459
Views
6
CrossRef citations to date
0
Altmetric
Review

The immunology of the macaque placenta: A detailed analysis and critical comparison with the human placenta

& ORCID Icon
Pages 118-145 | Received 23 Feb 2018, Accepted 14 Oct 2018, Published online: 11 Jan 2019

References

  • Pradeu T, Carosella ED. On the definition of a criterion of immunogenicity. Proc Natl Acad Sci USA. 2006;103:17858–17861.
  • Wegmann TG. Why didn't your mother reject you? Can Med Assoc J. 1980;123:991–993.
  • Clark DA, Arck PC, Chaouat G. Why did your mother reject you? Immunogenetic determinants of the response to environmental selective pressure expressed at the uterine level. Am J Reprod Immunol. 1999;41:5–22.
  • Guleria I, Sayegh MH. Maternal acceptance of the fetus: true human tolerance. J Immunol. 2007;178:3345–3351.
  • Arck PC, Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med. 2013;19:548–556.
  • Svensson-Arvelund J, Mehta RB, Lindau R, et al. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol. 2015;194:1534–1544.
  • Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172:603–606.
  • Beer AE, Scott JR, Billingham RE. Histoincompatibility and maternal immunological status as determinants of fetoplacental weight and litter size in rodents. J Exp Med. 1975;142:180–196.
  • Beer AE, Sio JO. Placenta as an immunological barrier. Biol Reprod. 1982;26:15–27.
  • Nossal GJ. Immunological tolerance then and now: was the Medawar school right? Immunol Suppl. 1989;2:2–5; discussion 6.
  • Jasperson LK, Bucher C, Panoskaltsis-Mortari A, et al. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood. 2008;111:3257–3265.
  • Simpson E. Medawar’s legacy to cellular immunology and clinical transplantation: a commentary on Billingham, Brent and Medawar (1956) ‘Quantitative studies on tissue transplantation immunity. III. Actively acquired tolerance’. Philos Trans R Soc Lond B Biol Sci. 2015;370.
  • Petraglia F, Florio P, Nappi C, et al. Peptide signaling in human placenta and membranes: autocrine, paracrine, and endocrine mechanisms. Endocr Rev. 1996;17:156–186.
  • Thellin O, Coumans B, Zorzi W, et al. Tolerance to the foeto-placental ‘graft’: ten ways to support a child for nine months. Curr Opin Immunol. 2000;12:731–737.
  • Thellin O, Heinen E. Pregnancy and the immune system: between tolerance and rejection. Toxicology. 2003;185:179–184.
  • Bondarenko GI, Dambaeva SV, Grendell RL, et al. Characterization of cynomolgus and vervet monkey placental MHC class I expression: diversity of the nonhuman primate AG locus. Immunogenetics. 2009;61:431–442.
  • Boyson JE, Iwanaga KK, Urvater JA, et al. Evolution of a new nonclassical MHC class I locus in two Old World primate species. Immunogenetics. 1999;49:86–98.
  • Carter AM, Pijnenborg R. Evolution of invasive placentation with special reference to non-human primates. Best Pract Res Clin Obstet Gynaecol. 2011;25:249–257.
  • Carter AM. Animal models of human placentation – a review. Placenta. 2007;28 Suppl A:S41–S47.
  • Chen FC, Li WH. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet. 2001;68:444–456.
  • Schmidt A, Morales-Prieto DM, Pastuschek J, et al. Only humans have human placentas: molecular differences between mice and humans. J Reprod Immunol. 2015;108:65–71.
  • Martin PL, Buse E. Developmental immunotoxicity in nonhuman primates. In: Herzyk DJ, Bussiere, J.L., editors. Immunotoxicology strategies for pharmaceutical safety assessment. Hoboken (NJ): Wiley; 2008. p. 299–317.
  • Buse E. Development of the immune system in the cynomolgus monkey: the appropriate model in human targeted toxicology? J Immunotoxicol. 2005;2:211–216.
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731–2738.
  • Winter EE, Goodstadt L, Ponting CP. Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. Genome Res. 2004;14:54–61.
  • Takahata N, Satta Y, Klein J. Divergence time and population size in the lineage leading to modern humans. Theor Popul Biol. 1995;48:198–221.
  • Takahata N, Satta Y. Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences. Proc Natl Acad Sci USA. 1997;94:4811–4815.
  • Langergraber KE, Prufer K, Rowney C, et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc Natl Acad Sci USA. 2012;109:15716–15721.
  • Carter AM, Enders AC, Jones CJ, et al. Comparative placentation and animal models: patterns of trophoblast invasion – a workshop report. Placenta. 2006;27 Suppl A:S30–S33.
  • Pentsuk N, van der Laan JW. An interspecies comparison of placental antibody transfer: new insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res B Dev Reprod Toxicol. 2009;86:328–344.
  • de Rijk EP VEE. The macaque placenta – a mini-review. Toxicol Pathol. 2008;36:108S–118S.
  • Rutherford JN, Tardif SD. Placental efficiency and intrauterine resource allocation strategies in the common marmoset pregnancy. Am J Phys Anthropol. 2008;137:60–68.
  • Enders AC, Schlafke S. Cytological aspects of trophoblast-uterine interaction in early implantation. Am J Anat. 1969;125:1–29.
  • Kaufmann P. Placentation und placenta. In: Hinrichsen KV, editor. Humanembryologie. Berlin: Springer; 1990. p. 159–204.
  • Benirschke K. Remarkable placenta. Clin Anat. 1998;11:194–205.
  • de Rijk EP, van Esch E, Flik G. Pregnancy dating in the rat: placental morphology and maternal blood parameters. Toxicol Pathol. 2002;30:271–282.
  • Fox H, Sebire, N. J. Pathology of the placenta, 3rd ed. London: Saunders; 2007.
  • Georgiades P, Ferguson-Smith AC, Burton GJ. Comparative developmental anatomy of the murine and human definitive placentae. Placenta. 2002;23:3–19.
  • Huppertz B. The anatomy of the normal placenta. J Clin Pathol. 2008;61:1296–1302.
  • Buse E, Haeger JD, Svensson-Arvelund J, et al. The placenta in toxicology. Part I: animal models in toxicology: placental morphology and tolerance molecules in the cynomolgus monkey (Macaca fascicularis). Toxicol Pathol. 2014;42:314–326.
  • Moser G, Gauster M, Orendi K, et al. Endoglandular trophoblast, an alternative route of trophoblast invasion? Analysis with novel confrontation co-culture models. Hum Reprod. 2010;25:1127–1136.
  • Moser G, Orendi K, Gauster M, et al. The art of identification of extravillous trophoblast. Placenta. 2011;32:197–199.
  • Chamley LW, Holland OJ, Chen Q, et al. Review: where is the maternofetal interface? Placenta. 2014;35 Suppl:S74–S80.
  • Gohner C, Svensson-Arvelund J, Pfarrer C, et al. The placenta in toxicology. Part IV: battery of toxicological test systems based on human placenta. Toxicol Pathol. 2014;42:345–351.
  • Sparn HG, Lieder-Ochs BA, Franke WW. Immunohistochemical identification and characterization of a special type of desmin-producing stromal cells in human placenta and other fetal tissues. Differentiation. 1994;56:191–199.
  • Kammerer U, von Wolff M, Markert UR. Immunology of human endometrium. Immunobiology. 2004;209:569–574.
  • Pijnenborg R, Vercruysse L, Brosens I. Deep placentation. Best Pract Res Clin Obstet Gynaecol. 2011;25:273–285.
  • Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27:939–958.
  • Bondarenko GI, Burleigh DW, Durning M, et al. Passive immunization against the MHC class I molecule Mamu-AG disrupts rhesus placental development and endometrial responses. J Immunol. 2007;179:8042–8050.
  • Mayhew TM, Barker BL. Villous trophoblast: morphometric perspectives on growth, differentiation, turnover and deposition of fibrin-type fibrinoid during gestation. Placenta. 2001;22:628–638.
  • Moser G, Weiss G, Sundl M, et al. Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins. Histochem Cell Biol. 2017;147:353–366.
  • Farag SS, Caligiuri MA. Human natural killer cell development and biology. Blood Rev. 2006;20:123–137.
  • Clark SM, Narayanan PK, Fort MM. Determination of absolute counts of circulating regulatory T cells in cynomolgus macaques using an optimized flow cytometric method. Toxicol Pathol. 2012;40:107–112.
  • Thiele K, Solano ME, Huber S, et al. Prenatal acetaminophen affects maternal immune and endocrine adaptation to pregnancy, induces placental damage, and impairs fetal development in mice. Am J Pathol. 2015;185:2805–2818.
  • Carter DL, Shieh TM, Blosser RL, et al. CD56 identifies monocytes and not natural killer cells in rhesus macaques. Cytometry. 1999;37:41–50.
  • Dambaeva SV, Breburda EE, Durning M, et al. Characterization of decidual leukocyte populations in cynomolgus and vervet monkeys. J Reprod Immunol. 2009;80:57–69.
  • Dambaeva SV, Durning M, Rozner AE, et al. Immunophenotype and cytokine profiles of rhesus monkey CD56bright and CD56dim decidual natural killer cells. Biol Reprod. 2012;86:1–10.
  • Slukvin, II, Watkins DI, Golos TG. Phenotypic and functional characterization of rhesus monkey decidual lymphocytes: rhesus decidual large granular lymphocytes express CD56 and have cytolytic activity. J Reprod Immunol. 2001;50:57–79.
  • Slukvin, II, Breburda EE, Golos TG. Dynamic changes in primate endometrial leukocyte populations: differential distribution of macrophages and natural killer cells at the rhesus monkey implantation site and in early pregnancy. Placenta. 2004;25:297–307.
  • Reinhard G, Noll A, Schlebusch H, et al. Shifts in the TH1/TH2 balance during human pregnancy correlate with apoptotic changes. Biochem Biophys Res Commun. 1998;245:933–938.
  • Saito S, Nakashima A, Shima T, et al. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63:601–610.
  • Slukvin, II, Lunn DP, Watkins DI, et al. Placental expression of the nonclassical MHC class I molecule Mamu-AG at implantation in the rhesus monkey. Proc Natl Acad Sci USA. 2000;97:9104–9109.
  • Webster RL, Johnson RP. Delineation of multiple subpopulations of natural killer cells in rhesus macaques. Immunology. 2005;115:206–214.
  • Frings W. Practical considerations for testing biopharmaceuticals in nonhuman primates. In: G.F. W, editor. Future trends in primate toxicology and biotechnology. 1st ed. Münster (Germany): Waxmann Verlag; 2011. p. 161–174.
  • Svensson-Arvelund J, Ernerudh J, Buse E, et al. The placenta in toxicology. Part II: systemic and local immune adaptations in pregnancy. Toxicol Pathol. 2014;42:327–338.
  • Aldo PB, Racicot K, Craviero V, et al. Trophoblast induces monocyte differentiation into CD14+/CD16+ macrophages. Am J Reprod Immunol. 2014;72:270–284.
  • Mandelboim O, Pazmany L, Davis DM, et al. Multiple receptors for HLA-G on human natural killer cells. Proc Natl Acad Sci USA. 1997;94:14666–14670.
  • Heldrup J, Kalm O, Prellner K. Blood T and B lymphocyte subpopulations in healthy infants and children. Acta Paediatr. 1992;81:125–132.
  • Baroncelli S, Panzini G, Geraci A, et al. Longitudinal characterization of CD4, CD8 T-cell subsets and of haematological parameters in healthy newborns of cynomolgus monkeys. Vet Immunol Immunopathol. 1997;59:141–150.
  • Rieger L, Segerer S, Bernar T, et al. Specific subsets of immune cells in human decidua differ between normal pregnancy and preeclampsia – a prospective observational study. Reprod Biol Endocrinol. 2009;7:132.
  • Sutton L, Mason DY, Redman CW. HLA-DR positive cells in the human placenta. Immunology. 1983;49:103–112.
  • Rogacev KS, Zawada AM, Hundsdorfer J, et al. Immunosuppression and monocyte subsets. Nephrol Dial Transplant. 2015;30:143–153.
  • Medvedev AE, Johnsen AC, Haux J, et al. Regulation of fas and fas-ligand expression in NK cells by cytokines and the involvement of fas-ligand in NK/LAK cell-mediated cytotoxicity. Cytokine. 1997;9:394–404.
  • Hunt JS, Petroff MG, McIntire RH, et al. HLA-G and immune tolerance in pregnancy. FASEB J. 2005;19:681–693.
  • Favier B, LeMaoult J, Carosella ED. Functions of HLA-G in the immune system. Tissue Antigens. 2007;69 Suppl 1:150–152.
  • Favier B, LeMaoult J, Rouas-Freiss N, et al. Research on HLA-G: an update. Tissue Antigens. 2007;69:207–211.
  • Hunt JS. Stranger in a strange land. Immunol Rev. 2006;213:36–47.
  • Nagata S, Golstein P. The Fas death factor. Science. 1995;267:1449–1456.
  • Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet. 1999;33:29–55.
  • Mor G, Gutierrez LS, Eliza M, et al. Fas-fas ligand system-induced apoptosis in human placenta and gestational trophoblastic disease. Am J Reprod Immunol. 1998;40:89–94.
  • Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009;30:180–192.
  • Scheler M, Wenzel J, Tuting T, et al. Indoleamine 2,3-dioxygenase (IDO): the antagonist of type I interferon-driven skin inflammation? Am J Pathol. 2007;171:1936–1943.
  • Druckmann R, Druckmann MA. Progesterone and the immunology of pregnancy. J Steroid Biochem Mol Biol. 2005;97:389–396.
  • Ristich V, Liang S, Zhang W, et al. Tolerization of dendritic cells by HLA-G. Eur J Immunol. 2005;35:1133–1142.
  • Yao XL, Liu J, Lee E, et al. Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats. J Neurotrauma. 2005;22:656–668.
  • Yie SM, Xiao R, Librach CL. Progesterone regulates HLA-G gene expression through a novel progesterone response element. Hum Reprod. 2006;21:2538–2544.
  • Nakamura O. Children’s immunology, what can we learn from animal studies (1): decidual cells induce specific immune system of feto-maternal interface. J Toxicol Sci. 2009;34 Suppl 2:SP331–339.
  • Nanjidsuren T, Naidansuren P, Park CW, et al. Expression and localization of the 20alpha-hydroxysteroid dehydrogenase (HSD) enzyme in the reproductive tissues of the cynomolgus monkey Macaca fascicularis. J Steroid Biochem Mol Biol. 2011;127:337–344.
  • Arck P, Hansen PJ, Mulac Jericevic B, et al. Progesterone during pregnancy: endocrine-immune cross talk in mammalian species and the role of stress. Am J Reprod Immunol. 2007;58:268–279.
  • Jost M, Zeuschner D, Seemann J, et al. Identification and characterization of a novel type of annexin-membrane interaction: Ca2+ is not required for the association of annexin II with early endosomes. J Cell Sci. 1997;110 (Pt 2):221–228.
  • Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002;82:331–371.
  • Albrecht ED, Pepe GJ. Central integrative role of oestrogen in modulating the communication between the placenta and fetus that results in primate fecal-placental development. Placenta. 1999;20:129–139.
  • Tai P, Wang J, Jin H, et al. Induction of regulatory T cells by physiological level estrogen. J Cell Physiol. 2008;214:456–464.
  • Chaouat G. The Th1/Th2 paradigm: still important in pregnancy? Semin Immunopathol. 2007;29:95–113.
  • Xu H, Zhang GX, Ciric B, et al. IDO: a double-edged sword for T(H)1/T(H)2 regulation. Immunol Lett. 2008;121:1–6.
  • Fitzgerald JS, Toth B, Jeschke U, et al. Knocking off the suppressors of cytokine signaling (SOCS): their roles in mammalian pregnancy. J Reprod Immunol. 2009;83:117–123.
  • Tilburgs T, Roelen DL, van der Mast BJ, et al. Evidence for a selective migration of fetus-specific CD4 + CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J Immunol. 2008;180:5737–5745.
  • Gu J, Lei Y, Huang Y, et al. Fab fragment glycosylated IgG may play a central role in placental immune evasion. Hum Reprod. 2015;30:380–391.
  • Hammer A, Hutter H, Dohr G. HLA class I expression on the materno-fetal interface. Am J Reprod Immunol. 1997;38:150–157.
  • Hunt JS, Langat DL. HLA-G: a human pregnancy-related immunomodulator. Curr Opin Pharmacol. 2009;9:462–469.
  • Alegre E, Rizzo R, Bortolotti D, et al. Some basic aspects of HLA-G biology. J Immunol Res. 2014;2014:657625.
  • Moreau P, Flajollet S, Carosella ED. Non-classical transcriptional regulation of HLA-G: an update. J Cell Mol Med. 2009;13:2973–2989.
  • Hamai Y, Fujii T, Yamashita T, et al. The expression of human leukocyte antigen-G on trophoblasts abolishes the growth-suppressing effect of interleukin-2 towards them. Am J Reprod Immunol. 1999;41:153–158.
  • Ryan AF, Grendell RL, Geraghty DE, et al. A soluble isoform of the rhesus monkey nonclassical MHC class I molecule Mamu-AG is expressed in the placenta and the testis. J Immunol. 2002;169:673–683.
  • van Wijk IJ, Griffioen S, Tjoa ML, et al. HLA-G expression in trophoblast cells circulating in maternal peripheral blood during early pregnancy. Am J Obstet Gynecol. 2001;184:991–997.
  • Langat DK, Hunt JS. Do nonhuman primates comprise appropriate experimental models for studying the function of human leukocyte antigen-G? Biol Reprod. 2002;67:1367–1374.
  • Tjoa ML, Delli-Bovi L, Johnson KL, et al. Antibodies to trophoblast antigens HLA-G, placenta growth factor, and neuroD2 do not improve detection of circulating trophoblast cells in maternal blood. Fetal Diagn Ther. 2007;22:85–89.
  • Kamishikiryo J, Maenaka K. HLA-G molecule. Curr Pharm Des. 2009;15:3318–3324.
  • van der Meer A, Lukassen HG, van Cranenbroek B, et al. Soluble HLA-G promotes Th1-type cytokine production by cytokine-activated uterine and peripheral natural killer cells. Mol Hum Reprod. 2007;13:123–133.
  • Agaugue S, Carosella ED, Rouas-Freiss N. Role of HLA-G in tumor escape through expansion of myeloid-derived suppressor cells and cytokinic balance in favor of Th2 versus Th1/Th17. Blood. 2011;117:7021–7031.
  • Poehlmann TG, Schaumann A, Busch S, et al. Inhibition of term decidual NK cell cytotoxicity by soluble HLA-G1. Am J Reprod Immunol. 2006;56:275–285.
  • Ulker N, Lewis KD, Hood LE, et al. Activated T cells transcribe an alternatively spliced mRNA encoding a soluble form of Qa-2 antigen. EMBO J. 1990;9:3839–3847.
  • Schmidt CM, Garrett E, Orr HT. Cytotoxic T lymphocyte recognition of HLA-G in mice. Hum Immunol. 1997;55:127–139.
  • Comiskey M, Goldstein CY, De Fazio SR, et al. Evidence that HLA-G is the functional homolog of mouse Qa-2, the Ped gene product. Hum Immunol. 2003;64:999–1004.
  • Boyson JE, Shufflebotham C, Cadavid LF, et al. The MHC class I genes of the rhesus monkey. Different evolutionary histories of MHC class I and II genes in primates. J Immunol. 1996;156:4656–4665.
  • Boyson JE, Iwanaga KK, Golos TG, et al. Identification of a novel MHC class I gene, Mamu-AG, expressed in the placenta of a primate with an inactivated G locus. J Immunol. 1997;159:3311–3321.
  • Dambaeva SV, Bondarenko GI, Grendell RL, et al. Non-classical MHC-E (Mamu-E) expression in the rhesus monkey placenta. Placenta. 2008;29:58–70.
  • Hunt JS, Morales PJ, Pace JL, et al. A commentary on gestational programming and functions of HLA-G in pregnancy. Placenta. 2007;28 Suppl A:S57–S63.
  • Langat DK, Morales PJ, Fazleabas AT, et al. Potential regulatory sequences in the untranslated regions of the baboon MHC class Ib gene, Paan-AG, more closely resemble those in the human MHC class Ia genes than those in the class Ib gene, HLA-G. Immunogenetics. 2004;56:657–666.
  • Langat DK, Morales PJ, Fazleabas AT, et al. Baboon placentas express soluble and membrane-bound Paan-AG proteins encoded by alternatively spliced transcripts of the class Ib major histocompatibility complex gene, Paan-AG. Immunogenetics. 2002;54:164–173.
  • Le Bouteiller P, Mallet V. HLA-G and pregnancy. Rev Reprod. 1997;2:7–13.
  • Hunt JS, Pace JL, Morales PJ, et al. Immunogenicity of the soluble isoforms of HLA-G. Mol Hum Reprod. 2003;9:729–735.
  • LeMaoult J, Zafaranloo K, Le Danff C, et al. HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J. 2005;19:662–664.
  • Carosella ED, Gregori S, LeMaoult J. The tolerogenic interplay(s) among HLA-G, myeloid APCs, and regulatory cells. Blood. 2011;118:6499–6505.
  • Hunt JS, Jadhav L, Chu W, et al. Soluble HLA-G circulates in maternal blood during pregnancy. Am J Obstet Gynecol. 2000;183:682–688.
  • Morales PJ, Pace JL, Platt JS, et al. Placental cell expression of HLA-G2 isoforms is limited to the invasive trophoblast phenotype. J Immunol. 2003;171:6215–6224.
  • Fournel S, Aguerre-Girr M, Huc X, et al. Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J Immunol. 2000;164:6100–6104.
  • Blaschitz A, Lenfant F, Mallet V, et al. Endothelial cells in chorionic fetal vessels of first trimester placenta express HLA-G. Eur J Immunol. 1997;27:3380–3388.
  • Sedlmayr P, Morales P, Trummer S, et al. Absence of HLA-G expression in macrophages of human decidua. Am J Reprod Immunol. 2002;48:96–102.
  • Rouas-Freiss N, Paul P, Dausset J, et al. HLA-G promotes immune tolerance. J Biol Regul Homeost Agents. 2000;14:93–98.
  • McCormick J, Whitley GS, Le Bouteiller P, et al. Soluble HLA-G regulates motility and invasion of the trophoblast-derived cell line SGHPL-4. Hum Reprod. 2009;24:1339–1345.
  • Apps R, Gardner L, Moffett A. A critical look at HLA-G. Trends Immunol. 2008;29:313–321.
  • Amodio G, Mugione A, Sanchez AM, et al. HLA-G expressing DC-10 and CD4(+) T cells accumulate in human decidua during pregnancy. Hum Immunol. 2013;74:406–411.
  • Phillips TA, Ni J, Hunt JS. Death-inducing tumour necrosis factor (TNF) superfamily ligands and receptors are transcribed in human placentae, cytotrophoblasts, placental macrophages and placental cell lines. Placenta. 2001;22:663–672.
  • Green DR, Ferguson TA. The role of Fas ligand in immune privilege. Nat Rev Mol Cell Biol. 2001;2:917–924.
  • Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17:1675–1687.
  • De Falco M, Penta R, Laforgia V, et al. Apoptosis and human placenta: expression of proteins belonging to different apoptotic pathways during pregnancy. J Exp Clin Cancer Res. 2005;24:25–33.
  • Hunt JS, Vassmer D, Ferguson TA, et al. Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J Immunol. 1997;158:4122–4128.
  • Chaouat G, Clark DA. FAS/FAS ligand interaction at the placental interface is not required for the success of allogeneic pregnancy in anti-paternal MHC preimmunized mice. Am J Reprod Immunol. 2001;45:108–115.
  • Stenqvist AC, Nagaeva O, Baranov V, et al. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol. 2013;191:5515–5523.
  • Ka H, Hunt JS. Temporal and spatial patterns of expression of inhibitors of apoptosis in human placentas. Am J Pathol. 2003;163:413–422.
  • Gill RM, Hunt JS. Soluble receptor (DcR3) and cellular inhibitor of apoptosis-2 (cIAP-2) protect human cytotrophoblast cells against LIGHT-mediated apoptosis. Am J Pathol. 2004;165:309–317.
  • Murayama Y, Terao K, Inoue-Murayama M. Molecular cloning and characterization of cynomolgus monkey Fas. Hum Immunol. 2000;61:474–485.
  • Villinger F, Bostik P, Mayne A, et al. Cloning, sequencing, and homology analysis of nonhuman primate Fas/Fas-ligand and co-stimulatory molecules. Immunogenetics. 2001;53:315–328.
  • Uckan D, Steele A, Cherry, et al. Trophoblasts express Fas ligand: a proposed mechanism for immune privilege in placenta and maternal invasion. Mol Hum Reprod. 1997;3:655–662.
  • Zorzi W, Thellin O, Coumans B, et al. Demonstration of the expression of CD95 ligand transcript and protein in human placenta. Placenta. 1998;19:269–277.
  • Guleria I, Khosroshahi A, Ansari MJ, et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J Exp Med. 2005;202:231–237.
  • Frangsmyr L, Baranov V, Nagaeva O, et al. Cytoplasmic microvesicular form of Fas ligand in human early placenta: switching the tissue immune privilege hypothesis from cellular to vesicular level. Mol Hum Reprod. 2005;11:35–41.
  • Grohmann U, Fallarino F, Puccetti P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 2003;24:242–248.
  • Metz R, Rust S, Duhadaway JB, et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology. 2012;1:1460–1468.
  • Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4:762–774.
  • Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016;37:193–207.
  • Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34:137–143.
  • Honig A, Rieger L, Kapp M, et al. Indoleamine 2,3-dioxygenase (IDO) expression in invasive extravillous trophoblast supports role of the enzyme for materno-fetal tolerance. J Reprod Immunol. 2004;61:79–86.
  • Curti A, Trabanelli S, Salvestrini V, et al. The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood. 2009;113:2394–2401.
  • Dai X, Zhu BT. Indoleamine 2,3-dioxygenase tissue distribution and cellular localization in mice: implications for its biological functions. J Histochem Cytochem. 2010;58:17–28.
  • Andersen MH. CD4 responses against IDO. Oncoimmunology. 2012;1:1211–1212.
  • Von Bubnoff D, Scheler M, Wilms H, et al. Identification of IDO-positive and IDO-negative human dendritic cells after activation by various proinflammatory stimuli. J Immunol. 2011;186:6701–6709.
  • Brenk M, Scheler M, Koch S, et al. Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4 + CD25+ Foxp3+ T regulatory cells. J Immunol. 2009;183:145–154.
  • Kwidzinski E, Bechmann I. IDO expression in the brain: a double-edged sword. J Mol Med (Berl). 2007;85:1351–1359.
  • Myint AM, Kim YK. Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses. 2003;61:519–525.
  • Beutelspacher SC, Tan PH, McClure MO, et al. Expression of indoleamine 2,3-dioxygenase (IDO) by endothelial cells: implications for the control of alloresponses. Am J Transplant. 2006;6:1320–1330.
  • Suzuki S, Tone S, Takikawa O, et al. Expression of indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase in early concepti. Biochem J. 2001;355:425–429.
  • Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod Sci. 2010;17:209–218.
  • Terness P, Chuang JJ, Opelz G. The immunoregulatory role of IDO-producing human dendritic cells revisited. Trends Immunol. 2006;27:68–73.
  • Popov A, Schultze JL. IDO-expressing regulatory dendritic cells in cancer and chronic infection. J Mol Med (Berl). 2008;86:145–160.
  • Chen W. IDO: more than an enzyme. Nat Immunol. 2011;12:809–811.
  • Drenzek JG, Breburda EE, Burleigh DW, et al. Expression of indoleamine 2,3-dioxygenase in the rhesus monkey and common marmoset. J Reprod Immunol. 2008;78:125–133.
  • Szekeres-Bartho J, Wegmann TG. A progesterone-dependent immunomodulatory protein alters the Th1/Th2 balance. J Reprod Immunol. 1996;31:81–95.
  • Szekeres-Bartho J, Halasz M, Palkovics T. Progesterone in pregnancy; receptor-ligand interaction and signaling pathways. J Reprod Immunol. 2009;83:60–64.
  • Zhang Q, Wu WX. Separate and synergistic effect of progesterone and estradiol on induction of annexin 2 and its interaction protein p11 in pregnant sheep myometrium. J Mol Endocrinol. 2007;38:441–454.
  • Zhang L, Kanda Y, Roberts DJ, et al. Expression of progesterone receptor membrane component 1 and its partner serpine 1 mRNA binding protein in uterine and placental tissues of the mouse and human. Mol Cell Endocrinol. 2008;287:81–89.
  • Jiang ZY, Guo YY, Ren HB, et al. Tumor necrosis factor (TNF)-alpha upregulates progesterone receptor-A by activating the NF-kappaB signaling pathway in human decidua after labor onset. Placenta. 2012;33:1–7.
  • Tuckey RC. Progesterone synthesis by the human placenta. Placenta. 2005;26:273–281.
  • Buse E, Zöller M, van Esch E. The macaque ovary, with special reference to the cynomolgus macaque (Macaca fascicularis). Toxicol Pathol. 2008;36:24s–66s.
  • Fujimoto K, Terao K, Cho F, et al. The placental transfer of IgG in the cynomolgus monkey. Jpn J Med Sci Biol. 1983;36:171–176.
  • Coe CL, Lubach, G.R., Izard, K.M. Progressive improvement in the transfer of maternal antibody across the order primates. Am J Primatol. 1994;32:51–55.
  • Leach JL, Sedmak DD, Osborne JM, et al. Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal-fetal antibody transport. J Immunol. 1996;157:3317–3322.
  • Kristoffersen EK, Matre R. Co-localization of the neonatal Fc gamma receptor and IgG in human placental term syncytiotrophoblasts. Eur J Immunol. 1996;26:1668–1671.
  • Ober RJ, Martinez C, Vaccaro C, et al. Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J Immunol. 2004;172:2021–2029.
  • Montoyo HP, Vaccaro C, Hafner M, et al. Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci USA. 2009;106:2788–2793.
  • Palmeira P, Quinello C, Silveira-Lessa AL, et al. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 2012;2012:985646.
  • Jacobsen FW, Padaki R, Morris AE, et al. Molecular and functional characterization of cynomolgus monkey IgG subclasses. J Immunol. 2011;186:341–349.
  • Simister NE, Story CM, Chen HL, et al. An IgG-transporting Fc receptor expressed in the syncytiotrophoblast of human placenta. Eur J Immunol. 1996;26:1527–1531.
  • Firan M, Bawdon R, Radu C, et al. The MHC class I-related receptor, FcRn, plays an essential role in the maternofetal transfer of gamma-globulin in humans. Int Immunol. 2001;13:993–1002.
  • Vaccaro C, Bawdon R, Wanjie S, et al. Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc Natl Acad Sci USA. 2006;103:18709–18714.
  • Jauniaux E, Gulbis B. In vivo investigation of placental transfer early in human pregnancy. Eur J Obstet Gynecol Reprod Biol. 2000;92:45–49.
  • Waisman DM. Annexin II tetramer: structure and function. Mol Cell Biochem. 1995;149–150:301–322.
  • Kaczan-Bourgois D, Salles JP, Hullin F, et al. Increased content of annexin II (p36) and p11 in human placenta brush-border membrane vesicles during syncytiotrophoblast maturation and differentiation. Placenta. 1996;17:669–676.
  • Sun M, Liu Y, Gibb W. Distribution of annexin I and II in term human fetal membranes, decidua and placenta. Placenta. 1996;17:181–184.
  • Siever DA, Erickson HP. Extracellular annexin II. Int J Biochem Cell Biol. 1997;29:1219–1223.
  • Kim J, Hajjar KA. Annexin II: a plasminogen-plasminogen activator co-receptor. Front Biosci. 2002;7:d341–348.
  • Bhogal N, Combes R. TGN1412: time to change the paradigm for the testing of new pharmaceuticals. Altern Lab Anim. 2006;34:225–239.
  • Ishikawa T, Takizawa T, Iwaki J, et al. Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells. Int J Mol Med. 2015;35:1273–1289.
  • Grosser O. Frühentwicklung, Eihautbildung und Placentation des Menschen und der Säugetiere. München (Germany): Verlag von J.F. Bergmann; 1927.
  • Dantzer VLR, Kaufmann P, Luckhardt M. Comparative morphological aspects of placental vascularization. Trophoblast Res. 1988;3:221–244.
  • Hustin J, Schaaps JP. Echographic [corrected] and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol. 1987;157:162–168.
  • Jaffe R, Jauniaux E, Hustin J. Maternal circulation in the first-trimester human placenta–myth or reality? Am J Obstet Gynecol. 1997;176:695–705.
  • Burton GJ, Jauniaux E, Charnock-Jones DS. Human early placental development: potential roles of the endometrial glands. Placenta. 2007;28 Suppl A:S64–S69.
  • Blankenship TN, Enders AC, King BF. Trophoblastic invasion and the development of uteroplacental arteries in the macaque: immunohistochemical localization of cytokeratins, desmin, type IV collagen, laminin, and fibronectin. Cell Tissue Res. 1993;272:227–236.
  • Cline JM, Wood CE, Vidal JD, et al. Selected background findings and interpretation of common lesions in the female reproductive system in macaques. Toxicol Pathol. 2008;36:142s–163s.
  • Enders AC, Blankenship TN. Interstitial trophoblast cells: an enigmatic and variable component of the developing macaque placenta. Placenta. 2012;33:672–676.
  • Holsapple MP, West LJ, Landreth KS. Species comparison of anatomical and functional immune system development. Birth Defects Res B Dev Reprod Toxicol. 2003;68:321–334.
  • Cole LA. Hyperglycosylated hCG, a review. Placenta. 2010;31:653–664.
  • Newbern D, Freemark M. Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes. 2011;18:409–416.
  • Witorsch RJ. Low-dose in utero effects of xenoestrogens in mice and their relevance to humans: an analytical review of the literature. Food Chem Toxicol. 2002;40:905–912.
  • Chan SW, Leathem JH. Placental steroidogenesis in the rat: progesterone production by tissue of the basal zone. Endocrinology. 1975;96:298–303.
  • Favier B, Lemaoult J, Lesport E, et al. ILT2/HLA-G interaction impairs NK-cell functions through the inhibition of the late but not the early events of the NK-cell activating synapse. FASEB J. 2010;24:689–699.
  • Lindaman A, Dowden A, Zavazava N. Soluble HLA-G molecules induce apoptosis in natural killer cells. Am J Reprod Immunol. 2006;56:68–76.
  • Sala FG, Del Moral PM, Pizzato N, et al. The HLA-G*0105N null allele induces cell surface expression of HLA-E molecule and promotes CD94/NKG2A-mediated recognition in JAR choriocarcinoma cell line. Immunogenetics. 2004;56:617–624.
  • Hofmeister V, Weiss EH. HLA-G modulates immune responses by diverse receptor interactions. Semin Cancer Biol. 2003;13:317–323.
  • Salamone G, Fraccaroli L, Gori S, et al. Trophoblast cells induce a tolerogenic profile in dendritic cells. Hum Reprod. 2012;27:2598–2606.
  • Fons P, Chabot S, Cartwright JE, et al. Soluble HLA-G1 inhibits angiogenesis through an apoptotic pathway and by direct binding to CD160 receptor expressed by endothelial cells. Blood. 2006;108:2608–2615.
  • Le Bouteiller P. HLA-G in the human placenta: expression and potential functions. Biochem Soc Trans. 2000;28:208–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.