552
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Non-antibiotic therapy for Clostridioides difficile infection: a review

ORCID Icon &
Pages 493-509 | Received 09 Apr 2019, Accepted 23 Jul 2019, Published online: 14 Aug 2019

References

  • Xu Q, Chen Y, Gu S. Hospital-acquired Clostridium difficile infection in Mainland China: a seven-year (2009–2016) retrospective study in a large university hospital. Sci Rep. 2017;7:9645.
  • Jenior ML, Leslie JL, Young VB, et al. Clostridium difficile colonizes alternative nutrient niches during infection across distinct murine gut microbiomes. Msystems. 2017;2. DOI: 10.1128/mSystems.00063-17.
  • Pakpour S, Bhanvadia A, Zhu R, et al. Identifying predictive features of Clostridium difficile infection recurrence before, during, and after primary antibiotic treatment. Microbiome. 2017;5:148.
  • Smits WK, Lyras D, Lacy DB, et al. Clostridium difficile infection. Nat Rev Dis Primers. 2016;2:16020.
  • Barron J, Lattes A, Marcus EL. Rash induced by enteral vancomycin therapy in an older patient in a long-term care ventilator unit: case report and review of the literature. Allergy Asthma Clin Immunol. 2018;14:73.
  • Aptekorz M, Szczegielniak A, Wiechuła B, et al. Occurrence of Clostridium difficile ribotype 027 in hospitals of Silesia, Poland. Anaerobe. 2017;45:106–113.
  • Shen NT, Maw A, Tmanova LL, et al. Timely use of probiotics in hospitalized adults prevents Clostridium difficile infection: a systematic review with meta-regression analysis. Gastroenterology. 2017;152:1889–1900 e9.
  • Carlucci C, Petrof EO, Allen-Vercoe E. Fecal microbiota-based therapeutics for recurrent Clostridium difficile infection, ulcerative colitis and obesity. EBioMedicine. 2016;13:37–45.
  • Guo S, Yan W, McDonough SP, et al. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model. Vaccine. 2015;33:1586–1595.
  • Hryckowian AJ, Van Treuren W, Smits SA, et al. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat Microbiol. 2018;3:662–669.
  • Kortright KE, Chan BK, Koff JL, et al. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell host Microbe. 2019;25:219–232.
  • Roshan N, Riley TV, Knight DR, et al. Effect of natural products on the production and activity of Clostridium difficile toxins in vitro. Sci Rep. 2018;8:15735.
  • Yang J, Wang J, Yang K, et al. Antibacterial activity of selenium-enriched lactic acid bacteria against common food-borne pathogens in vitro. J Dairy Sci. 2018;101:1930–1942.
  • Tam J, Hamza T, Ma B, et al. Host-targeted niclosamide inhibits C. difficile virulence and prevents disease in mice without disrupting the gut microbiota. Nat Commun. 2018;9:5233.
  • Lessa FC, Mu Y, Bamberg WM, et al. Burden of Clostridium difficile infection in the United States. New Eng J Med. 2015;372:825–834.
  • Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis Off Publ Infect Dis Soc Am. 2012;55(Suppl 2):S88.
  • Liu XS, Li WG, Zhang WZ, et al. Molecular characterization of Clostridium difficile isolates in China from 2010 to 2015. Front Microbiol. 2018;9:845.
  • Hung YP, Tsai PJ, Lee YT, et al. Nationwide surveillance of ribotypes and antimicrobial susceptibilities of toxigenic Clostridium difficile isolates with an emphasis on reduced doxycycline and tigecycline susceptibilities among ribotype 078 lineage isolates in Taiwan. IDR. 2018;11:1197–1203.
  • Krutova M, Zouharova M, Matejkova J, et al. The emergence of Clostridium difficile PCR ribotype 078 in piglets in the Czech Republic clusters with Clostridium difficile PCR ribotype 078 isolates from Germany, Japan and Taiwan. Int J Med Microbiol. 2018;308:770–775.
  • Isturiz RE, Carbon C. Antibiotic use in developing countries. Infect Control Hosp Epidemiol. 2000;21:394–397.
  • Alpuche Aranda CM, Romano Mazzotti L. Teaching appropriate antibiotic use in developing countries. In: Sosa AJ, Byarugaba DK, Amabile Cuevas CF, et al., editors. Antimicrobial resistance in developing countries. New York (NY): Springer; 2010.
  • Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005;36:697–705.
  • Candel-Pérez C, Ros-Berruezo G, Martínez-Graciá C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiol. 2019;77:118–129.
  • Tkalec V, Janezic S, Skok B, et al. High Clostridium difficile contamination rates of domestic and imported potatoes compared to some other vegetables in Slovenia. Food Microbiol. 2019;78:194–200.
  • Hafiz S, Oakley CL. Clostridium difficile: isolation and characteristics. J Med Microbiol. 1976;9:129–136.
  • Rousseau C, Levenez F, Fouqueray C, et al. Clostridium difficile colonization in early infancy is accompanied by changes in intestinal microbiota composition. J Clin Microbiol. 2011;49:858–865.
  • Jangi S, Lamont JT. Asymptomatic colonization by Clostridium difficile in infants: implications for disease in later life. J Pediatr Gastroenterol Nutr. 2010;51:2–7.
  • McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66:e1–e48.
  • Khanna S, Pardi DS, Aronson SL, et al. The epidemiology of community-acquired Clostridium difficile infection: a population-based study. Am J Gastroenterol. 2012;107:89–95.
  • Elliott B, Androga GO, Knight DR, et al. Clostridium difficile infection: evolution, phylogeny and molecular epidemiology. Infect Genet Evol. 2017;49:1–11.
  • Sandhu BK, McBride SM. Clostridioides difficile. Trends Microbiol. 2018;26:1049–1050.
  • Voth DE, Ballard JD. Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev. 2005;18:247–263.
  • Larson HE, Price AB, Honour P, et al. Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet. 1978;1:1063–1066.
  • George RH, Symonds JM, Dimock F, et al. Identification of Clostridium difficile as a cause of pseudomembranous colitis. Br Med J. 1978;1:695–695.
  • Bartlett JG, Moon N, Chang TW, et al. Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology. 1978;75:778–782.
  • McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol. 2006;101:812–822.
  • Bartlett JG. Clinical practice. Antibiotic-associated diarrhea. N Engl J Med. 2002;346:334–339.
  • Zhang Y, Yang Z, Gao S, et al. The role of purified Clostridium difficile glucosylating toxins in disease pathogenesis utilizing a murine cecum injection model. Anaerobe. 2017;48:249.
  • Kuehne SA, Cartman ST, Heap JT, et al. The role of toxin A and toxin B in Clostridium difficile infection. Gut Microbes. 2010;467:711–713.
  • Alcalá Hernández L, Reigadas Ramírez E, Bouza Santiago E. Clostridium difficile infection. Med Clín (Barc). 2017;148:456–463.
  • Gil F, Lagos-Moraga S, Calderon-Romero P, et al. Updates on Clostridium difficile spore biology. Anaerobe. 2017;45:3–9.
  • Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016;14:609–620.
  • Battaglioli EJ, Hale VL, Chen J, et al. Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci Transl Med. 2018;10:eaam7019.
  • Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol. 2018;3:1255–1265.
  • Nagy E. What do we know about the diagnostics, treatment and epidemiology of Clostridioides (Clostridium) difficile infection in Europe? J Infect Chemother. 2018;24:164–170.
  • Beinortas T, Burr NE, Wilcox MH, et al. Comparative efficacy of treatments for Clostridium difficile infection: a systematic review and network meta-analysis. Lancet Infect Dis. 2018;18:1035.
  • Vehreschild M, Taori S, Goldenberg SD, et al. Fidaxomicin for the treatment of Clostridium difficile infection (CDI) in at-risk patients with inflammatory bowel disease, fulminant CDI, renal impairment or hepatic impairment: a retrospective study of routine clinical use (ANEMONE). Eur J Clin Microbiol Infect Dis. 2018;37:2097–2106.
  • Feher C, Munez Rubio E, Merino Amador P, et al. The efficacy of fidaxomicin in the treatment of Clostridium difficile infection in a real-world clinical setting: a Spanish multi-centre retrospective cohort. Eur J Clin Microbiol Infect Dis. 2017;36:295–303.
  • Maaß S, Otto A, Albrecht D, et al. Proteomic signatures of Clostridium difficile stressed with metronidazole, vancomycin, or fidaxomicin. Cells. 2018;7:213.
  • Perkins HR. Specificity of combination between mucopeptide precursors and vancomycin or ristocetin. Biochem J. 1969;111:195–205.
  • Artsimovitch I, Seddon J, Sears P. Fidaxomicin is an inhibitor of the initiation of bacterial RNA synthesis. Clin Infect Dis. 2012;55:S127–S131.
  • Guh AY, Kutty PK. Clostridioides difficile infection. Ann Intern Med. 2018;169:ITC49–ITC64.
  • Balsells E, Shi T, Leese C, et al. Global burden of Clostridium difficile infections: a systematic review and meta-analysis. J Glob Health. 2019;9:010407.
  • Ford DC, Schroeder MC, Ince D, et al. Cost-effectiveness analysis of initial treatment strategies for mild-to-moderate Clostridium difficile infection in hospitalized patients. Am J Health Syst Pharm. 2018;75:1110–1121.
  • Larcombe S, Hutton ML, Lyras D. Involvement of bacteria other than Clostridium difficile in antibiotic-associated diarrhoea. Trends Microbiol. 2016;24:463–476.
  • Ngernsombat C, Sreesai S, Harnvoravongchai P, et al. CD2068 potentially mediates multidrug efflux in Clostridium difficile. Sci Rep. 2017;7:9982.
  • Carman RJ, Daskalovitz HM, Lyerly MW, et al. Multidrug resistant Clostridium difficile ribotype 027 in southwestern Virginia, 2007 to 2013. Anaerobe. 2018;52:16–21.
  • Peng Z, Liu S, Meng X, et al. Genome characterization of a novel binary toxin-positive strain of Clostridium difficile and comparison with the epidemic 027 and 078 strains. Gut Pathog. 2017;9:42.
  • Kuriyama A, Jackson JL, Doi A, et al. Metronidazole-induced central nervous system toxicity: a systematic review. Clin Neuropharmacol. 2011;34:241.
  • Korpela K, Salonen A, Virta LJ, et al. Lactobacillus rhamnosus GG intake modifies preschool children's intestinal microbiota, alleviates penicillin-associated changes, and reduces antibiotic use. PLoS One. 2016;11:e0154012.
  • Szajewska H, Canani RB, Guarino A, et al. Probiotics for the prevention of antibiotic-associated diarrhea in children. J Pediatr Gastroenterol Nutr. 2016;62:495–506.
  • Spinler JK, Ross CL, Savidge TC. Probiotics as adjunctive therapy for preventing Clostridium difficile infection – what are we waiting for? Anaerobe. 2016;41:51–57.
  • Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nat Microbiol. 2019;4:35–45.
  • Kang JD, Myers CJ, Harris SC, et al. Bile acid 7α-dehydroxylating gut bacteria secrete antibiotics that inhibit Clostridium difficile: role of secondary bile acids. Cell Chem Biol. 2019;26(1):27–34. e4.
  • Passmore IJ, Letertre MPM, Preston MD, et al. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog. 2018;14:e1007191.
  • Nagai M, Obata Y, Takahashi D, et al. Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabolite axis. Int Immunopharmacol. 2016;37:79–86.
  • Rizzetto L, Fava F, Tuohy KM, et al. Connecting the immune system, systemic chronic inflammation and the gut microbiome: the role of sex. J Autoimmun. 2018;92:12–34.
  • Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science. 2018;362:eaat9076.
  • Heianza Y, Sun D, Li X, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial. Gut. 2019;68:263–270.
  • Zarandi ER, Mansouri S, Nakhaee N, et al. Toxin production of Clostridium difficile in sub-MIC of vancomycin and clindamycin alone and in combination with ceftazidime. Microb Pathog. 2017;107:249–253.
  • Aldape MJ, Packham AE, Nute DW, et al. Effects of ciprofloxacin on the expression and production of exotoxins by Clostridium difficile. J Med Microbiol. 2013;62:741–747.
  • Aldape MJ, Heeney DD, Bryant AE, et al. Tigecycline suppresses toxin A and B production and sporulation in Clostridium difficile. J Antimicrob Chemother. 2015;70:153–159.
  • Yang J, Yang H. Effect of Bifidobacterium breve in combination with different antibiotics on Clostridium difficile. Front Microbiol. 2018;9:2953.
  • Hota SS, Poutanen SM. Fecal microbiota transplantation for recurrent Clostridium difficile infection. CMAJ. 2018;190:E746.
  • Lai CY, Sung J, Cheng F, et al. Systematic review with meta-analysis: review of donor features, procedures and outcomes in 168 clinical studies of faecal microbiota transplantation. Aliment Pharmacol Ther. 2019;49:354.
  • York A. FMT in the clinic. Nat Rev Microbiol. 2019;17:127.
  • Chen B, Avinashi V, Dobson S. Fecal microbiota transplantation for recurrent Clostridium difficile infection in children. J Infect. 2017;74:S120–S127.
  • Li X, Gao X, Hu H, et al. Clinical efficacy and microbiome changes following fecal microbiota transplantation in children with recurrent Clostridium difficile infection. Front Microbiol. 2018;9:2622.
  • Hota SS, Poutanen SM. Is a single fecal microbiota transplant a promising treatment for recurrent Clostridium difficile infection? Open Forum Infect Dis. 2018;5:ofy045.
  • Hota SS, Sales V, Tomlinson G, et al. Oral vancomycin followed by fecal transplantation versus tapering oral vancomycin treatment for recurrent Clostridium difficile infection: an open-label, randomized controlled trial. Clin Infect Dis. 2017;64:265–271.
  • Krensky C, Poutanen SM, Hota SS. Diarrhea after fecal microbiota transplantation for recurrent Clostridioides difficile infection. CMAJ. 2019;191:E559–E561.
  • Allen-Vercoe E, Reid G, Viner N, et al. A Canadian Working Group report on fecal microbial therapy: microbial ecosystems therapeutics. Canadian J Gastroenterol. 2012;26:457–462.
  • Lapointe-Shaw L, Tran KL, Coyte PC, et al. Cost-effectiveness analysis of six strategies to treat recurrent Clostridium difficile infection. PLoS One. 2016;11:e0149521.
  • Staley C, Kaiser T, Vaughn BP, et al. Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation. Microbiome. 2018;6:166.
  • Weingarden AR, Chen C, Bobr A, et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. AJP: Gastrointest Liver Physiol. 2013;306:G310–G319.
  • Savidge T, Sorg JA. Role of bile in infectious disease: the gall of 7α-dehydroxylating gut bacteria. Cell Chem Biol. 2019;26:1–3.
  • McDonald JAK, Mullish BH, Pechlivanis A, et al. Inhibiting growth of Clostridioides difficile by restoring valerate, produced by the intestinal microbiota. Gastroenterology. 2018;155:1495–1507 e15.
  • Kellingray L, Gall GL, Defernez M, et al. Microbial taxonomic and metabolic alterations during faecal microbiota transplantation to treat Clostridium difficile infection. J Infect. 2018;77:107–118.
  • Yoon S, Yu J, McDowell A, et al. Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile. J Microbiol. 2017;55:892–899.
  • Zuo T, Wong SH, Cheung CP, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9:3663.
  • De Vrese M, Schrezenmeir J. Probiotics, Prebiotics, and Synbiotics. In: Stahl U, Donalies UE, Nevoigt E, editors. Food Biotechnology. Advances in Biochemical Engineering/Biotechnology. Vol. 111; Berlin, Heidelberg: Springer; 2008. p. 1–66.
  • Prasanna PHP, Grandison AS, Charalampopoulos D. Bifidobacteria in milk products: an overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res Int. 2014;55:247–262.
  • Pringsulaka O, Rueangyotchanthana K, Suwannasai N, et al. In vitro screening of lactic acid bacteria for multi-strain probiotics. Livestock Sci. 2015;174:66–73.
  • Ouattara HD, Ouattara HG, Droux M, et al. Lactic acid bacteria involved in cocoa beans fermentation from Ivory Coast: species diversity and citrate lyase production. Int J Food Microbiol. 2017;256:11–19.
  • de Melo Pereira GV, Coelho BO, Magalhaes Junior AI, et al. How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv. 2018;36:2060–2076.
  • Meile L, Le BG, Thierry A. Safety assessment of dairy microorganisms: Propionibacterium and Bifidobacterium. Int J Food Microbiol. 2008;126:316–320.
  • Mattia A, Merker R. Regulation of probiotic substances as ingredients in foods: premarket approval or “generally recognized as safe” notification. Clin Infect Dis. 2008;46(Suppl 2):141–154.
  • Robles AV, Guarner F. Linking the gut microbiota to human health. Br J Nutr. 2013;109:S21–S26.
  • Ambalam P, Kondepudi KK, Balusupati P, et al. Prebiotic preferences of human lactobacilli strains in co-culture with Bifidobacteria and antimicrobial activity against Clostridium difficile. J Appl Microbiol. 2015;119:1672–1682.
  • Allen SJ, Wareham K, Wang D, et al. Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2013;382:1249–1257.
  • Goldenberg JZ, Mertz D, Johnston BC. Probiotics to prevent Clostridium difficile infection in patients receiving antibiotics. JAMA. 2018;320:499.
  • Suwal S, Wu Q, Liu W, et al. The probiotic effectiveness in preventing experimental colitis is correlated with host gut microbiota. Front Microbiol. 2018;9:2675.
  • Wei Y, Yang F, Wu Q, et al. Protective effects of bifidobacterial strains against toxigenic Clostridium difficile. Front Microbiol. 2018;9:888.
  • Dudzicz S, Kujawa-Szewieczek A, Kwiecien K, et al. Lactobacillus plantarum 299v reduces the incidence of Clostridium difficile infection in nephrology and transplantation ward-results of one year extended study. Nutrients. 2018;10:1574.
  • Xu Q, Gu S, Chen Y, et al. Protective effect of Pediococcus pentosaceus LI05 against Clostridium difficile infection in a mouse model. Front Microbiol. 2018;9:2396.
  • Korpela K, Salonen A, Vepsalainen O, et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome. 2018;6:182.
  • Golic N, Veljovic K, Popovic N, et al. In vitro and in vivo antagonistic activity of new probiotic culture against Clostridium difficile and Clostridium perfringens. BMC Microbiol. 2017;17:108.
  • Mansour NM, Elkhatib WF, Aboshanab KM, et al. Inhibition of Clostridium difficile in mice using a mixture of potential probiotic strains Enterococcus faecalis NM815, E. faecalis NM915, and E. faecium NM1015: novel candidates to control C. difficile infection (CDI). Probiotics Antimicrob Proteins. 2018;10:511–522.
  • Fredua-Agyeman M, Stapleton P, Basit AW, et al. In vitro inhibition of Clostridium difficile by commercial probiotics: a microcalorimetric study. Int J Pharm. 2017;517:96–103.
  • Barker A, Duster M, Valentine S, et al. Probiotics for Clostridium difficile infection in adults (PICO): study protocol for a double-blind, randomized controlled trial. Contemp Clin Trials. 2015;44:26–32.
  • Evans M, Salewski RP, Christman MC, et al. Effectiveness of Lactobacillus helveticus and Lactobacillus rhamnosus for the management of antibiotic-associated diarrhoea in healthy adults: a randomised, double-blind, placebo-controlled trial. Br J Nutr. 2016;116:94–103.
  • Douillard FP, Ribbera A, Kant R, et al. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. Plos Genet. 2013;9:e1003683.
  • Joanne S. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5:1417–1435.
  • Ratsep M, Koljalg S, Sepp E, et al. A combination of the probiotic and prebiotic product can prevent the germination of Clostridium difficile spores and infection. Anaerobe. 2017;47:94–103.
  • Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, et al. Mechanisms of action of probiotics. Adv Nutr. 2019;10:S49–S66.
  • Bazanella M, Maier TV, Clavel T, et al. Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am J Clin Nutr. 2017;106:1274–1286.
  • Bermudez-Brito M, Plaza DJ, Munoz-Quezada S, et al. Probiotic mechanisms of action. Ann Nutr Metab. 2012;61:160–174.
  • Mokoena MP. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules. 2017;22:1255.
  • Ferrario C, Taverniti V, Milani C, et al. Modulation of fecal clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr. 2014;144:1787–1796.
  • Buss C, Valle-Tovo C, Miozzo S, et al. Probiotics and synbiotics may improve liver aminotransferases levels in non-alcoholic fatty liver disease patients. Ann Hepatol. 2014;13:482–488.
  • Pavlovic N, Stankov K, Mikov M. Probiotics-interactions with bile acids and impact on cholesterol metabolism. Appl Biochem Biotechnol. 2012;168:1880–1895.
  • Servin AL, Coconnier MH. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol. 2003;17:741–754.
  • Christensen HR, Frøkiaer H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol. 2002;168:171–178.
  • Kwon H-K, Lee C-G, So J-S, et al. Generation of regulatory dendritic cells and CD4(+)Foxp3(+) T cells by probiotics administration suppresses immune disorders. Proc Nat Acad Sci USA. 2010;107:2159–2164.
  • Saeidi N, Wong CK, Lo TM, et al. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol. 2014;7:521.
  • Hwang IY, Koh E, Wong A, et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun. 2017;8:15028.
  • Andersen KK, Strokappe NM, Hultberg A, et al. Neutralization of Clostridium difficile toxin B mediated by engineered Lactobacilli that produce single-domain antibodies. Infect Immun. 2016;84:395–406.
  • Senoh M, Iwaki M, Yamamoto A, et al. Development of vaccine for Clostridium difficile infection using membrane fraction of nontoxigenic Clostridium difficile. Microb Pathog. 2018;123:42–46.
  • Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.
  • Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008;455:1109–1113.
  • Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–1286.
  • Clarke TB, Davis KM, Lysenko ES, et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med. 2010;16:228–231.
  • Abedon ST. Kinetics of phage-mediated biocontrol of bacteria. Foodborne Pathog Dis. 2009;6:807–815.
  • Hua Y, Luo T, Yang Y, et al. Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in mice. Front Microbiol. 2018;8:2659.
  • Gogokhia L, Buhrke K, Bell R, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe. 2019;25:285–299.e8.
  • Meader E, Mayer MJ, Steverding D, et al. Evaluation of bacteriophage therapy to control Clostridium difficile and toxin production in an in vitro human colon model system. Anaerobe. 2013;22:25–30.
  • Ramesh V, Fralick JA, Rolfe RD. Prevention of Clostridium difficile-induced ileocecitis with bacteriophage. Anaerobe. 1999;5:69–78.
  • Mills JP, Rao K, Young VB. Probiotics for prevention of Clostridium difficile infection. Curr Opin Gastroenterol. 2018;34:3–10.
  • Hargreaves KR, Clokie MR. Clostridium difficile phages: still difficult? Front Microbiol. 2014;5:184.
  • Imanishi KI. Aloctin A, an active substance of Aloe arborescens Miller as an immunomodulator. Phytother Res. 1993;7:S20–S22.
  • Yang HT, Chen JW, Rathod J, et al. Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model. Front Microbiol. 2017;8:2635.
  • Piotrowski M, Karpiński P, Pituch H, et al. Antimicrobial effects of manuka honey on in vitro biofilm formation by Clostridium difficile. Eur J Clin Microbiol Infect Dis. 2017;36:1661.
  • Aljarallah KM. Inhibition of Clostridium difficile by natural herbal extracts. J Taibah Univ Med Sci. 2016;11:427–431.
  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49.
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95–101.
  • Wang Q, Jaramillo AM, Pavon JJ, et al. Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for PEEK medical devices. J Biomed Mater Res. 2016;104:1352–1358.
  • Lee WT, Wu YN, Chen YH, et al. Octahedron iron oxide nanocrystals prohibited Clostridium difficile spore germination and attenuated local and systemic inflammation. Sci Rep. 2017;7:8124.
  • Huh H, Wong S, St Jean J, et al. Bacteriophage interactions with mammalian tissue: therapeutic applications. Adv Drug Deliv Rev. 2019. DOI: 10.1016/j.addr.2019.01.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.