourino-Alvarez L, Akerstrom F, et al. Potential blood biomarkers for stroke. Expert Rev Proteomics. 2012;9:437–449.
  • Rothstein L, Jickling GC. Ischemic stroke biomarkers in blood. Biomark Med. 2013;7:37–47.
  • Miao Y, Liao JK. Potential serum biomarkers in the pathophysiological processes of stroke. Expert Rev Neurother. 2014;14:173–185.
  • Pullagurla SR, Baird AE, Adamski MG, et al. Current and future bioanalytical approaches for stroke assessment. Bioanalysis. 2015;7:1017–1035.
  • Black M, Wang W, Wang W. Ischemic stroke: from next generation sequencing and GWAS to community genomics? OMICS. 2015;19:451–460.
  • Lanktree MB, Dichgans M, Hegele RA. Advances in genomic analysis of stroke: what have we learned and where are we headed? Stroke 2010;41:825–832.
  • Musunuru K, Hickey KT, Al-Khatib SM, et al. Basic concepts and potential applications of genetics and genomics for cardiovascular and stroke clinicians: a scientific statement from the American Heart Association. Circ Cardiovasc Genet. 2015;8:216–242.
  • Freedman JE, Vitseva O, Tanriverdi K. The role of the blood transcriptome in innate inflammation and stroke. Ann N Y Acad Sci. 2010;1207:41–45.
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–867.
  • Pernemalm M, Lehtio J. Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics. 2014;11:431–448.
  • Ayoglu B, Haggmark A, Neiman M, et al. Systematic antibody and antigen-based proteomic profiling with microarrays. Expert Rev Mol Diagn. 2011;11:219–234.
  • Gold L, Walker JJ, Wilcox SK, et al. Advances in human proteomics at high scale with the SOMAscan proteomics platform. N Biotechnol. 2012;29:543–549.
  • Hathout Y. Proteomic methods for biomarker discovery and validation. Are we there yet? Expert Rev Proteomics. 2015;12:329–331.
  • Tomita M, Kami K. Cancer Systems biology, metabolomics, and cancer metabolism. Science. 2012;336:990–991.
  • Zhang A, Sun H, Yan G, et al. Metabolomics for biomarker discovery: moving to the clinic. BioMed Res Int. 2015;2015:354671.
  • Monteiro MS, Carvalho M, Bastos ML, et al. Metabolomics analysis for biomarker discovery: advances and challenges. Curr Med Chem. 2013;20:257–271.
  • Tsutsui H, Maeda T, Min JZ, et al. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Clin Chim Acta Int J Clin Chem. 2011;412:861–872.
  • Nagana Gowda GA, Raftery D. Biomarker discovery and translation in metabolomics. Curr Metabolomics. 2013;1:227–240.
  • Liu P, Li R, Antonov AA, et al. Discovery of metabolite biomarkers for acute ischemic stroke progression. J Proteome Res. 2017;16:773–779.
  • Maas MB, Furie KL. Molecular biomarkers in stroke diagnosis and prognosis. Biomarkers Med. 2009;3:363–383.
  • Hill MD. Diagnostic biomarkers for stroke: a stroke neurologist’s perspective. Clin Chem. 2005;51:2001–2002.
  • Cuadrado E, Rosell A, Colome N, et al. The proteome of human brain after ischemic stroke. J Neuropathol Exp Neurol. 2010;69:1105–1115.
  • Greg Miller W, Myers GL, Lou Gantzer M, et al. Roadmap for harmonization of clinical laboratory measurement procedures. Clin Chem. 2011;57:1108–1117.
  • Ekins R. Immunoassay standardization. Scand J Clin Lab Investig. 1991;51:33–46.
  • Christenson RH, Bunk DM, Schimmel H, et al. Point: put simply, standardization of cardiac troponin I is complicated. Clin Chem. 2012;58:165–168.
  • Dati F, Brand B. Standardization activities for harmonization of test results. Clin Chim Acta. 2000;297:239–249.
  • Plebani M. Harmonization in laboratory medicine: requests, samples, measurements and reports. Crit Rev Clin Lab Sci. 2016;53:184–196.
  • Schimmel H, Zegers I, Emons H. Standardization of protein biomarker measurements: is it feasible?. Scand J Clin Lab Invest Suppl. 2010;242:27–33.
  • Miller WG. Harmonization: its time has come. Clin Chem. 2017;63:1184–1186.
  • Miller WG, Eckfeldt JH, Passarelli J, et al. Harmonization of test results: what are the challenges; how can we make it better?. Clin Chem. 2014;60:923–927.
  • Tian L, Durazo-Arvizu RA, Myers G, et al. The estimation of calibration equations for variables with heteroscedastic measurement errors. Statist Med. 2014;33:4420–4436.
  • Cashman KD, Kiely M, Kinsella M, et al. Evaluation of Vitamin D Standardization Program protocols for standardizing serum 25-hydroxyvitamin D data: a case study of the program’s potential for national nutrition and health surveys. Am J Clin Nutr. 2013;97:1235–1242.
  • Sarafin K, Durazo-Arvizu R, Tian L, et al. Standardizing 25-hydroxyvitamin D values from the Canadian Health Measures Survey. Am J Clin Nutr. 2015;102:1044–1050.
  • Iliff JJ, Lee H, Yu M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123:1299–1309.
  • Jessen NA, Munk AS, Lundgaard I, et al. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40:2583–2599.
  • Jiang X, Andjelkovic AV, Zhu L, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol. 2017. DOI: 10.1016/j.pneurobio.2017.10.001. [Epub ahead of print].
  • Kawata K, Liu CY, Merkel SF, et al. Blood biomarkers for brain injury: what are we measuring?. Neurosci Biobehav Rev. 2016;68:460–473.
  • Jensen MB, Chacon MR, Sattin JA, et al. The promise and potential pitfalls of serum biomarkers for ischemic stroke and transient ischemic attack. Neurologist. 2008;14:243–246.
  • Whiteley W, Tseng MC, Sandercock P. Blood biomarkers in the diagnosis of ischemic stroke: a systematic review. Stroke. 2008;39:2902–2909.
  • Wardlaw JM, Doubal F, Armitage P, et al. Lacunar stroke is associated with diffuse blood-brain barrier dysfunction. Ann Neurol. 2009;65:194–202.
  • Casmiro M, Maitan S, De Pasquale F, et al. Cerebrospinal fluid and serum neuron-specific enolase concentrations in a normal population. Eur J Neurol. 2005;12:369–374.
  • Marchi N, Rasmussen P, Kapural M, et al. Peripheral markers of brain damage and blood-brain barrier dysfunction. Restor Neurol Neurosci. 2003;21:109–121.
  • Hasan N, McColgan P, Bentley P, et al. Towards the identification of blood biomarkers for acute stroke in humans: a comprehensive systematic review. Br J Clin Pharmacol. 2012;74:230–240.
  • Ioannidis JP, Panagiotou OA. Comparison of effect sizes associated with biomarkers reported in highly cited individual articles and in subsequent meta-analyses. JAMA. 2011;305:2200–2210.
  • Wallstrom G, Anderson KS, LaBaer J. Biomarker discovery for heterogeneous diseases. Cancer Epidemiol Biomark Prev. 2013;22:747–755.
  • Lynch JR, Blessing R, White WD, et al. Novel diagnostic test for acute stroke. Stroke. 2004;35:57–63.
  • Kooperberg C, Cushman M, Hsia J, et al. Can biomarkers identify women at increased stroke risk? The Women’s Health Initiative Hormone Trials. PLoS Clin Trial. 2007;2:e28.
  • Laskowitz DT, Blessing R, Floyd J, et al. Panel of biomarkers predicts stroke. Ann N Y Acad Sci. 2005;1053:30.
  • Reynolds MA, Kirchick HJ, Dahlen JR, et al. Early biomarkers of stroke. Clin Chem. 2003;49:1733–1739.
  • Laskowitz DT, Kasner SE, Saver J, et al. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke. 2009;40:77–85.
  • Bustamante A, Lopez-Cancio E, Pich S, et al. Blood biomarkers for the early diagnosis of stroke: the stroke-chip study. Stroke. 2017;48:2419–2425.
  • Montaner J, Perea-Gainza M, Delgado P, et al. Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers. Stroke. 2008;39:2280–2287.
  • Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23:2507–2517.
  • Jickling GC, Sharp FR. Biomarker panels in ischemic stroke. Stroke. 2015;46:915–920.
  • Dancey JE, Dobbin KK, Groshen S, et al. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin Cancer Res. 2010;16:1745–1755.
  • de Jager W, Rijkers GT. Solid-phase and bead-based cytokine immunoassay: a comparison. Methods. 2006;38:294–303.
  • de Jager W, te Velthuis H, Prakken BJ, et al. Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin Diagn Lab Immunol. 2003;10:133–139.
  • de Jager W, Prakken BJ, Bijlsma JW, et al. Improved multiplex immunoassay performance in human plasma and synovial fluid following removal of interfering heterophilic antibodies. J Immunol Methods. 2005;300:124–135.
  • Brondum L, Sorensen BS, Eriksen JG, et al. An evaluation of multiplex bead-based analysis of cytokines and soluble proteins in archived lithium heparin plasma, EDTA plasma and serum samples. Scand J Clin Lab Invest. 2016;76:601–611.
  • Horacek JM, Kupsa T, Vasatova M, et al. Biochip array technology and evaluation of serum levels of multiple cytokines and adhesion molecules in patients with newly diagnosed acute myeloid leukemia. Exp Oncol. 2014;36:50–51.
  • Chowdhury F, Williams A, Johnson P. Validation and comparison of two multiplex technologies, luminex and mesoscale discovery, for human cytokine profiling. J Immunol Methods. 2009;340:55–64.
  • Avrameas S, Guilbert B. [Enzymo-immunological determination of proteins with the aid of immunoadsorbants and enzyme-labelled antigens]. C R Acad Sci Hebd Seances Acad Sci D. 1971;273:2705–2707.
  • Avrameas S, Guilbert B. A method for quantitative determination of cellular immunoglobulins by enzyme-labeled antibodies. Eur J Immunol. 1971;1:394–396.
  • Engvall E, Jonsson K, Perlmann P. Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes. Biochim Biophys Acta. 1971;251:427–434.
  • Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971;8:871–874.
  • Van Weemen BK, Schuurs AH. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971;15:232–236.
  • Tsang ML, Weatherbee JA. Cytokine assays and their limitations. Aliment Pharmacol Ther. 1996;10 Suppl 2:55–61. discussion 2.
  • Wadhwa M, Thorpe R. Standardization and calibration of cytokine immunoassays: meeting report and recommendations. Cytokine. 1997;9:791–793.
  • Aziz N, Nishanian P, Mitsuyasu R, et al. Variables that affect assays for plasma cytokines and soluble activation markers. Clin Diagn Lab Immunol. 1999;6:89–95.
  • Zhou X, Fragala MS, McElhaney JE, et al. Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr Opin Clin Nutr Metab Care. 2010;13:541–547.
  • Banks RE. Measurement of cytokines in clinical samples using immunoassays: problems and pitfalls. Crit Rev Clin Lab Sci. 2000;37:131–182.
  • Leng SX, McElhaney JE, Walston JD, et al. ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci. 2008;63:879–884.
  • Tighe PJ, Ryder RR, Todd I, et al. ELISA in the multiplex era: potentials and pitfalls. Prot Clin Appl. 2015;9:406–422.
  • Tighe P, Negm O, Todd I, et al. Utility, reliability and reproducibility of immunoassay multiplex kits. Methods. 2013;61:23–29.
  • de Jager W, Bourcier K, Rijkers GT, et al. Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol. 2009;10:52.
  • Martins TB, Pasi BM, Litwin CM, et al. Heterophile antibody interference in a multiplexed fluorescent microsphere immunoassay for quantitation of cytokines in human serum. Clin Diagn Lab Immunol. 2004;11:325–329.
  • Breen EC, Reynolds SM, Cox C, et al. Multisite comparison of high-sensitivity multiplex cytokine assays. Clin Vaccine Immunol. 2011;18:1229–1242.
  • Parkitny L, McAuley JH, Kelly PJ, et al. Multiplex cytokine concentration measurement: how much do the medium and handling matter? Mediat Inflamm. 2013;2013:890706.
  • Phillips DJ, League SC, Weinstein P, et al. Interference in microsphere flow cytometric multiplexed immunoassays for human cytokine estimation. Cytokine. 2006;36:180–188.
  • Foerch C, Wunderlich MT, Dvorak F, et al. Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke. 2007;38:2491–2495.
  • Foerch C, Otto B, Singer OC, et al. Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke. 2004;35:2160–2164.
  • Foerch C, Singer OC, Neumann-Haefelin T, et al. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol. 2005;62:1130–1134.
  • Abraha HD, Butterworth RJ, Bath PM, et al. Serum S-100 protein, relationship to clinical outcome in acute stroke. Ann Clin Biochem. 1997;34:546–550.
  • Foerch C, du Mesnil de Rochemont R, Singer O, et al. S100B as a surrogate marker for successful clot lysis in hyperacute middle cerebral artery occlusion. J Neurol Neurosurg Psychiatry. 2003;74:322–325.
  • Missler U, Wiesmann M, Friedrich C, et al. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. 1997;28:1956–1960.
  • Nash DL, Bellolio MF, Stead LG. S100 as a marker of acute brain ischemia: a systematic review. Neurocrit Care. 2008;8:301–307.
  • Einav S, Itshayek E, Kark JD, et al. Serum S100B levels after meningioma surgery: a comparison of two laboratory assays. BMC Clin Pathol. 2008;8:9.
  • Muller K, Elverland A, Romner B, et al. Analysis of protein S-100B in serum: a methodological study. Clin Chem Lab Med. 2006;44:1111–1114.
  • Erickson JA, Grenache DG. Comparison of three assays for quantifying S-100B in serum. Clin Chim Acta Int J Clin Chem. 2011;412:2122–2127.
  • Trape J, Montesinos J, Franquesa J, et al. Determination of the biological variation of S100beta and lactate dehydrogenase in disease-free patients with malignant melanoma. Clin Chem Lab Med. 2011;50:927–929.
  • Tort AB, Dietrich MO, Goncalves CA, et al. Influence of anticoagulants on the measurement of S100B protein in blood. Clin Biochem. 2003;36:629–632.
  • Foerch C, Niessner M, Back T, et al. Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke. Clin Chem. 2012;58:237–245.
  • Luger S, Witsch J, Dietz A, et al. Glial fibrillary acidic protein serum levels distinguish between intracerebral hemorrhage and cerebral ischemia in the early phase of stroke. Clin Chem. 2017;63:377–385.
  • Katsanos AH, Makris K, Stefani D, et al. Plasma glial fibrillary acidic protein in the differential diagnosis of intracerebral hemorrhage. Stroke. 2017;48:2586–2588.
  • Dvorak F, Haberer I, Sitzer M, et al. Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis. 2009;27:37–41.
  • Anand N, Stead LG. Neuron-specific enolase as a marker for acute ischemic stroke: a systematic review. Cerebrovasc Dis. 2005;20:213–219.
  • Wunderlich MT, Lins H, Skalej M, et al. Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin Neurol Neurosurg. 2006;108:558–563.
  • Štern P, Bartoš V, Uhrová J, et al. The comparability of different neuron-specific enolase immunoassays and its impact on external quality assessment system. Klin Biochem Metab. 2007;15:21–26.
  • Ramont L, Thoannes H, Volondat A, et al. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med. 2005;43:1215–1217.
  • Rundgren M, Cronberg T, Friberg H, et al. Serum neuron specific enolase - impact of storage and measuring method. BMC Res Notes. 2014;7:726.
  • Wang S, Zhao M, Mu R, et al. Biological variation of serum neuron-specific enolase and carbohydrate antigen 724 tumor markers. J Clin Lab Anal. 2017. DOI: 10.1002/jcla.22327. [Epub ahead of print].
  • Braga F, Ferraro S, Mozzi R, et al. Biological variation of neuroendocrine tumor markers chromogranin A and neuron-specific enolase. Clin Biochem. 2013;46:148–151.
  • Qi Z, Zhang L, Chen Y, et al. Biological variations of seven tumor markers. Clin Chim Acta. 2015;450:233–236.
  • Matyar S, Goruroglu Ozturk O, Ziyanoglu Karacor E, et al. Biological variation and reference change value data for serum neuron-specific enolase in a Turkish population. J Clin Lab Anal. 2016;30:1081–1085.
  • Zimmermann-Ivol CG, Burkhard PR, Le Floch-Rohr J, et al. Fatty acid binding protein as a serum marker for the early diagnosis of stroke: a pilot study. Mol Cell Proteomics. 2004;3:66–72.
  • Lescuyer P, Allard L, Hochstrasser DF, et al. Heart-fatty acid-binding protein as a marker for early detection of acute myocardial infarction and stroke. Mol Diagn. 2005;9:1–7.
  • Wunderlich MT, Hanhoff T, Goertler M, et al. Release of brain-type and heart-type fatty acid-binding proteins in serum after acute ischaemic stroke. J Neurol. 2005;252:718–724.
  • Park SY, Kim MH, Kim OJ, et al. Plasma heart-type fatty acid binding protein level in acute ischemic stroke: comparative analysis with plasma S100B level for diagnosis of stroke and prediction of long-term clinical outcome. Clin Neurol Neurosurg. 2013;115:405–410.
  • Pelsers MM, Hanhoff T, Van der Voort D, et al. Brain- and heart-type fatty acid-binding proteins in the brain: tissue distribution and clinical utility. Clin Chem. 2004;50:1568–1575.
  • Gorski J, Hermens WT, Borawski J, et al. Increased fatty acid-binding protein concentration in plasma of patients with chronic renal failure. Clin Chem. 1997;43:193–195.
  • Bathia DP, Carless DR, Viswanathan K, et al. Serum 99th centile values for two heart-type fatty acid binding protein assays. Ann Clin Biochem. 2009;46:464–467.
  • Jauch EC, Lindsell C, Broderick J, et al. Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke 2006;37:2508–2513.
  • Lu J, Grenache DG. Performance evaluation of the anshlite myelin basic protein chemiluminescent immunoassay using cerebrospinal fluid. Clin Chem. 2014;60:s243.
  • Dong JF. Dissecting stroke for anti-VWF therapeutics. Blood. 2016;127:2271–2272.
  • Denorme F, Langhauser F, Desender L, et al. ADAMTS13-mediated thrombolysis of t-PA-resistant occlusions in ischemic stroke in mice. Blood. 2016;127:2337–2345.
  • De Jong A, Eikenboom J. Developments in the diagnostic procedures for von Willebrand disease. J Thromb Haemost. 2016;14:449–460.
  • Hayward CP, Moffat KA, Graf L. Technological advances in diagnostic testing for von Willebrand disease: new approaches and challenges. Int Jnl Lab Hem. 2014;36:334–340.
  • Timm A, Hillarp A, Philips M, et al. Comparison of automated von Willebrand factor activity assays. Thromb Res. 2015;135:684–691.
  • Favaloro EJ, Mohammed S. Towards improved diagnosis of von Willebrand disease: comparative evaluations of several automated von Willebrand factor antigen and activity assays. Thromb Res. 2014;134:1292–1300.
  • Tripodi A, Peyvandi F, Chantarangkul V, et al. Second international collaborative study evaluating performance characteristics of methods measuring the von Willebrand factor cleaving protease (ADAMTS-13). J Thromb Haemost. 2008;6:1534–1541.
  • Mackie I, Langley K, Chitolie A, et al. Discrepancies between ADAMTS13 activity assays in patients with thrombotic microangiopathies. Thromb Haemost. 2013;109:488–496.
  • Kilercik M, Coskun A, Serteser M, et al. Biological variations of ADAMTS13 and von Willebrand factor in human adults. Biochem Med (Zagreb). 2014;24:138–145.
  • Wiseman S, Marlborough F, Doubal F, et al. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: systematic review and meta-analysis. Cerebrovasc Dis. 2014;37:64–75.
  • Zi WJ, Shuai J. Plasma D-dimer levels are associated with stroke subtypes and infarction volume in patients with acute ischemic stroke. PLoS One. 2014;9:e86465.
  • Barber M, Langhorne P, Rumley A, et al. D-dimer predicts early clinical progression in ischemic stroke: confirmation using routine clinical assays. Stroke. 2006;37:1113–1115.
  • Brouns R, Van Den Bossche J, De Surgeloose D, et al. Clinical and biochemical diagnosis of small-vessel disease in acute ischemic stroke. J Neurol Sci. 2009;285:185–190.
  • Yoon CW, Kim SJ, Bang OY, et al. Premorbid warfarin use and lower D-dimer levels are associated with a spontaneous early improvement in an atrial fibrillation-related stroke. J Thromb Haemost. 2012;10:2394–2396.
  • Lippi G, Tripodi A, Simundic AM, et al. International survey on D-dimer test reporting: a call for standardization. Semin Thromb Hemost. 2015;41:287–293.
  • Kahler ZP, Kline JA. Standardizing the D-dimer assay: proposing the D-dimer international managed ratio. Clin Chem. 2015;61:776–778.
  • Longstaff C, Adcock D, Olson JD, et al. Harmonisation of D-dimer – a call for action. Thromb Res. 2016;137:219–220.
  • Douma RA, Tan M, Schutgens RE, et al. Using an age-dependent D-dimer cut-off value increases the number of older patients in whom deep vein thrombosis can be safely excluded. Haematologica. 2012;97:1507–1513.
  • Engelberger RP, Limacher A, Kucher N, et al. Biological variation of established and novel biomarkers for atherosclerosis: results from a prospective, parallel-group cohort study. Clin Chim Acta. 2015;447:16–22.
  • Woodhams B, Girardot O, Blanco MJ, et al. Stability of coagulation proteins in frozen plasma. Blood Coagul Fibrinol. 2001;12:229–236.
  • Lewis MR, Callas PW, Jenny NS, et al. Longitudinal stability of coagulation, fibrinolysis, and inflammation factors in stored plasma samples. Thromb Haemost. 2001;86:1495–1500.
  • Riley RS, Gilbert AR, Dalton JB, et al. Widely used types and clinical applications of D-dimer assay. Lab Med. 2016;47:90–102.
  • Tennent GA, Brennan SO, Stangou AJ, et al. Human plasma fibrinogen is synthesized in the liver. Blood. 2007;109:1971–1974.
  • del Zoppo GJ, Levy DE, Wasiewski WW, et al. Hyperfibrinogenemia and functional outcome from acute ischemic stroke. Stroke. 2009;40:1687–1691.
  • Woodward M, Lowe GD, Campbell DJ, et al. Associations of inflammatory and hemostatic variables with the risk of recurrent stroke. Stroke. 2005;36:2143–2147.
  • Maresca G, Di Blasio A, Marchioli R, et al. Measuring plasma fibrinogen to predict stroke and myocardial infarction: an update. Arterioscler Thromb Vasc Biol. 1999;19:1368–1377.
  • Di Napoli M, Singh P. Is plasma fibrinogen useful in evaluating ischemic stroke patients?: why, how, and when. Stroke. 2009;40:1549–1552.
  • Krobot K, Hense HW, Cremer P, et al. Determinants of plasma fibrinogen: relation to body weight, waist-to-hip ratio, smoking, alcohol, age, and sex. Results from the second MONICA Augsburg survey 1989-1990. Arterioscler Thromb. 1992;12:780–788.
  • de Maat MP. Effects of diet, drugs, and genes on plasma fibrinogen levels. Ann N Y Acad Sci. 2001;936:509–521.
  • Mackie IJ, Kitchen S, Machin SJ, et al. Guidelines on fibrinogen assays. Br J Haematol. 2003;121:396–404.
  • Castellanos M, Leira R, Serena J, et al. Plasma cellular-fibronectin concentration predicts hemorrhagic transformation after thrombolytic therapy in acute ischemic stroke. Stroke. 2004;35:1671–1676.
  • Castellanos M, Sobrino T, Millan M, et al. Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke: a multicenter confirmatory study. Stroke. 2007;38:1855–1859.
  • Serena J, Blanco M, Castellanos M, et al. The prediction of malignant cerebral infarction by molecular brain barrier disruption markers. Stroke. 2005;36:1921–1926.
  • Di Napoli M, Schwaninger M, Cappelli R, et al. Evaluation of C-reactive protein measurement for assessing the risk and prognosis in ischemic stroke: a statement for health care professionals from the CRP Pooling Project members. Stroke. 2005;36:1316–1329.
  • VanGilder RL, Davidov DM, Stinehart KR, et al. C-reactive protein and long-term ischemic stroke prognosis. J Clin Neurosci. 2014;21:547–553.
  • Moon AR, Choi DH, Jahng SY, et al. High-sensitivity C-reactive protein and mean platelet volume as predictive values after percutaneous coronary intervention for long-term clinical outcomes: a comparable and additive study. Blood Coagul Fibrinol. 2016;27:70–76.
  • Di Napoli M, Papa F, Bocola V. C-reactive protein in ischemic stroke: an independent prognostic factor. Stroke. 2001;32:917–924.
  • Di Napoli M, Papa F, Bocola V. Prognostic influence of increased C-reactive protein and fibrinogen levels in ischemic stroke. Stroke. 2001;32:133–138.
  • Elkind MS, Tai W, Coates K, et al. High-sensitivity C-reactive protein, lipoprotein-associated phospholipase A2, and outcome after ischemic stroke. Arch Intern Med. 2006;166:2073–2080.
  • Rost NS, Wolf PA, Kase CS, et al. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack: the Framingham study. Stroke. 2001;32:2575–2579.
  • den Hertog HM, van Rossum JA, van der Worp HB, et al. C-reactive protein in the very early phase of acute ischemic stroke: association with poor outcome and death. J Neurol. 2009;256:2003–2008.
  • Topakian R, Strasak AM, Nussbaumer K, et al. Prognostic value of admission C-reactive protein in stroke patients undergoing iv thrombolysis. J Neurol. 2008;255:1190–1196.
  • Bustamante A, Vilar-Bergua A, Guettier S, et al. C-reactive protein in the detection of post-stroke infections: systematic review and individual participant data analysis. J Neurochem. 2017;141:305–314.
  • Ledue TB, Rifai N. Preanalytic and analytic sources of variations in C-reactive protein measurement: implications for cardiovascular disease risk assessment. Clin Chem. 2003;49:1258–1271.
  • Kimberly MM, Vesper HW, Caudill SP, et al. Standardization of immunoassays for measurement of high-sensitivity C-reactive protein. Phase I: evaluation of secondary reference materials. Clin Chem. 2003;49:611–616.
  • Kilpatrick EL, Bunk DM. Reference measurement procedure development for C-reactive protein in human serum. Anal Chem. 2009;81:8610–8616.
  • Kimberly MM, Caudill SP, Vesper HW, et al. Standardization of high-sensitivity immunoassays for measurement of C-reactive protein; II: two approaches for assessing commutability of a reference material. Clin Chem. 2009;55:342–350.
  • Petruzzelli L, Takami M, Humes HD. Structure and function of cell adhesion molecules. Am J Med. 1999;106:467–476.
  • Zaremba J, Losy J. Adhesion molecules of immunoglobulin gene superfamily in stroke. Folia Morphol (Warsz). 2002;61:1–6.
  • Fassbender K, Mossner R, Motsch L, et al. Circulating selectin- and immunoglobulin-type adhesion molecules in acute ischemic stroke. Stroke. 1995;26:1361–1364.
  • Bitsch A, Klene W, Murtada L, et al. A longitudinal prospective study of soluble adhesion molecules in acute stroke. Stroke. 1998;29:2129–2135.
  • Turner RJ, Sharp FR. Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci. 2016;10:56.
  • Ramos-Fernandez M, Bellolio MF, Stead LG. Matrix metalloproteinase-9 as a marker for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis. 2011;20:47–54.
  • Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. 2008;19:34–41.
  • Montaner J, Molina CA, Monasterio J, et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation. 2003;107:598–603.
  • Montaner J, Alvarez-Sabin J, Molina CA, et al. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke. 2001;32:2762–2767.
  • Chang JJ, Emanuel BA, Mack WJ, et al. Matrix metalloproteinase-9: dual role and temporal profile in intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2014;23:2498–2505.
  • Montaner J, Alvarez-Sabin J, Molina C, et al. Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke. 2001;32:1759–1766.
  • Colotti C, Angeli V, Del Ry S, et al. Matrix metalloprotease-2 and -9 concentration and activity in serum and culture medium samples: a methodological reappraisal. Clin Chem Lab Med. 2007;45:1292–1298.
  • Rouy D, Ernens I, Jeanty C, et al. Plasma storage at -80 degrees C does not protect matrix metalloproteinase-9 from degradation. Analyt Biochem. 2005;338:294–298.
  • Paula K, Anne TM, Taina TH. The sample type used affects the levels of gelatinases (MMP-2 and -9) and their inhibitors (TIMP-1 and -2) in circulating blood of healthy controls and breast cancer patients. Biomark Insights. 2007;2:117–127.
  • Lein M, Nowak L, Jung K, et al. Analytical aspects regarding the measurement of metalloproteinases and their inhibitors in blood. Clin Biochem. 1997;30:491–496.
  • Tayebjee MH, Lip GY, Blann AD, et al. Effects of age, gender, ethnicity, diurnal variation and exercise on circulating levels of matrix metalloproteinases (MMP)-2 and -9, and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMP)-1 and -2. Thromb Res. 2005;115:205–210.
  • Zander J, Bruegel M, Kleinhempel A, et al. Effect of biobanking conditions on short-term stability of biomarkers in human serum and plasma. Clin Chem Lab Med. 2014;52:629–639.
  • Gorelick PB. Lipoprotein-associated phospholipase A2 and risk of stroke. Am J Cardiol. 2008;101:34F–40F.
  • Elkind MS, Tai W, Coates K, et al. Lipoprotein-associated phospholipase A2 activity and risk of recurrent stroke. Cerebrovasc Dis. 2009;27:42–50.
  • Lp PLASC, Thompson A, Gao P, et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010;375:1536–1544.
  • Vittos O, Toana B, Vittos A, et al. Lipoprotein-associated phospholipase A2 (Lp-PLA2): a review of its role and significance as a cardiovascular biomarker. Biomarkers. 2012;17:289–302.
  • Zhuo S, Wolfert RL, Yuan C. Biochemical differences in the mass and activity tests of lipoprotein-associated phospholipase A2 explain the discordance in results between the two assay methods. Clin Biochem. 2017;50:1209–1215.
  • Stein EA. Lipoprotein-associated phospholipase A(2) measurements: mass, activity, but little productivity. Clin Chem. 2012;58:814–817.
  • Doll DN, Barr TL, Simpkins JW. Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis. 2014;5:294–306.
  • Lambertsen KL, Biber K, Finsen B. Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab. 2012;32:1677–1698.
  • Moreno VP, Subira D, Meseguer E, et al. IL-6 as a biomarker of ischemic cerebrovascular disease. Biomarkers Med. 2008;2:125–136.
  • Pantoni L, Sarti C, Inzitari D. Cytokines and cell adhesion molecules in cerebral ischemia: experimental bases and therapeutic perspectives. Arterioscler Thromb Vasc Biol. 1998;18:503–513.
  • Smith CJ, Emsley HC, Gavin CM, et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol. 2004;4:2.
  • Welsh P, Lowe GD, Chalmers J, et al. Associations of proinflammatory cytokines with the risk of recurrent stroke. Stroke. 2008;39:2226–2230.
  • Welsh P, Barber M, Langhorne P, et al. Associations of inflammatory and haemostatic biomarkers with poor outcome in acute ischaemic stroke. Cerebrovasc Dis. 2009;27:247–253.
  • Whiteley W, Wardlaw J, Dennis M, et al. The use of blood biomarkers to predict poor outcome after acute transient ischemic attack or ischemic stroke. Stroke. 2012;43:86–91.
  • Whiteley W, Jackson C, Lewis S, et al. Inflammatory markers and poor outcome after stroke: a prospective cohort study and systematic review of interleukin-6. PLoS Med. 2009;6:e1000145.
  • Cherubini A, Ruggiero C, Polidori MC, et al. Potential markers of oxidative stress in stroke. Free Radic Biol Med. 2005;39:841–852.
  • Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Analyt Biochem. 2017;524:13–30.
  • Zitnanova I, Siarnik P, Kollar B, et al. Oxidative stress markers and their dynamic changes in patients after acute ischemic stroke. Oxid Med Cell Longev. 2016;2016:9761697.
  • Frijhoff J, Winyard PG, Zarkovic N, et al. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015;23:1144–1170.
  • Marrocco I, Altieri F, Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid Med Cell Longev. 2017;2017:6501046.
  • Browne RW, Bloom MS, Schisterman EF, et al. Analytical and biological variation of biomarkers of oxidative stress during the menstrual cycle. Biomarkers. 2008;13:160–183.
  • Davies MJ, Fu S, Wang H, et al. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med. 1999;27:1151–1163.
  • Palmieri B, Sblendorio V. Oxidative stress tests: overview on reliability and use. Part II. Eur Rev Med Pharmacol Sci. 2007;11:383–399.
  • Palmieri B, Sblendorio V. Oxidative stress tests: overview on reliability and use. Part I. Eur Rev Med Pharmacol Sci. 2007;11:309–342.
  • Palmieri B, Sblendorio V. Oxidative stress detection: what for? Part II. Eur Rev Med Pharmacol Sci. 2007;11:27–54.
  • Rosell A, Cuadrado E, Alvarez-Sabin J, et al. Caspase-3 is related to infarct growth after human ischemic stroke. Neurosci Lett. 2008;430:1–6.
  • Manabat C, Han BH, Wendland M, et al. Reperfusion differentially induces caspase-3 activation in ischemic core and penumbra after stroke in immature brain. Stroke. 2003;34:207–213.
  • Hyman BT, Yuan J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci. 2012;13:395–406.
  • De Marchis GM, Katan M, Weck A, et al. Copeptin adds prognostic information after ischemic stroke: results from the CoRisk study. Neurology. 2013;80:1278–1286.
  • Zhang JL, Yin CH, Zhang Y, et al. Plasma copeptin and long-term outcomes in acute ischemic stroke. Acta Neurol Scand. 2013;128:372–380.
  • Perovic E, Mrdjen A, Harapin M, et al. Diagnostic and prognostic role of resistin and copeptin in acute ischemic stroke. Top Stroke Rehabil. 2017;24:614–618.
  • Choi KS, Kim HJ, Chun HJ, et al. Prognostic role of copeptin after stroke: a systematic review and meta-analysis of observational studies. Sci Rep. 2015;5:11665.
  • Morgenthaler NG, Struck J, Jochberger S, et al. Copeptin: clinical use of a new biomarker. Trends Endocrinol Metab. 2008;19:43–49.
  • Nickel CH, Bingisser R, Morgenthaler NG. The role of copeptin as a diagnostic and prognostic biomarker for risk stratification in the emergency department. BMC Med. 2012;10:7.
  • Wannamethee SG, Welsh P, Lennon L, et al. Copeptin and the risk of incident stroke, CHD and cardiovascular mortality in older men with and without diabetes: the British Regional Heart Study. Diabetologia. 2016;59:1904–1912.
  • Wang CB, Zong M, Lu SQ, et al. Plasma copeptin and functional outcome in patients with ischemic stroke and type 2 diabetes. J Diabetes Complications. 2016;30:1532–1536.
  • Morgenthaler NG, Struck J, Alonso C, et al. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–119.
  • Szinnai G, Morgenthaler NG, Berneis K, et al. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J Clin Endocrinol Metab. 2007;92:3973–3978.
  • Rama R, García JC. Excitotoxicity and oxidative stress in acute stroke. In: Schaller B, editor. Ischemic stroke – updates. Croatia: InTech Open; 2016. p. 17–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.