860
Views
18
CrossRef citations to date
0
Altmetric
Invited Review Articles

Single-molecule measurements in microwells for clinical applications

, &
Pages 270-290 | Received 14 Aug 2019, Accepted 02 Dec 2019, Published online: 22 Dec 2019

References

  • Yuan G-C, Cai L, Elowitz M, et al. Challenges and emerging directions in single-cell analysis. Genome Biol. 2017;18(1):84.
  • Shinde P, Mohan L, Kumar A, et al. Current trends of microfluidic single-cell technologies. IJMS. 2018;19(10):3143.
  • Valihrach L, Androvic P, Kubista M. Platforms for single-cell collection and analysis. IJMS. 2018;19(3):807.
  • Heath JR, Ribas A, Mischel PS. Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov. 2016;15(3):204–216.
  • Murphy TW, Zhang Q, Naler LB, et al. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst. 2018;143(1):60–80.
  • Huang Q, Mao S, Khan M, et al. Single-cell assay on microfluidic devices. Analyst. 2019;144(3):808–823.
  • Liu Y, Chen X, Zhang Y, et al. Advancing single-cell proteomics and metabolomics with microfluidic technologies. Analyst. 2019;144(3):846–858.
  • Lu Y, Yang L, Wei W, et al. Microchip-based single-cell functional proteomics for biomedical applications. Lab Chip. 2017;17(7):1250–1263.
  • Olsson A, Vanderstichele H, Andreasen N, et al. Simultaneous measurement of β-amyloid(1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem. 2005;51(2):336–345.
  • Chowdhury F, Williams A, Johnson P. Validation and comparison of two multiplex technologies, Luminex® and Mesoscale Discovery, for human cytokine profiling. J Immunol Meth. 2009;340(1):55–64.
  • Kraemer S, Vaught JD, Bock C, et al. From SOMAmer-Based biomarker discovery to diagnostic and clinical applications: A SOMAmer-based, streamlined multiplex proteomic assay. PLoS One. 2011;6(10):e26332.
  • Nilsson T, Mann M, Aebersold R, et al. Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods. 2010;7(9):681–685.
  • Wasinger VC, Zeng M, Yau Y. Current status and advances in quantitative proteomic mass spectrometry. Int J Proteoms. 2013;2013:180605.
  • Walt DR. Optical methods for single molecule detection and analysis. Anal Chem. 2013;85(3):1258–1263.
  • Rotman B. Measurement of activity of single molecules of beta-D-galactosidase. Proc Natl Acad Sci USA. 1961;47(12):1981–1991.
  • Xue Q, Yeung ES. Differences in the chemical reactivity of individual molecules of an enzyme. Nature. 1995;373(6516):681–683.
  • Craig DB, Arriaga EA, Wong JCY, et al. Studies on single alkaline phosphatase molecules: Reaction Rate and activation energy of a reaction catalyzed by a single molecule and the effect of thermal denaturation – the death of an enzyme. J Am Chem Soc. 1996;118(22):5245–5253.
  • Craig DB, Dovichi NJ. Escherichia coli β-galactosidase is heterogeneous with respect to the activity of individual molecules. Can J Chem. 1998;76(5):623–626.
  • Hirschfeld T. Optical microscopic observation of single small molecules. Appl Opt. 1976;15(12):2965–2966.
  • Lee AI, Brody JP. Single-molecule enzymology of chymotrypsin using water-in-oil emulsion. Biophys J. 2005;88(6):4303–4311.
  • Lan F, Haliburton JR, Yuan A, et al. Droplet barcoding for massively parallel single-molecule deep sequencing. Nat Comm. 2016;7:11784.
  • Guan Z, Zou Y, Zhang M, et al. A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection. Biomicrofluidics. 2014;8(1):014110–014110.
  • Srisa-Art M, deMello AJ, Edel JB. High-efficiency single-molecule detection within trapped aqueous microdroplets. J Phys Chem B. 2010;114(48):15766–15772.
  • Zhu Z, Yang CJ. Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis. Acc Chem Res. 2017;50(1):22–31.
  • Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83(22):8604–8610.
  • Yelleswarapu V, Buser JR, Haber M, et al. Mobile platform for rapid sub–picogram-per-milliliter, multiplexed, digital droplet detection of proteins. Proc Natl Acad Sci USA. 2019;116(10):4489–4495.
  • Rondelez Y, Tresset G, Tabata KV, et al. Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nat Biotechnol. 2005;23(3):361–365.
  • Stamou D, Duschl C, Delamarche E, et al. Self-assembled microarrays of attoliter molecular vessels. Angew Chem Int Ed Engl. 2003;42(45):5580–5583.
  • Jung S-Y, Liu Y, Collier CP. Fast mixing and reaction initiation control of single-enzyme kinetics in confined volumes. Langmuir. 2008; 24(9):4439–4442.
  • Rissin DM, Gorris HH, Walt DR. Distinct and long-lived activity states of single enzyme molecules. J Am Chem Soc. 2008;130(15):5349–5353.
  • Gorris HH, Rissin DM, Walt DR. Stochastic inhibitor release and binding from single-enzyme molecules. Proc Nat Acad Sci USA. 2007;104(45):17680–17685.
  • Rojek MJ, Walt DR. Observing single enzyme molecules interconvert between activity states upon heating. PLoS One. 2014;9(1):e86224.
  • Li X, Jiang Y, Chong S, et al. Bottom-up single-molecule strategy for understanding subunit function of tetrameric β-galactosidase. Proc Natl Acad Sci USA. 2018;115(33):8346–8351.
  • Gorris HH, Walt DR. Mechanistic aspects of horseradish peroxidase elucidated through single-molecule studies. J Am Chem Soc. 2009;131(17):6277–6282.
  • Chen AY, Jani AS, Zheng L, et al. Microfabricated arrays of cylindrical wells facilitate single-molecule enzymology of α-chymotrypsin. Biotechnol Progress. 2009;25(4):929–937.
  • Iino R, Rondelez Y, Yoshida M, et al. Chemomechanical coupling in single-molecule F-type ATP synthase. J Bioenerg Biomembr. 2005;37(6):451–454.
  • Iino R, Noji H. F1-ATPase: a highly coupled reversible rotary motor. Biochem Soc Trans. 2006;34(5):993.
  • Liebherr RB, Renner M, Gorris HH. A single molecule perspective on the functional diversity of in vitro evolved β-glucuronidase. J Am Chem Soc. 2014;136(16):5949–5955.
  • Rondelez Y, Tresset G, Nakashima T, et al. Highly coupled ATP synthesis by F1-ATPase single molecules. Nature. 2005;433(7027):773–777.
  • Tan W, Yeung ES. Monitoring the reactions of single enzyme molecules and single metal ions. Anal Chem. 1997;69(20):4242–4248.
  • Rissin DM, Walt DR. Digital readout of target binding with attomole detection limits via enzyme amplification in femtoliter arrays. J Am Chem Soc. 2006;128(19):6286–6287.
  • Rissin DM, Walt DR. Digital concentration readout of single enzyme molecules using femtoliter arrays and poisson statistics. Nano Lett. 2006;6(3):520–523.
  • Rissin DM, Kan CW, Campbell TG, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol. 2010;28(6):595–599.
  • Pantano P, Walt DR. Ordered nanowell arrays. Chem Mater. 1996;8(12):2832–2835.
  • Michael KL, Taylor LC, Schultz SL, et al. Randomly ordered addressable high-density optical sensor arrays. Anal Chem. 1998;70(7):1242–1248.
  • Zhang H, Nie S, Etson CM, et al. Oil-sealed femtoliter fiber-optic arrays for single molecule analysis. Lab Chip. 2012;12(12):2229–2239.
  • Walt DR. Fibre optic microarrays. Chem Soc Rev. 2010;39(1):38–50.
  • Schuster R, Kirchner V, Allongue P, et al. Electrochemical micromachining. Science. 2000;289(5476):98–101.
  • Park M, Harrison C, Chaikin PM, et al. Block copolymer lithography: Periodic Arrays of ∼1011 holes in 1 square centimeter. Science. 1997;276(5317):1401–1404.
  • Jackman RJ, Duffy DC, Ostuni E, et al. Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting. Anal Chem. 1998;70(11):2280–2287.
  • Rettig JR, Folch A. Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem. 2005;77(17):5628–5634.
  • Suh KY, Kim YS, Lee HH. Capillary force lithography. Adv Mater. 2001;13(18):1386–1389.
  • Yan M, Bartlett MA. Micro/nanowell arrays fabricated from covalently immobilized polymer thin films on a flat substrate. Nano Lett. 2002;2(4):275–278.
  • Mata A, Fleischman AJ, Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices. 2005;7(4):281–293.
  • Kan CW, Rivnak AJ, Campbell TG, et al. Isolation and detection of single molecules on paramagnetic beads using sequential fluid flows in microfabricated polymer array assemblies. Lab Chip. 2012;12(5):977–985.
  • Nunes PS, Ohlsson PD, Ordeig O, et al. Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid Nanofluid. 2010;9(2–3):145–161.
  • Duan BK, Cavanagh PE, Li X, et al. Ultrasensitive single-molecule enzyme detection and analysis using a polymer microarray. Anal Chem. 2018;90(5):3091–3098.
  • Wilson DH, Rissin DM, Kan CW, et al. The Simoa HD-1 Analyzer: A novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J Lab Autom. 2016;21(4):533–547.
  • Kim SH, Iwai S, Araki S, et al. Large-scale femtoliter droplet array for digital counting of single biomolecules. Lab Chip. 2012;12(23):4986–4991.
  • Witters D, Knez K, Ceyssens F, et al. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip. 2013;13(11):2047–2054.
  • Decrop D, Pardon G, Brancato L, et al. Single-step imprinting of femtoliter microwell arrays allows digital bioassays with attomolar limit of detection. ACS Appl Mater Interfaces. 2017;9(12):10418–10426.
  • Ge S, Liu W, Schlappi T, et al. Digital, ultrasensitive, end-point protein measurements with large dynamic range via Brownian trapping with drift. J Am Chem Soc. 2014;136(42):14662–14665.
  • Decrop D, Brans T, Gijsenbergh P, et al. Optical manipulation of single magnetic beads in a microwell array on a digital microfluidic chip. Anal Chem. 2016;88(17):8596–8603.
  • Chiu DT, Lorenz RM, Jeffries G. Droplets for ultrasmall-volume analysis. Anal Chem. 2009;81(13):5111–5118.
  • Mattsson N, Andreasson U, Zetterberg H, et al. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer DISEASE. JAMA Neurol. 2017;74(5):557–566.
  • Rohrer JD, Woollacott IOC, Dick KM, et al. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology. 2016;87(13):1329–1336.
  • Startin CM, Ashton NJ, Hamburg S, et al. Plasma biomarkers for amyloid, tau, and cytokines in Down syndrome and sporadic Alzheimer's disease. Alzheimers Res Ther. 2019;11(1):26.
  • Ng ASL, Tan YJ, Lu Z, et al. Plasma alpha-synuclein detected by single molecule array is increased in PD. Ann Clin Transl Neurol. 2019;6(3):615–619.
  • O'Bryant SE, Edwards M, Zhang F, et al. Potential two-step proteomic signature for Parkinson's disease: Pilot analysis in the Harvard Biomarkers Study. Alzheimers Dement. 2019;11:374–382.
  • Byrne LM, Rodrigues FB, Johnson EB, et al. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Sci Transl Med. 2018;10(458):eaat7108.
  • Mariotto S, Ferrari S, Gastaldi M, et al. Neurofilament light chain serum levels reflect disease severity in MOG-Ab associated disorders. J Neurol Neurosurg Psychiatr. 2019;90(11):1293–1296.
  • Mariotto S, Gajofatto A, Zuliani L, et al. Serum and CSF neurofilament light chain levels in antibody-mediated encephalitis. J Neurol. 2019;266(7):1643–1648.
  • Högel H, Rissanen E, Barro C, et al. Serum glial fibrillary acidic protein correlates with multiple sclerosis disease severity. Mult Scler. 2018.
  • Abdelhak A, Huss A, Kassubek J, et al. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci Rep. 2018;8(1):14798.
  • Bergman L, Zetterberg H, Kaihola H, et al. Blood-based cerebral biomarkers in preeclampsia: Plasma concentrations of NfL, tau, S100B and NSE during pregnancy in women who later develop preeclampsia - A nested case control study. PLoS One. 2018;13(5):e0196025.
  • Shahim P, Tegner Y, Wilson DH, et al. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014;71(6):684–692.
  • Gill J, Latour L, Diaz-Arrastia R, et al. Glial fibrillary acidic protein elevations relate to neuroimaging abnormalities after mild TBI. Neurology. 2018;91(15):e1385–e1389.
  • Thelin E, Al Nimer F, Frostell A, et al. A serum protein biomarker panel improves outcome prediction in human traumatic brain injury. J Neurotrauma. 2019;36(20):2850–2862.
  • Wilson DH, Hanlon DW, Provuncher GK, et al. Fifth-generation digital immunoassay for prostate-specific antigen by single molecule array technology. Clin Chem. 2011;57(12):1712–1721
  • Shi Y, Gao W, Lytle NK, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569(7754):131–135.
  • Olsen DA, Kjaer IM, Brandslund I. Development of a three-plex single molecule immunoassay enabling measurement of the EGFR ligands amphiregulin, betacellulin and transforming growth factor α simultaneously in human serum samples. J Immunol Methods. 2018;459:63–69.
  • Jarolim P, Patel PP, Conrad MJ, et al. Fully automated ultrasensitive digital immunoassay for cardiac troponin I based on single molecule array technology. Clin Chem. 2015;61(10):1283–1291.
  • Yang J, Savvatis K, Kang JS, et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 2016;7:13710.
  • Rosenthal L-M, Tong G, Wowro S, et al. A prospective clinical trial measuring the effects of cardiopulmonary bypass under mild hypothermia on the inflammatory response and regulation of cold-shock protein RNA-binding motif 3. Ther Hypothermia Temp Manag. 2019. DOI:10.1089/ther.2018.0038.
  • Wan Y, Xu J, Ma D, et al. Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology. 2007;106(3):436–443.
  • Leung JM, Sands LP. Long-term cognitive decline: is there a link to surgery and anesthesia? Anesthesiology. 2009;111(5):931–932.
  • Gorelick PB. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. AnnNY Acad Sci. 2010;1207(1):155–162.
  • DiMeglio M, Furey W, Hajj J, et al. Observational study of long-term persistent elevation of neurodegeneration markers after cardiac surgery. Sci Rep. 2019;9(1):7177.
  • Zetterberg H, Mörtberg E, Song L, et al. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. Plos One. 2011;6(12):e28263.
  • Randall J, Mörtberg E, Provuncher GK, et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: Results of a pilot study. Resuscitation. 2013;84(3):351–356.
  • Rivnak AJ, Rissin DM, Kan CW, et al. A fully-automated, six-plex single molecule immunoassay for measuring cytokines in blood. J Immunol Methods. 2015;424:20–27.
  • Cohen L, Keegan A, Melanson SEF, et al. Impact of clinical sample handling and processing on ultra-low level measurements of plasma cytokines. Clin Biochem. 2019;65:38–44.
  • Wu D, Milutinovic MD, Walt DR. Single molecule array (Simoa) assay with optimal antibody pairs for cytokine detection in human serum samples. Analyst. 2015;140(18):6277–6282.
  • Song L, Hanlon DW, Chang L, et al. Single molecule measurements of tumor necrosis factor α and interleukin-6 in the plasma of patients with Crohn's disease. J Immunol Methods. 2011;372(1-2):177–186.
  • Rodero MP, Decalf J, Bondet V, et al. Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J Exp Med. 2017;214(5):1547–1555.
  • Leirs K, Tewari Kumar P, Decrop D, et al. Bioassay development for ultrasensitive detection of influenza A nucleoprotein using digital ELISA. Anal Chem. 2016;88(17):8450–8458.
  • Dinh TL, Ngan KC, Shoemaker CB, et al. Rapid and ultrasensitive detection of botulinum neurotoxin serotype A1 in human serum and urine using single-molecule array method. Forensic Toxicol. 2017;35(1):179–184.
  • Anderson AM, Tyor WR, Mulligan MJ, et al. Measurement of human immunodeficiency virus p24 antigen in human cerebrospinal fluid with digital enzyme-linked immunosorbent assay and association with decreased neuropsychological performance. Clin Inf Dis. 2018;67(1):137–140.
  • Anderson AM, Easley KA, Kasher N, et al. Neurofilament light chain in blood is negatively associated with neuropsychological performance in HIV-infected adults and declines with initiation of antiretroviral therapy. J Neurovirol. 2018;24(6):695–701.
  • Blauenfeldt T, Petrone L, del Nonno F, et al. Interplay of DDP4 and IP-10 as a potential mechanism for cell recruitment to tuberculosis lesions. Front Immunol. 2018;9:1456.
  • Banz A, Lantz A, Riou B, et al. Sensitivity of single-molecule array assays for detection of Clostridium difficile Toxins in comparison to conventional laboratory testing algorithms. J Clin Microbiol. 2018;56(8):e00452–18.
  • Gaylord ST, Abdul-Aziz S, Walt DR. Single-molecule arrays for ultrasensitive detection of host immune response to dengue virus infection. J Clin Microbiol. 2015;53(5):1722–1724.
  • Song L, Shan D, Zhao M, et al. Direct Detection of Bacterial Genomic DNA at Sub-Femtomolar Concentrations Using Single Molecule Arrays. Anal Chem. 2013;85(3):1932–1939.
  • Tripodi L, Witters D, Kokalj T, et al. Sub-femtomolar detection of DNA and discrimination of mutant strands using microwell-array assisted digital enzyme-linked oligonucleotide assay. Anala Chim Acta. 2018;1041:122–130.
  • Cohen L, Hartman MR, Amardey-Wellington A, et al. Digital direct detection of microRNAs using single molecule arrays. Nucleic Acids Res. 2017;45(14):e137.
  • Rissin DM, López-Longarela B, Pernagallo S, et al. Polymerase-free measurement of microRNA-122 with single base specificity using single molecule arrays: Detection of drug-induced liver injury. PLoS One. 2017;12(7):e0179669.
  • Ottesen EA, Hong JW, Quake SR, et al. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science. 2006;314(5804):1464–1467.
  • Yung TKF, Chan KCA, Mok TSK, et al. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non–small cell lung cancer patients. Clin Canc Res. 2009;15(6):2076–2084.
  • Tadmor AD, Ottesen EA, Leadbetter JR, et al. Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science. 2011;333(6038):58.
  • Zhu Q, Qiu L, Yu B, et al. Digital PCR on an integrated self-priming compartmentalization chip. Lab Chip. 2014;14(6):1176–1185.
  • Shen F, Sun B, Kreutz JE, et al. Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and Hepatitis C viral load. J Am Chem Soc. 2011;133(44):17705–17712.
  • Sundberg SO, Wittwer CT, Gao C, et al. Spinning disk platform for microfluidic digital polymerase chain reaction. Anal Chem. 2010;82(4):1546–1550.
  • White AK, Heyries KA, Doolin C, et al. High-throughput microfluidic single-cell digital polymerase chain reaction. Anal Chem. 2013;85(15):7182–7190.
  • Shen F, Du W, Kreutz JE, et al. Digital PCR on a SlipChip. Lab Chip. 2010;10(20):2666–2672.
  • Kreutz JE, Munson T, Huynh T, et al. Theoretical design and analysis of multivolume digital assays with wide dynamic range validated experimentally with microfluidic digital PCR. Anal Chem. 2011;83(21):8158–8168.
  • Heyries KA, Tropini C, VanInsberghe M, et al. Megapixel digital PCR. Nat Methods. 2011;8(8):649–651.
  • Gansen A, Herrick AM, Dimov IK, et al. Digital LAMP in a sample self-digitization (SD) chip. Lab Chip. 2012;12(12):2247–2254.
  • Yeh E-C, Fu C-C, Hu L, et al. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci Adv. 2017;3(3):e1501645.
  • Zhu Q, Gao Y, Yu B, et al. Self-priming compartmentalization digital LAMP for point-of-care. Lab Chip. 2012;12(22):4755–4763.
  • Rodriguez-Manzano J, Karymov MA, Begolo S, et al. Reading out single-molecule digital RNA and DNA isothermal amplification in nanoliter volumes with unmodified camera phones. ACS Nano. 2016;10(3):3102–3113.
  • Conte D, Verri C, Borzi C, et al. Novel method to detect microRNAs using chip-based QuantStudio 3D digital PCR. BMC Genom. 2015;16(1):849. doi:
  • Olwagen CP, Adrian PV, Madhi SA. Performance of the Biomark HD real-time qPCR System (Fluidigm) for the detection of nasopharyngeal bacterial pathogens and Streptococcus pneumoniae typing. Sci Rep. 2019;9(1):6494.
  • Milbury CA, Zhong Q, Lin J, et al. Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. Biomol Detect Quantif. 2014;1(1):8–22.
  • Brychta N, Krahn T, von Ahsen O. Detection of KRAS mutations in circulating tumor DNA by digital PCR in early stages of pancreatic cancer. Clin Chem. 2016;62(11):1482–1491.
  • Oehler VG, Qin J, Ramakrishnan R, et al. Absolute quantitative detection of ABL tyrosine kinase domain point mutations in chronic myeloid leukemia using a novel nanofluidic platform and mutation-specific PCR. Leukemia. 2009;23(2):396–399.
  • Sefrioui D, Sarafan-Vasseur N, Beaussire L, et al. Clinical value of chip-based digital-PCR platform for the detection of circulating DNA in metastatic colorectal cancer. Dig Liver Dis. 2015;47(10):884–890.
  • Robinson S, Follo M, Haenel D, et al. Chip-based digital PCR as a novel detection method for quantifying microRNAs in acute myocardial infarction patients. Acta Pharmacol Sin. 2018;39(7):1217–1227.
  • Wu Z, Bai Y, Cheng Z, et al. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR. Biosens Bioelectron. 2017;96:339–344.
  • White RA, Quake SR, Curr K. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J Virol Methods. 2012;1/179(1):45–50.
  • Schoepp NG, Schlappi TS, Curtis MS, et al. Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples. Sci Transl Med. 2017;9(410):eaal3693.
  • Devonshire AS, Honeyborne I, Gutteridge A, et al. Highly reproducible absolute quantification of Mycobacterium tuberculosis complex by digital PCR. Anal Chem. 2015;87(7):3706–3713.
  • Yeakley JM, Fan J-B, Doucet D, et al. Profiling alternative splicing on fiber-optic arrays. Nat Biotechnol. 2002;20(4):353–358.
  • Qin J, Jones RC, Ramakrishnan R. Studying copy number variations using a nanofluidic platform. Nucleic Acids Res. 2008;36(18):e116.
  • Wong YK, Tsang HF, Xue VW, et al. Applications of digital PCR in precision medicine. Exp Rev Precision Med Drug Dev. 2017;2(3):177–186.
  • Tong Y, Shen S, Jiang H, et al. Application of digital PCR in detecting human diseases associated gene mutation. Cell Physiol Biochem. 2017;43(4):1718–1730.
  • Kuypers J, Jerome KR. Applications of digital PCR for clinical microbiology. J Clin Microbiol. 2017;55(6):1621–1628.
  • Bizouarn F. Clinical applications using digital PCR. In: Biassoni R, Raso A, eds. Quantitative Real-Time PCR: Methods and Protocols. New York (NY): Springer New York; 2014. p. 189–214.
  • Sreejith KR, Ooi CH, Jin J, et al. Digital polymerase chain reaction technology – recent advances and future perspectives. Lab Chip. 2018;18(24):3717–3732.
  • Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–380.
  • Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–352.
  • Ameur A, Kloosterman WP, Hestand MS. Single-molecule sequencing: Towards clinical applications. Trends Biotechnol. 2019;37(1):72–85.
  • Lodé L, Ameur A, Coste T, et al. Single-molecule DNA sequencing of acute myeloid leukemia and myelodysplastic syndromes with multiple TP53 alterations. Haematologica. 2018;103(1):e13–316.
  • Bergfors A, Leenheer D, Bergqvist A, et al. Analysis of hepatitis C NS5A resistance associated polymorphisms using ultra deep single molecule real time (SMRT) sequencing. Antiviral Res. 2016;126:81–89.
  • Xiao C-L, Zhu S, He M, et al. N6-Methyladenine DNA modification in the human genome. Mol Cell. 2018;71(2):306–318.
  • Aneichyk T, Hendriks WT, Yadav R, et al. Dissecting the causal mechanism of X-linked dystonia-Parkinsonism by integrating genome and transcriptome assembly. Cell. 2018;172(5):897–909.
  • Levene MJ, Korlach J, Turner SW, et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science. 2003;299(5607):682–686.
  • Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–138.
  • Vilfan ID, Tsai Y-C, Clark TA, et al. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J Nanobiotechnol. 2013;11(1):8.
  • Plénat T, Yoshizawa S, Fourmy D. DNA-guided delivery of single molecules into zero-mode waveguides. ACS Appl Mater Interfaces. 2017;9(36):30561–30566.
  • Ardui S, Race V, Zablotskaya A, et al. Detecting AGG interruptions in male and female FMR1 premutation carriers by single-molecule sequencing. Hum Mut. 2017;38(3):324–331.
  • Albrecht V, Zweiniger C, Surendranath V, et al. Dual redundant sequencing strategy: full-length gene characterisation of 1056 novel and confirmatory HLA alleles. HLA. 2017;90(2):79–87.
  • Cavelier L, Ameur A, Häggqvist S, et al. Clonal distribution of BCR-ABL1 mutations and splice isoforms by single-molecule long-read RNA sequencing. BMC Cancer. 2015;15(1):45.
  • Dilernia DA, Chien J-T, Monaco DC, et al. Multiplexed highly-accurate DNA sequencing of closely-related HIV-1 variants using continuous long reads from single molecule, real-time sequencing. Nucleic Acids Res. 2015;43(20):e129–e129.
  • Wang X, Cohen L, Wang J, et al. Competitive Immunoassays for the detection of small molecules using single molecule arrays. J Am Chem Soc. 2018;140(51):18132–18139.
  • Schubert SM, Walter SR, Manesse M, et al. Protein counting in single cancer cells. Anal Chem. 2016;88(5):2952–2957.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.