498
Views
18
CrossRef citations to date
0
Altmetric
Review Article

Androgen receptor: A promising therapeutic target in breast cancer

&
Pages 200-223 | Received 04 Sep 2018, Accepted 09 Dec 2018, Published online: 01 Mar 2019

References

  • Breast cancer statistics [Internet]. Toronto (ON): Canadian Cancer Society; [cited 2018 Aug 28]. Available from: http://www.cancer.ca/en/cancer-information/cancer-type/breast/statistics/?region=on
  • Ferlay JSI, Ervik M, Dikshit R, et al. GLOBOCAN 2012 v1.1, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet] Lyon (France): International Agency for Research on Cancer; [cited 2018 Aug 18]. Available from: http://globocan.iarc.fr
  • Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–E386.
  • Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–10874.
  • Herschkowitz JI, Simin K, Weigman VJ, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.
  • Christopoulos PF, Vlachogiannis NI, Vogkou CT, et al. The role of the androgen receptor signaling in breast malignancies. Anticancer Res. 2017;37:6533–6540.
  • Chia K, O'Brien M, Brown M, et al. Targeting the androgen receptor in breast cancer. Curr Oncol Rep. 2015;17:4.
  • Carter P, Alifrangis C, Cereser B, et al. Molecular profiling of advanced breast cancer tumors is beneficial in assisting clinical treatment plans. Oncotarget. 2018;9:17589–17596.
  • Pozniak Y, Balint-Lahat N, Rudolph JD, et al. System-wide clinical proteomics of breast cancer reveals global remodeling of tissue homeostasis. Cell Syst. 2016;2:172–184.
  • Angelopoulos N, Stebbing J, Xu Y, et al. Proteome-wide dataset supporting functional study of tyrosine kinases in breast cancer. Data Brief. 2016;7:740–746.
  • Collins LC, Cole KS, Marotti JD, et al. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses' Health Study. Mod Pathol. 2011;24:924–931.
  • Narayanan R, Dalton JT. Androgen receptor: a complex therapeutic target for breast cancer. Cancers (Basel). 2016;8:108.
  • Li J, Al-Azzawi F. Mechanism of androgen receptor action. Maturitas. 2009;63:142–148.
  • Cuenca-Lopez MD, Montero JC, Morales JC, et al. Phospho-kinase profile of triple negative breast cancer and androgen receptor signaling. BMC Cancer. 2014;14:302.
  • Rondon-Lagos M, Villegas VE, Rangel N, et al. Tamoxifen resistance: emerging molecular targets. Int J Mol Sci. 2016;17:1357.
  • Paliouras M, Diamandis EP. Coordinated steroid hormone-dependent and independent expression of multiple kallikreins in breast cancer cell lines. Breast Cancer Res Treat. 2007;102:7–18.
  • Zarghami N, Grass L, Diamandis EP. Steroid hormone regulation of prostate-specific antigen gene expression in breast cancer. Br J Cancer. 1997;75:579–588.
  • Naderi A, Hughes-Davies L. A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia. 2008;10:542–548.
  • D'Amato NC, Gordon MA, Babbs B, et al. Cooperative dynamics of AR and ER activity in breast cancer. Mol Cancer Res. 2016;14:1054–1067.
  • Burger HG. Androgen production in women. Fertil Steril. 2002;77:3–5.
  • Androgen [Internet]. Reb Bank (NJ): Healthy Women; [cited 2018 Aug 28]. Available from: http://www.healthywomen.org/condition/androgen
  • Handelsman DJ. Androgen misuse and abuse. Best Pract Res Clin Endocrinol Metab. 2011;25:377–389.
  • Suzuki T, Miki Y, Takagi K, et al. Androgens in human breast carcinoma. Med Mol Morphol. 2010;43:75–81.
  • Hickey TE, Robinson JL, Carroll JS, et al. Minireview: the androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol. 2012;26:1252–1267.
  • Yeh S, Hu YC, Wang PH, et al. Abnormal mammary gland development and growth retardation in female mice and MCF7 breast cancer cells lacking androgen receptor. J Exp Med. 2003;198:1899–1908.
  • Gao YR, Walters KA, Desai R, et al. Androgen receptor inactivation resulted in acceleration in pubertal mammary gland growth, upregulation of ERα expression, and Wnt/β-catenin signaling in female mice. Endocrinology. 2014;155:4951–4963.
  • Dimitrakakis C, Bondy C. Androgens and the breast. Breast Cancer Res. 2009;11:212.
  • Cheng G, Li Y, Omoto Y, et al. Differential regulation of estrogen receptor (ER)alpha and (ER)beta in primate mammary gland. J Clin Endocrinol Metab. 2005;90:435–444.
  • Peters AA, Buchanan G, Ricciardelli C, et al. Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res. 2009;69:6131–6140.
  • Lopez-Tarruella S, Schiff R. The dynamics of estrogen receptor status in breast cancer: re-shaping the paradigm. Clin Cancer Res. 2007;13:6921–6925.
  • Park S, Koo JS, Kim MS, et al. Androgen receptor expression is significantly associated with better outcomes in estrogen receptor-positive breast cancers. Ann Oncol. 2011;22:1755–1762.
  • Park S, Koo J, Park HS, et al. Expression of androgen receptors in primary breast cancer. Ann Oncol. 2010;21:488–492.
  • Birrell SN, Butler LM, Harris JM, et al. Disruption of androgen receptor signaling by synthetic progestins may increase risk of developing breast cancer. FASEB J. 2007;21:2285–2293.
  • Bravaccini S, Ravaioli S, Amadori D, et al. Are there differences in androgen receptor expression in invasive breast cancer in African (Tanzanian) population in comparison with the Caucasian (Italian) population?. Front Endocrinol (Lausanne). 2018;9:137.
  • Riaz N, Idress R, Habib S, et al. Expression of androgen receptor and cancer stem cell markers (CD44(+)/CD24(-) and ALDH1(+)): prognostic implications in invasive breast cancer. Transl Oncol. 2018;11:920–929.
  • Gucalp A, Traina TA. Targeting the androgen receptor in triple-negative breast cancer. Curr Probl Cancer. 2016;40:141–150.
  • Shibuya R, Suzuki T, Miki Y, et al. Intratumoral concentration of sex steroids and expression of sex steroid-producing enzymes in ductal carcinoma in situ of human breast. Endocr Relat Cancer. 2008;15:113–124.
  • Dimitrakakis C, Zhou J, Bondy CA. Androgens and mammary growth and neoplasia. Fertil Steril. 2002;77(4):S26–S33.
  • Rothman MS, Carlson NE, Xu M, et al. Reexamination of testosterone, dihydrotestosterone, estradiol and estrone levels across the menstrual cycle and in postmenopausal women measured by liquid chromatography-tandem mass spectrometry. Steroids. 2011;76:177–182.
  • Danforth KN, Eliassen AH, Tworoger SS, et al. The association of plasma androgen levels with breast, ovarian and endometrial cancer risk factors among postmenopausal women. Int J Cancer. 2010;126:199–207.
  • Key T, Appleby P, Barnes I, et al. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst. 2002;94:606–616.
  • Kaaks R, Rinaldi S, Key TJ, et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer. 2005;12:1071–1082.
  • Zeleniuch-Jacquotte A, Shore RE, Koenig KL, et al. Postmenopausal levels of oestrogen, androgen, and SHBG and breast cancer: long-term results of a prospective study. Br J Cancer. 2004;90:153–159.
  • Missmer SA, Eliassen AH, Barbieri RL, et al. Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst. 2004;96:1856–1865.
  • Dorgan JF, Stanczyk FZ, Kahle LL, et al. Prospective case-control study of premenopausal serum estradiol and testosterone levels and breast cancer risk. Breast Cancer Res. 2010;12:R98.
  • Page JH, Colditz GA, Rifai N, et al. Plasma adrenal androgens and risk of breast cancer in premenopausal women. Cancer Epidemiol Biomarkers Prev. 2004;13:1032–1036.
  • Tworoger SS, Missmer SA, Eliassen AH, et al. The association of plasma DHEA and DHEA sulfate with breast cancer risk in predominantly premenopausal women. Cancer Epidemiol Biomarkers Prev. 2006;15:967–971.
  • Hilborn E, Stal O, Jansson A. Estrogen and androgen-converting enzymes 17beta-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17beta-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget. 2017;8:30552–30562.
  • Hilborn E. The role of the androgen receptor and hydroxysteroid 17β dehydrogenase in breast cancer: impact on tamoxifen treatment [Dissertation]. Linköping (Sweden): Linköping University, 2016.
  • Mueller JW, Gilligan LC, Idkowiak J, et al. The regulation of steroid action by sulfation and desulfation. Endocr Rev. 2015;36:526–563.
  • Schiffer L, Arlt W, Storbeck KH. Intracrine androgen biosynthesis, metabolism and action revisited. Mol Cell Endocrinol. 2018;465:4–26.
  • Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32:81–151.
  • Jansson A, Delander L, Gunnarsson C, et al. Ratio of 17HSD1 to 17HSD2 protein expression predicts the outcome of tamoxifen treatment in postmenopausal breast cancer patients. Clin Cancer Res. 2009;15:3610–3616.
  • Sivik T, Gunnarsson C, Fornander T, et al. 17beta-Hydroxysteroid dehydrogenase type 14 is a predictive marker for tamoxifen response in oestrogen receptor positive breast cancer. PLoS One. 2012;7:e40568.
  • McNamara KM, Oguro S, Omata F, et al. The presence and impact of estrogen metabolism on the biology of triple-negative breast cancer. Breast Cancer Res Treat. 2017;161:213–227.
  • Lewis MJ, Wiebe JP, Heathcote JG. Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma. BMC Cancer. 2004;4:27.
  • Suzuki T, Darnel AD, Akahira JI, et al. 5alpha-reductases in human breast carcinoma: possible modulator of in situ androgenic actions. J Clin Endocrinol Metab. 2001;86:2250–2257.
  • Wang J, Zhao S, Luo L, et al. 5-alpha Reductase inhibitors and risk of male breast cancer: a systematic review and meta-analysis. Int Braz J Urol. 2018;44:865–873.
  • Zhao H, Zhou L, Shangguan AJ, et al. Aromatase expression and regulation in breast and endometrial cancer. J Mol Endocrinol. 2016;57:R19–R33.
  • Blakemore J, Naftolin F. Aromatase: contributions to physiology and disease in women and men. Physiology (Bethesda). 2016;31:258–269.
  • Brodie A, Lu Q, Nakamura J. Aromatase in the normal breast and breast cancer. J Steroid Biochem Mol Biol. 1997;61:281–286.
  • Rechoum Y, Rovito D, Iacopetta D, et al. AR collaborates with ERα in aromatase inhibitor-resistant breast cancer. Breast Cancer Res Treat. 2014;147:473–485.
  • Rahim B, O'Regan R. AR signaling in breast cancer. Cancers (Basel). 2017;9:21.
  • Villegas VE, Rondon-Lagos M, Annaratone L, et al. Tamoxifen treatment of breast cancer cells: impact on hedgehog/GLI1 signaling. Int J Mol Sci. 2016;17:308.
  • Osborne CK. Tamoxifen in the treatment of breast cancer. N Engl J Med. 1998;339:1609–1618.
  • Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006;354:270–282.
  • Miyoshi Y, Murase K, Saito M, et al. Mechanisms of estrogen receptor-α upregulation in breast cancers. Med Mol Morphol. 2010;43:193–196.
  • Sareddy GR, Vadlamudi RK. Cancer therapy using natural ligands that target estrogen receptor beta. Chin J Nat Med. 2015;13:801–807.
  • Haldosen LA, Zhao C, Dahlman-Wright K. Estrogen receptor beta in breast cancer. Mol Cell Endocrinol. 2014;382:665–672.
  • Nelson AW, Groen AJ, Miller JL, et al. Comprehensive assessment of estrogen receptor beta antibodies in cancer cell line models and tissue reveals critical limitations in reagent specificity. Mol Cell Endocrinol. 2017;440:138–150.
  • Ilvan S, Celik V, Cetinaslan I, et al. Immunohistochemical analysis of prostate-specific antigen in female breast cancer. J BUON. 2004;9:183–186.
  • Suzuki T, Miki Y, Nakamura Y, et al. Sex steroid-producing enzymes in human breast cancer. Endocr Relat Cancer. 2005;12:701–720.
  • Witzel I, Graeser M, Karn T, et al. Androgen receptor expression is a predictive marker in chemotherapy-treated patients with endocrine receptor-positive primary breast cancers. J Cancer Res Clin Oncol. 2013;139:809–816.
  • Aleskandarany MA, Abduljabbar R, Ashankyty I, et al. Prognostic significance of androgen receptor expression in invasive breast cancer: transcriptomic and protein expression analysis. Breast Cancer Res Treat. 2016;159:215–227.
  • Birrell SN, Bentel JM, Hickey TE, et al. Androgens induce divergent proliferative responses in human breast cancer cell lines. J Steroid Biochem Mol Biol. 1995;52:459–467.
  • Kandouz M, Lombet A, Perrot JY, et al. Proapoptotic effects of antiestrogens, progestins and androgen in breast cancer cells. J Steroid Biochem Mol Biol. 1999;69:463–471.
  • Poulin R, Baker D, Labrie F. Androgens inhibit basal and estrogen-induced cell proliferation in the ZR-75-1 human breast cancer cell line. Breast Cancer Res Treat. 1988;12:213–225.
  • Szelei J, Jimenez J, Soto AM, et al. Androgen-induced inhibition of proliferation in human breast cancer MCF7 cells transfected with androgen receptor. Endocrinology. 1997;138:1406–1412.
  • Lapointe J, Fournier A, Richard V, et al. Androgens down-regulate bcl-2 protooncogene expression in ZR-75-1 human breast cancer cells. Endocrinology. 1999;140:416–421.
  • Macedo LF, Guo Z, Tilghman SL, et al. Role of androgens on MCF-7 breast cancer cell growth and on the inhibitory effect of letrozole. Cancer Res. 2006;66:7775–7782.
  • Chanplakorn N, Chanplakorn P, Suzuki T, et al. Increased 5alpha-reductase type 2 expression in human breast carcinoma following aromatase inhibitor therapy: the correlation with decreased tumor cell proliferation. Horm Canc. 2011;2:73–81.
  • Pistelli M, Mora AD, Ballatore Z, et al. Aromatase inhibitors in premenopausal women with breast cancer: the state of the art and future prospects. Curr Oncol. 2018;25:e168–e175.
  • Castellano I, Allia E, Accortanzo V, et al. Androgen receptor expression is a significant prognostic factor in estrogen receptor positive breast cancers. Breast Cancer Res Treat. 2010;124:607–617.
  • Hu R, Dawood S, Holmes MD, et al. Androgen receptor expression and breast cancer survival in postmenopausal women. Clin Cancer Res. 2011;17:1867–1874.
  • Ciupek A, Rechoum Y, Gu G, et al. Androgen receptor promotes tamoxifen agonist activity by activation of EGFR in ERα-positive breast cancer. Breast Cancer Res Treat. 2015;154:225–237.
  • Cochrane DR, Bernales S, Jacobsen BM, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014;16:R7.
  • De Amicis F, Thirugnansampanthan J, Cui Y, et al. Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat. 2010;121:1–11.
  • Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011;62:233–247.
  • Ojo D, Lin X, Wu Y, et al. Polycomb complex protein BMI1 confers resistance to tamoxifen in estrogen receptor positive breast cancer. Cancer Lett. 2018;426:4–13.
  • Fujii R, Hanamura T, Suzuki T, et al. Increased androgen receptor activity and cell proliferation in aromatase inhibitor-resistant breast carcinoma. J Steroid Biochem Mol Biol. 2014;144 Pt B: 513–522.
  • Bronte G, Rocca A, Ravaioli S, et al. Androgen receptor in advanced breast cancer: is it useful to predict the efficacy of anti-estrogen therapy? BMC Cancer. 2018;18:348.
  • Magklara A, Brown TJ, Diamandis EP. Characterization of androgen receptor and nuclear receptor co-regulator expression in human breast cancer cell lines exhibiting differential regulation of kallikreins 2 and 3. Int J Cancer. 2002;100:507–514.
  • Kono M, Fujii T, Lim B, et al. Androgen receptor function and androgen receptor-targeted therapies in breast cancer: a review. JAMA Oncol. 2017;3:1266–1273.
  • Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–182.
  • Lal P, Tan LK, Chen B. Correlation of HER-2 status with estrogen and progesterone receptors and histologic features in 3655 invasive breast carcinomas. Am J Clin Pathol. 2005;123:541–546.
  • Guo W, Wang W, Zhu Y, et al. HER2 status in molecular apocrine breast cancer: associations with clinical, pathological, and molecular features. Int J Clin Exp Pathol. 2015;8:8008–8017.
  • Horiguchi J, Koibuchi Y, Iijima K, et al. Immunohistochemical double staining with estrogen receptor and HER2 on primary breast cancer. Int J Mol Med. 2003;12:855–859.
  • Lin Fde M, Pincerato KM, Bacchi CE, et al. Coordinated expression of oestrogen and androgen receptors in HER2-positive breast carcinomas: impact on proliferative activity. J Clin Pathol. 2012;65:64–68.
  • Ni M, Chen Y, Lim E, et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011;20:119–131.
  • Lehmann-Che J, Hamy AS, Porcher R, et al. Molecular apocrine breast cancers are aggressive estrogen receptor negative tumors overexpressing either HER2 or GCDFP15. Breast Cancer Res. 2013;15:R37.
  • Doane AS, Danso M, Lal P, et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene. 2006;25:3994–4008.
  • Mehta J, Asthana S, Mandal CC, et al. A molecular analysis provides novel insights into androgen receptor signalling in breast cancer. PLoS One. 2015;10:e0120622.
  • Robinson JL, Macarthur S, Ross-Innes CS, et al. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J. 2011;30:3019–3027.
  • Liu X, Feng C, Liu J, et al. Androgen receptor and heat shock protein 27 co-regulate the malignant potential of molecular apocrine breast cancer. J Exp Clin Cancer Res. 2018;37:90.
  • Garay JP, Park BH. Androgen receptor as a targeted therapy for breast cancer. Am J Cancer Res. 2012;2:434–445.
  • Chia KM, Liu J, Francis GD, et al. A feedback loop between androgen receptor and ERK signaling in estrogen receptor-negative breast cancer. Neoplasia. 2011;13:154–166.
  • Naderi A, Chia KM, Liu J. Synergy between inhibitors of androgen receptor and MEK has therapeutic implications in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13:R36.
  • Vranic S, Schmitt F, Sapino A, et al. Apocrine carcinoma of the breast: a comprehensive review. Histol Histopathol. 2013;28:1393–1409.
  • Daemen A, Manning G. HER2 is not a cancer subtype but rather a pan-cancer event and is highly enriched in AR-driven breast tumors. Breast Cancer Res. 2018;20:8.
  • He L, Du Z, Xiong X, et al. Targeting androgen receptor in treating HER2 positive breast cancer. Sci Rep. 2017;7:14584.
  • Palma G, Frasci G, Chirico A, et al. Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget. 2015;6:26560–26574.
  • Murphy CC, Bartholomew LK, Carpentier MY, et al. Adherence to adjuvant hormonal therapy among breast cancer survivors in clinical practice: a systematic review. Breast Cancer Res Treat. 2012;134:459–478.
  • Hirshfield KM, Ganesan S. Triple-negative breast cancer: molecular subtypes and targeted therapy. Curr Opin Obstet Gynecol. 2014;26:34–40.
  • Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–2767.
  • Lawrence RT, Perez EM, Hernandez D, et al. The proteomic landscape of triple-negative breast cancer. Cell Rep. 2015;11:990.
  • Barton VN, D’Amato NC, Gordon MA, et al. Androgen receptor biology in triple negative breast cancer: a case for classification as AR + or quadruple negative disease. Horm Canc. 2015;6:206–213.
  • Hon JD, Singh B, Sahin A, et al. Breast cancer molecular subtypes: from TNBC to QNBC. Am J Cancer Res. 2016;6:1864–1872.
  • Mina A, Yoder R, Sharma P. Targeting the androgen receptor in triple-negative breast cancer: current perspectives. OncoTargets Ther. 2017;10:4675–4685.
  • Safarpour D, Pakneshan S, Tavassoli FA. Androgen receptor (AR) expression in 400 breast carcinomas: is routine AR assessment justified? Am J Cancer Res. 2014;4:353–368.
  • Liu YX, Zhang KJ, Tang LL. Clinical significance of androgen receptor expression in triple negative breast cancer-an immunohistochemistry study. Oncol Lett. 2018;15:10008–10016.
  • McNamara KM, Moore NL, Hickey TE, et al. Complexities of androgen receptor signalling in breast cancer. Endocr Relat Cancer. 2014;21:T161–T181.
  • Wang C, Kar S, Lai X, et al. Triple negative breast cancer in Asia: an insider's view. Cancer Treat Rev. 2018;62:29–38.
  • Vera-Badillo FE, Templeton AJ, de Gouveia P, et al. Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106:djt319.
  • Mrklic I, Pogorelic Z, Capkun V, et al. Expression of androgen receptors in triple negative breast carcinomas. Acta Histochem. 2013;115:344–348.
  • Choi JE, Kang SH, Lee SJ, et al. Androgen receptor expression predicts decreased survival in early stage triple-negative breast cancer. Ann Surg Oncol. 2015;22:82–89.
  • Speers C, Zhao SG, Chandler B, et al. Androgen receptor as a mediator and biomarker of radioresistance in triple-negative breast cancer. NPJ Breast Cancer. 2017;3:29.
  • McGhan LJ, McCullough AE, Protheroe CA, et al. Androgen receptor-positive triple negative breast cancer: a unique breast cancer subtype. Ann Surg Oncol. 2014;21:361–367.
  • Farag K, Elfarargy O, Shorbagy SE, et al. Prevalence of androgen receptors expression in triple negative breast cancer patients and its correlation with clinicopathological criteria: our institutes experience. J Clin Oncol. 2017;35:e12584–e12584.
  • Asano Y, Kashiwagi S, Goto W, et al. Expression and clinical significance of androgen receptor in triple-negative breast cancer. Cancers (Basel). 2017;9:4.
  • Ieni A, Barresi V, Ricciardi GR, et al. Prognostic value of androgen receptor expression in triple negative breast carcinomas: personal experience and comments on a review about "Triple-negative breast cancer: treatment challenges and solutions" by Collignon et al. Breast Cancer (Dove Med Press). 2016;8:157–159.
  • Wang C, Pan B, Zhu H, et al. Prognostic value of androgen receptor in triple negative breast cancer: a meta-analysis. Oncotarget. 2016;7:46482–46491.
  • Gucalp A, Tolaney S, Isakoff SJ, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res. 2013;19:5505–5512.
  • Shah PD, Gucalp A, Traina TA. The role of the androgen receptor in triple-negative breast cancer. Womens Health (Lond Engl). 2013;9:351–360.
  • Arce-Salinas C, Riesco-Martinez MC, Hanna W, et al. Complete response of metastatic androgen receptor-positive breast cancer to bicalutamide: case report and review of the literature. J Clin Oncol. 2016;34:e21–e24.
  • Lehmann BD, Bauer JA, Schafer JM, et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014;16:406.
  • Astvatsaturyan K, Yue Y, Walts AE, et al. Androgen receptor positive triple negative breast cancer: Clinicopathologic, prognostic, and predictive features. PLoS One. 2018;13:e0197827.
  • Mills AM, Gottileb EC, Wendroth MS, et al. Pure apocrine carcinomas represent a clinicopathologically distinct androgen receptor-positive subset of triple-negative breast cancers. Am J Surg Pathol. 2016;40:1109–1116.
  • Vranic S, Feldman R, Gatalica Z. Apocrine carcinoma of the breast: a brief update on the molecular features and targetable biomarkers. Bosn J Basic Med Sci. 2017;17:9–11.
  • Gonzalez-Angulo AM, Stemke-Hale K, Palla SL, et al. Androgen receptor levels and association with PIK3CA mutations and prognosis in breast cancer. Clin Cancer Res. 2009;15:2472–2478.
  • Ricciardi GR, Adamo B, Ieni A, et al. Androgen receptor (AR), E-cadherin, and Ki-67 as emerging targets and novel prognostic markers in triple-negative breast cancer (TNBC) patients. PLoS One. 2015;10:e0128368.
  • Zhang L, Fang C, Xu X, et al. Androgen receptor, EGFR, and BRCA1 as biomarkers in triple-negative breast cancer: a meta-analysis. Biomed Res Int. 2015;2015:357485.
  • Harbhajanka A, Chahar S, Miskimen K, et al. Clinicopathological, immunohistochemical and molecular correlation of neural crest transcription factor SOX10 expression in triple negative breast carcinoma. Hum Pathol. 2018;80:163–169.
  • Shi Y, Yang F, Huang D, et al. Androgen blockade based clinical trials landscape in triple negative breast cancer. Biochim Biophys Acta. 2018;1870:283–290.
  • Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16:61–70.
  • Dias K, Dvorkin-Gheva A, Hallett RM, et al. Claudin-low breast cancer; clinical & pathological characteristics. PLoS One. 2017;12:e0168669.
  • Creighton CJ, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA. 2009;106:13820–13825.
  • Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the Claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68.
  • Yen TY, Bowen S, Yen R, et al. Glycoproteins in Claudin-low breast cancer cell lines have a unique expression profile. J Proteome Res. 2017;16:1391–1400.
  • Fentiman IS. The endocrinology of male breast cancer. Endocr Relat Cancer. 2018;25:R365–R373.
  • Giordano SH, Cohen DS, Buzdar AU, et al. Breast carcinoma in men: a population-based study. Cancer. 2004;101:51–57.
  • Giordano SH, Buzdar AU, Hortobagyi GN. Breast cancer in men. Ann Intern Med. 2002;137:678–687.
  • Sousa B, Moser E, Cardoso F. An update on male breast cancer and future directions for research and treatment. Eur J Pharmacol. 2013;717:71–83.
  • Volm MD. Male breast cancer. Curr Treat Options Oncol. 2003;4:159–164.
  • Syrine A, Lhem B, Meher N, et al. Prognostic implications of the intrinsic molecular subtypes in male breast cancer. J BUON. 2017;22:377–382.
  • Abreu MH, Afonso N, Abreu PH, et al. Male breast cancer: looking for better prognostic subgroups. Breast. 2016;26:18–24.
  • Kraus TS, Cohen C, Siddiqui MT. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma. Diagn Pathol. 2010;5:63.
  • Kidwai N, Gong Y, Sun X, et al. Expression of androgen receptor and prostate-specific antigen in male breast carcinoma. Breast Cancer Res. 2004;6:R18–R23.
  • Treatment of Male Breast Cancer [Internet]. Ardmore (PA): Breastcancer.org; [cited 2018 Jun 23]. Available from: https://www.breastcancer.org/symptoms/types/male_bc/treatment
  • Agrawal A, Ayantunde AA, Rampaul R, et al. Male breast cancer: a review of clinical management. Breast Cancer Res Treat. 2007;103:11–21.
  • Severson TM, Zwart W. A review of estrogen receptor/androgen receptor genomics in male breast cancer. Endocr Relat Cancer. 2017;24:R27–R34.
  • Visram H, Kanji F, Dent SF. Endocrine therapy for male breast cancer: rates of toxicity and adherence. Curr Oncol. 2010;17:17–21.
  • Donegan WL, Redlich PN. Breast cancer in men. Surg Clin North Am. 1996;76:343–363.
  • Wang-Rodriguez J, Cross K, Gallagher S, et al. Male breast carcinoma: correlation of ER, PR, Ki-67, Her2-Neu, and p53 with treatment and survival, a study of 65 cases. Mod Pathol. 2002;15:853–861.
  • Pich A, Margaria E, Chiusa L, et al. Androgen receptor expression in male breast carcinoma: lack of clinicopathological association. Br J Cancer. 1999;79:959–964.
  • Goss PE, Reid C, Pintilie M, et al. Male breast carcinoma: a review of 229 patients who presented to the Princess Margaret Hospital during 40 years: 1955–1996. Cancer. 1999;85:629–639.
  • Shaaban AM, Ball GR, Brannan RA, et al. A comparative biomarker study of 514 matched cases of male and female breast cancer reveals gender-specific biological differences. Breast Cancer Res Treat. 2012;133:949–958.
  • Wenhui Z, Shuo L, Dabei T, et al. Androgen receptor expression in male breast cancer predicts inferior outcome and poor response to tamoxifen treatment. Eur J Endocrinol. 2014;171:527–533.
  • Bronte G, Bravaccini S, Ravaioli S, et al. Androgen receptor expression in breast cancer: what differences between primary tumor and metastases? Transl Oncol. 2018;11:950–956.
  • Meng X, Song S, Jiang ZF, et al. Receptor conversion in metastatic breast cancer: a prognosticator of survival. Oncotarget. 2016;7:71887–71903.
  • Fujii T, Reuben JM, Huo L, et al. Androgen receptor expression on circulating tumor cells in metastatic breast cancer. PLoS One. 2017;12:e0185231.
  • Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25:276–308.
  • McEwan IJ. Molecular mechanisms of androgen receptor-mediated gene regulation: structure-function analysis of the AF-1 domain. Endocr Relat Cancer. 2004;11:281–293.
  • Martin SKFM, Kyprianou N. Androgen receptor signaling interactions control epithelial-mesenchymal transition (EMT) in prostate cancer progression. In: Wang Z, editor. Androgen-responsive genes in prostate cancer: regulation, function and clinical applications. New York (NY): Springer; 2013. p. 227–255.
  • Klinge C, Rao C. Glob. libr. women's med. (ISSN: 1756-2228). 2008. DOI: 10.3843/GLOWM.10281
  • Leung JK, Sadar MD. Non-genomic actions of the androgen receptor in prostate cancer. Front Endocrinol (Lausanne). 2017;8:2.
  • Antonarakis ES. AR signaling in human malignancies: prostate cancer and beyond. Cancers (Basel). 2018;10:22.
  • Heinlein CA, Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol. 2002;16:2181–2187.
  • Falkenstein E, Tillmann HC, Christ M, et al. Multiple actions of steroid hormones–a focus on rapid, nongenomic effects. Pharmacol Rev. 2000;52:513–556.
  • Unni E, Sun S, Nan B, et al. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res. 2004;64:7156–7168.
  • Baron S, Manin M, Beaudoin C, et al. Androgen receptor mediates non-genomic activation of phosphatidylinositol 3-OH kinase in androgen-sensitive epithelial cells. J Biol Chem. 2004;279:14579–14586.
  • Garay JP, Karakas B, Abukhdeir AM, et al. The growth response to androgen receptor signaling in ERalpha-negative human breast cells is dependent on p21 and mediated by MAPK activation. Breast Cancer Res. 2012;14:R27.
  • Zhu X, Li H, Liu JP, et al. Androgen stimulates mitogen-activated protein kinase in human breast cancer cells. Mol Cell Endocrinol. 1999;152:199–206.
  • Naderi A, Liu J. Inhibition of androgen receptor and Cdc25A phosphatase as a combination targeted therapy in molecular apocrine breast cancer. Cancer Lett. 2010;298:74–87.
  • Naderi A, Meyer M, Dowhan DH. Cross-regulation between FOXA1 and ErbB2 signaling in estrogen receptor-negative breast cancer. Neoplasia. 2012;14:283–296.
  • Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35:605–623.
  • Lu S, Liu M, Epner DE, et al. Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol Endocrinol. 1999;13:376–384.
  • Sahu B, Laakso M, Ovaska K, et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J. 2011;30:3962–3976.
  • Puto LA, Pestonjamasp K, King CC, et al. p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. J Biol Chem. 2003;278:9388–9393.
  • Allouche A, Nolens G, Tancredi A, et al. The combined immunodetection of AP-2alpha and YY1 transcription factors is associated with ERBB2 gene overexpression in primary breast tumors. Breast Cancer Res. 2008;10:R9.
  • Begon DY, Delacroix L, Vernimmen D, et al. Yin Yang 1 cooperates with activator protein 2 to stimulate ERBB2 gene expression in mammary cancer cells. J Biol Chem. 2005;280:24428–24434.
  • Guiu S, Mollevi C, Charon-Barra C, et al. Prognostic value of androgen receptor and FOXA1 co-expression in non-metastatic triple negative breast cancer and correlation with other biomarkers. Br J Cancer. 2018;119:76-79.
  • Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9:463–475.
  • Ni M, Chen Y, Fei T, et al. Amplitude modulation of androgen signaling by c-MYC. Genes Dev. 2013;27:734–748.
  • Pakula H, Xiang D, Li Z. A tale of two signals: AR and WNT in development and tumorigenesis of prostate and mammary gland. Cancers (Basel). 2017;9:14.
  • Feng J, Li L, Zhang N, et al. Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms. Oncogene. 2017;36:2775–2790.
  • Need EF, Selth LA, Harris TJ, et al. Research resource: interplay between the genomic and transcriptional networks of androgen receptor and estrogen receptor alpha in luminal breast cancer cells. Mol Endocrinol. 2012;26:1941–1952.
  • Bieche I, Parfait B, Tozlu S, et al. Quantitation of androgen receptor gene expression in sporadic breast tumors by real-time RT-PCR: evidence that MYC is an AR-regulated gene. Carcinogenesis. 2001;22:1521–1526.
  • Mohammed H, D’Santos C, Serandour AA, et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep. 2013;3:342–349.
  • Gaughan L, Stockley J, Coffey K, et al. KDM4B is a master regulator of the estrogen receptor signalling cascade. Nucleic Acids Res. 2013;41:6892–6904.
  • Wade MA, Jones D, Wilson L, et al. The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer. Nucleic Acids Res. 2015;43:196–207.
  • Rizza P, Barone I, Zito D, et al. Estrogen receptor beta as a novel target of androgen receptor action in breast cancer cell lines. Breast Cancer Res. 2014;16:R21.
  • Speirs V, Skliris GP, Burdall SE, et al. Distinct expression patterns of ER alpha and ER beta in normal human mammary gland. J Clin Pathol. 2002;55:371–374.
  • Fox EM, Davis RJ, Shupnik MA. ERbeta in breast cancer-onlooker, passive player, or active protector? Steroids. 2008;73:1039–1051.
  • Panet-Raymond V, Gottlieb B, Beitel LK, et al. Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol Cell Endocrinol. 2000;167:139–150.
  • Migliaccio A, Di Domenico M, Castoria G, et al. Steroid receptor regulation of epidermal growth factor signaling through Src in breast and prostate cancer cells: steroid antagonist action. Cancer Res. 2005;65:10585–10593.
  • Zheng L, Annab LA, Afshari CA, et al. BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc Natl Acad Sci USA. 2001;98:9587–9592.
  • Park JJ, Irvine RA, Buchanan G, et al. Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor. Cancer Res. 2000;60:5946–5949.
  • Rebbeck TR, Kantoff PW, Krithivas K, et al. Modification of BRCA1-associated breast cancer risk by the polymorphic androgen-receptor CAG repeat. Am J Hum Genet. 1999;64:1371–1377.
  • Shin S, Verma IM. BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc Natl Acad Sci USA. 2003;100:7201–7206.
  • Zhang W, Luo J, Yang F, et al. BRCA1 inhibits AR-mediated proliferation of breast cancer cells through the activation of SIRT1. Sci Rep. 2016;6:22034.
  • Crumbaker M, Khoja L, Joshua AM. AR signaling and the PI3K pathway in prostate cancer. Cancers (Basel). 2017;9:34.
  • Ishida N, Baba M, Hatanaka Y, et al. PIK3CA mutation, reduced AKT serine 473 phosphorylation, and increased ERalpha serine 167 phosphorylation are positive prognostic indicators in postmenopausal estrogen receptor-positive early breast cancer. Oncotarget. 2018;9:17711–17724.
  • Wang Y, Romigh T, He X, et al. Differential regulation of PTEN expression by androgen receptor in prostate and breast cancers. Oncogene. 2011;30:4327–4338.
  • Diamantopoulos MA, Tsiakanikas P, Scorilas A. Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. Ann Transl Med. 2018;6:241.
  • Koleckova M, Janikova M, Kolar Z. MicroRNAs in triple-negative breast cancer. Neoplasma. 2018;65:1–13.
  • Liu C, Wu HT, Zhu N, et al. Steroid receptor RNA activator: biologic function and role in disease. Clin Chim Acta. 2016;459:137–146.
  • Niknafs YS, Han S, Ma T, et al. The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression. Nat Commun. 2016;7:12791.
  • Liu YR, Jiang YZ, Xu XE, et al. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res. 2016;18:33.
  • Ahram M, Mustafa E, Zaza R, et al. Differential expression and androgen regulation of microRNAs and metalloprotease 13 in breast cancer cells. Cell Biol Int. 2017;41:1345–1355.
  • Dumortier M, Ladam F, Damour I, et al. ETV4 transcription factor and MMP13 metalloprotease are interplaying actors of breast tumorigenesis. Breast Cancer Res. 2018;20:73.
  • Yang F, Shen Y, Zhang W, et al. An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer. Cell Death Differ. 2018;25:2209–2220.
  • Zhang Y, Pitchiaya S, Cieślik M, et al. Analysis of the androgen receptor-regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat Genet. 2018;50:814–824.
  • Goldenberg IS. Testosterone propionate therapy in breast cancer. JAMA. 1964;188:1069–1072.
  • Tormey DC, Lippman ME, Edwards BK, et al. Evaluation of tamoxifen doses with and without fluoxymesterone in advanced breast cancer. Ann Intern Med. 1983;98:139–144.
  • Kennedy BJ. Fluoxymesterone therapy in advanced breast cancer. N Engl J Med. 1958;259:673–675.
  • Hormone Therapy of Breast Cancer [Internet]. Atlanta (GA): American Cancer Society; [cited 2017 Aug 1]. Available from: https://www.cancer.org/cancer/breast-cancer/treatment/hormone-therapy-for-breast-cancer.html#references
  • Thakkar A, Wang B, Picon-Ruiz M, et al. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77–90.
  • Poulin R, Baker D, Poirier D, et al. Androgen and glucocorticoid receptor-mediated inhibition of cell proliferation by medroxyprogesterone acetate in ZR-75-1 human breast cancer cells. Breast Cancer Res Treat. 1989;13:161–172.
  • Birrell SN, Hall RE, Tilley WD. Role of the androgen receptor in human breast cancer. J Mammary Gland Biol Neoplasia. 1998;3:95–103.
  • Narayanan R, Ahn S, Cheney MD, et al. Selective androgen receptor modulators (SARMs) negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling. PLoS One. 2014;9:e103202.
  • Ahram M, Mustafa E, Abu Hammad S, et al. The cellular and molecular effects of the androgen receptor agonist, Cl-4AS-1, on breast cancer cells. Endocr Res. 2018;43:203–214.
  • Bremer AA, Miller WL. Chapter 13: regulation of steroidogenesis. In: Ulloa-Aguirre A, Conn PM, editors. Cellular endocrinology in health and disease. Academic Press, Elsevier Inc; 2014.
  • Speers CW, Chandler B, Zhao S, et al. Radiosensitization of androgen receptor (AR)-positive triple-negative breast cancer (TNBC) cells using seviteronel (SEVI), a selective CYP17 lyase and AR inhibitor. J Clin Oncol. 2017;35:e12102–e12102.
  • Kwilas AR, Ardiani A, Gameiro SR, et al. Androgen deprivation therapy sensitizes triple negative breast cancer cells to immune-mediated lysis through androgen receptor independent modulation of osteoprotegerin. Oncotarget. 2016;7:23498–23511.
  • Gordon MA, D'Amato NC, Gu H, et al. Synergy between androgen receptor antagonism and inhibition of mTOR and HER2 in breast cancer. Mol Cancer Ther. 2017;16:1389–1400.
  • Liu CY, Lau KY, Hsu CC, et al. Combination of palbociclib with enzalutamide shows in vitro activity in RB proficient and androgen receptor positive triple negative breast cancer cells. PLoS One. 2017;12:e0189007.
  • Barton VN, Christenson JL, Gordon MA, et al. Androgen receptor supports an anchorage-independent, cancer stem cell-like population in triple-negative breast cancer. Cancer Res. 2017;77:3455–3466.
  • Goldenberg IS, Sedransk N, Volk H, et al. Combined androgen and antimetabolite therapy of advanced female breast cancer. A report of the cooperative breast cancer group. Cancer. 1975;36:308–310.
  • Bardia A, Gucalp A, DaCosta N, et al. Phase 1 study of seviteronel, a selective CYP17 lyase and androgen receptor inhibitor, in women with estrogen receptor-positive or triple-negative breast cancer. Breast Cancer Res Treat. 2018;171:111–120.
  • Pembrolizumab and Enobosarm in Treating Patients With Androgen Receptor Positive Metastatic Triple Negative Breast Cancer [Internet]. Bethesda (MD): NIH U.S. National Library of Medicine; [cited 2018 Apr 6]. Available from: https://clinicaltrials.gov/ct2/show/NCT02971761
  • Rampurwala M, Wisinski KB, O'Regan R. Role of the androgen receptor in triple-negative breast cancer. Clin Adv Hematol Oncol. 2016;14:186–193.
  • Subik K, Lee JF, Baxter L, et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl). 2010;4:35–41.
  • Dai XF, Cheng HY, Bai ZH, et al. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer. 2017;8:3131–3141.
  • Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13:215.
  • Berchem GJ, Bosseler M, Sugars LY, et al. Androgens induce resistance to bcl-2-mediated apoptosis in LNCaP prostate cancer cells. Cancer Res. 1995;55:735–738.
  • Lapointe J, Labrie C. Identification and cloning of a novel androgen-responsive gene, uridine diphosphoglucose dehydrogenase, in human breast cancer cells. Endocrinology. 1999;140:4486–4493.
  • Bozovic-Spasojevic I, Zardavas D, Brohee S, et al. The prognostic role of androgen receptor in patients with early-stage breast cancer: a meta-analysis of clinical and gene expression data. Clin Cancer Res. 2017;23:2702–2712.
  • Kim Y, Jae E, Yoon M. Influence of androgen receptor expression on the survival outcomes in breast cancer: a meta-analysis. J Breast Cancer. 2015;18:134–142.
  • Mao Q, Qiu M, Dong G, et al. CAG repeat polymorphisms in the androgen receptor and breast cancer risk in women: a meta-analysis of 17 studies. Onco Targets Ther. 2015;8:2111–2120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.