384
Views
13
CrossRef citations to date
0
Altmetric
Review Article

MicroRNA profiling from dried blood samples

, , &
Pages 111-117 | Received 12 Oct 2018, Accepted 17 Dec 2018, Published online: 29 Jan 2019

References

  • Marrugo-Ramirez J, Mir M, Samitier J. Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int J Mol Sci. 2018;19:2877.
  • Jiang Y, Wang D. Liquid biopsy in the OMICS era of tumor medicine. Open Access J Biomed Eng Appl. 2018;1:115.
  • Duffy MJ. Tumor markers in clinical practice: a review focusing on common solid cancers. Med Princ Pract. 2013;22:4–11.
  • Zhou Q, Zhang Z, Bei Y, et al. Circular RNAs as novel biomarkers for cardiovascular diseases. Adv Exp Med Biol. 2018;1087:159–170.
  • Kitamura Y, Kojima M, Kurosawa T, et al. Proteomic profiling of exosomal proteins for blood-based biomarkers in Parkinson's disease. Neuroscience. 2018;392:121–128.
  • Leuzy A, Heurling K, Ashton NJ, et al. In vivo detection of Alzheimer's disease. Yale J Biol Med. 2018;91:291–300.
  • Lippi G, Plebani M. A Six-Sigma approach for comparing diagnostic errors in healthcare-where does laboratory medicine stand?. Ann Transl Med. 2018;6:180.
  • Simundic AM, Lippi G. Preanalytical phase–a continuous challenge for laboratory professionals. Biochem Med. 2012;22:145–149.
  • Plebani M. Diagnostic errors and laboratory medicine - causes and strategies. EJIFCC. 2015;26:7–14.
  • Lippi G, Mattiuzzi C, Bovo C. Are we getting better at the preanalytical phase or just better at measuring it? J Lab Precis Med. 2018;3. DOI:10.21037/jlpm.2018.01.03
  • Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucl Acids Res. 2014;42:D68–D73. (Database issue)
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–233.
  • Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J. 2004;23:4051–4060.
  • Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–1101.
  • Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–240.
  • Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10:185–191.
  • Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12:99–110.
  • Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.
  • Gregory RI, Chendrimada TP, Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123:631–640.
  • Havens MA, Reich AA, Duelli DM, et al. Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res. 2012;40:4626–4640.
  • Abdelfattah AM, Park C, Choi MY. Update on non-canonical microRNAs. Biomol Concepts. 2014;5:275–287.
  • Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27:91–105.
  • Backes C, Meese E, Lenhof HP, et al. A dictionary on microRNAs and their putative target pathways. Nucleic Acids Res. 2010;38:4476–4486.
  • Diener C, Hart M, Alansary D, et al. Modulation of intracellular calcium signaling by microRNA-34a-5p. Cell Death Dis. 2018;9:1008.
  • Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–984.
  • Seo HH, Lee S, Lee CY, et al. Multipoint targeting of TGF-beta/Wnt transactivation circuit with microRNA 384-5p for cardiac fibrosis. Cell Death Differ. 2018. DOI:10.1038/s41418-018-0187-3
  • Mendell JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 2005;4:1179–1184.
  • Baker M. RNA interference: MicroRNAs as biomarkers. Nature. 2010;464:1227.
  • Etheridge A, Lee I, Hood L, et al. Extracellular microRNA: a new source of biomarkers. Mutat Res. 2011;717:85–90.
  • Gatfield D, Le Martelot G, Vejnar CE, et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 2009;23:1313–1326.
  • Rüegger S, Großhans H. MicroRNA turnover: when, how, and why. Trends Biochem Sci. 2012;37:436–446.
  • Krol J, Busskamp V, Markiewicz I, et al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell. 2010;141:618–631.
  • Keller A, Kreis S, Leidinger P, et al. miRNAs in ancient tissue specimens of the tyrolean iceman. Mol Biol Evol. 2017;34:793–801.
  • Wang J, Robinson JF, Khan HM, et al. Optimizing RNA extraction yield from whole blood for microarray gene expression analysis. Clin Biochem. 2004;37:741–744.
  • Eikmans M, Rekers NV, Anholts JD, et al. Blood cell mRNAs and microRNAs: optimized protocols for extraction and preservation. Blood. 2013;121:e81–e89.
  • Weber DG, Casjens S, Rozynek P, et al. Assessment of mRNA and microRNA stabilization in peripheral human blood for multicenter studies and biobanks. Biomark Insights. 2010;5:95–102.
  • Balzano F, Deiana M, Dei Giudici S, et al. miRNA stability in frozen plasma samples. Molecules. 2015;20:19030–19040.
  • Wilhelm AJ, den Burger JC, Swart EL. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet. 2014;53:961–973.
  • Enderle Y, Foerster K, Burhenne J. Clinical feasibility of dried blood spots: analytics, validation, and applications. J Pharm Biomed Anal. 2016;130:231–243.
  • Ter Heine R, Mulder JW, van Gorp EC, et al. Clinical evaluation of the determination of plasma concentrations of darunavir, etravirine, raltegravir and ritonavir in dried blood spot samples. Bioanalysis. 2011;3:1093–1097.
  • Garcia Boy R, Henseler J, Mattern R, et al. Determination of morphine and 6-acetylmorphine in blood with use of dried blood spots. Ther Drug Monit. 2008;30:733–739.
  • Sharma A, Jaiswal S, Shukla M, et al. Dried blood spots: concepts, present status, and future perspectives in bioanalysis. Drug Test Anal. 2014;6:399–414.
  • Denniff P, Spooner N. Volumetric absorptive microsampling: a dried sample collection technique for quantitative bioanalysis. Anal Chem. 2014;86:8489–8495.
  • Patnaik SK, Mallick R, Yendamuri S. Detection of microRNAs in dried serum blots. Anal Biochem. 2010;407:147–149.
  • Ponnusamy V, Kapellou O, Yip E, et al. A study of microRNAs from dried blood spots in newborns after perinatal asphyxia: a simple and feasible biosampling method. Pediatr Res. 2016;79:799–805.
  • Rodil-Garcia P, Arellanes-Licea EDC, Montoya-Contreras A, et al. Analysis of MicroRNA expression in newborns with differential birth weight using newborn screening cards. Int J Mol Sci. 2017;18:2552.
  • Kahraman M, Laufer T, Backes C, et al. Technical stability and biological variability in microRNAs from dried blood spots: a lung cancer therapy-monitoring showcase. Clin Chem. 2017;63:1476–1488.
  • Backes C, Haas J, Leidinger P, et al. miFRame: analysis and visualization of miRNA sequencing data in neurological disorders. J Transl Med. 2015;13:224.
  • Pirritano M, Fehlmann T, Laufer T, et al. Next generation sequencing analysis of total small noncoding RNAs from low input RNA from dried blood sampling. Anal Chem. 2018;90:11791–11796.
  • Backes C, Sedaghat-Hamedani F, Frese K, et al. Bias in high-throughput analysis of miRNAs and implications for biomarker studies. Anal Chem. 2016;88:2088–2095.
  • Fehlmann T, Reinheimer S, Geng C, et al. cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs. Clin Epigenetics. 2016;8:123.
  • Friedlander MR, Mackowiak SD, Li N, et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52.
  • Fehlmann T, Backes C, Kahraman M, et al. Web-based NGS data analysis using miRMaster: a large-scale meta-analysis of human miRNAs. Nucleic Acids Res. 2017;45:8731–8744.
  • Backes C, Fehlmann T, Kern F, et al. miRCarta: a central repository for collecting miRNA candidates. Nucleic Acids Res. 2018;46:D160–D1D7.
  • Akhtar MM, Micolucci L, Islam MS, et al. Bioinformatic tools for microRNA dissection. Nucleic Acids Res. 2016;44:24–44.
  • Hanson EK, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 2009;387:303–314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.