246
Views
5
CrossRef citations to date
0
Altmetric
Invited Review Articles

Bone health and hyperglycemia in pediatric populations

, ORCID Icon & ORCID Icon
Pages 444-457 | Received 02 Nov 2019, Accepted 04 Mar 2020, Published online: 27 Mar 2020

References

  • Janghorbani M, Van Dam RM, Willett WC, et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166(5):495–505.
  • Leslie WD, Rubin MR, Schwartz AV, et al. Type 2 diabetes and bone. J Bone Miner Res. 2012;27(11):2231–2237.
  • Gonnelli S, Caffarelli C, Giordano N, et al. The prevention of fragility fractures in diabetic patients. Aging Clin Exp Res. 2015;27(2):115–124.
  • Starup-Linde J, Lykkeboe S, Gregersen S, et al. Differences in biochemical bone markers by diabetes type and the impact of glucose. Bone. 2016;83:149–155.
  • Napoli N, Chandran M, Pierroz DD, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13(4):208–219.
  • Szternel L, Krintus M, Bergmann K, et al. Association between fasting glucose concentration, lipid profile and 25(OH)D status in children aged 9–11. Nutrients. 2018;10(10):1359.
  • Cranney A, Weiler HA, O'Donnell S, et al. Summary of evidence-based review on vitamin D efficacy and safety in relation to bone health. Am J Clin Nutr. 2008; 88 (2):513S–519S.
  • Sayers A, Fraser WD, Lawlor DA, et al. 25-Hydroxyvitamin-D3 levels are positively related to subsequent cortical bone development in childhood: findings from a large prospective cohort study. Osteoporos Int. 2012;23(8):2117–2128.
  • Zhu K, Oddy WH, Holt P, et al. Tracking of vitamin D status from childhood to early adulthood and its association with peak bone mass. Am J Clin Nutr. 2017;106(1):276–283.
  • Theodoratou E, Tzoulaki I, Zgaga L, et al. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. 2014;348(2):g2035–g2035.
  • Cesareo R, Attanasio R, Caputo M, et al. Italian Association of Clinical Endocrinologists (AME) and Italian Chapter of the American Association of Clinical Endocrinologists (AACE) position statement: clinical management of Vitamin D deficiency in adults. Nutrients. 2018;10(5):546.
  • Chang SW, Lee HC. Vitamin D and health - the missing vitamin in humans. Pediatrics Neonatol. 2019;60(3):237–244.
  • Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet. 2014;383(9912):146–155.
  • Kahwati LC, Weber RP, Pan H, et al. Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2018;319(15):1600e12.
  • Bischoff-Ferrari H, Willett W, Orav E, et al. A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med. 2012;367(1):40–49.
  • Bischoff-Ferrari H, Dawson-Hughes B, Staehelin HB, et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomized controlled trials. BMJ. 2009;339(1):b3692–b3692.
  • Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–1822.
  • Jorde R, Stunes AK, Kubiak J, et al. Effects of vitamin D supplementation on bone turnover markers and other bone-related substances in subjects with vitamin D deficiency. Bone. 2019;124:7–13.
  • Winzenberg T, Powell S, Shaw KA, et al. Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. Br Med J. 2011;342(1):c7254–c7254.
  • Rosendahl J, Valkama S, Holmlund-Suila E, et al. Effect of higher vs standard dosage of vitamin D3 supplementation on bone strength and infection in healthy infants. A randomized clinical trial. JAMA Pediatr. 2018;172(7):646–654.
  • Autier P, Boniol M, Pizot C, et al. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol. 2014;2(1):76–89.
  • Rolvien T, Krause M, Jeschke A, et al. Vitamin D regulates osteocyte survival and perilacunar remodeling in human and murine bone. Bone. 2017;103:78–87.
  • Hightower L. Osteoporosis: pediatric disease with geriatric consequences. Orthop Nurs. 2000;19(5):59–62.
  • Wosje KS, Khoury PR, Claytor RP, et al. Dietary patterns associated with fat and bone mass in young children. Am J Clin Nutr. 2010;92(2):294–303.
  • Farr JN, Amin S, LeBrasseur NK, et al. Body composition during childhood and adolescence: relations to bone strength and microstructure. J Clin Endocrinol Metab. 2014;99(12):4641–4648.
  • Wey HE, Binkley TL, Beare TM, et al. Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children. J Clin Endocrinol Metab. 2011;96(1):106–114.
  • Farr JN, Dimitri P. The impact of fat and obesity on bone microarchitecture and strength in children. Calcif Tissue Int. 2017;100(5):500–513.
  • Dimitri P. Fat and bone in children – where are we now? Ann Pediatr Endocrinol Metab. 2018;23(2):62–69.
  • Spiro A, Buttriss JL. Vitamin D: an overview of vitamin D status and intake in Europe. Nutr Bulletin. 2014;39(4):322–350.
  • Golden NH, Abrams SA, Committee on Nutrition. Optimizing bone health in children and adolescents. Pediatrics. 2014;134(4):e1229–43.
  • Roth DE, Abrams SA, Aloia J, et al. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low- and middle-income countries. Ann NY Acad Sci. 2018;1430(1):44–79.
  • Rusinska A, Płudowski P, Walczak M, et al. Vitamin D supplementation guidelines for general population and groups of high risk of Vitamin D deficiency in Poland-2018 update. Front Endocrinol (Lausanne). 2018;9:1–17.
  • Lips P, Cashman KD, Lamberg-Allardt C, et al. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the ECTS. Eur J Endocrinol. 2019;180:23–54.
  • Cavalier E, Huyghebaert L, Rousselle O, et al. Simultaneous measurement of 25(OH)-vitamin D and 24,25(OH)2 vitamin D to define cut-offs for CYP24A1 mutation and vitamin D deficiency in a population of 1200 young subjects. Clin Chem Lab Med. 2020;58(2):197–201.
  • Ferrari SL, Abrahamsen B, Napoli N, et al. Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int. 2018;29(12):2585–2596.
  • Szulc P. Bone turnover: biology and assessment tools. Best Pract Res Clin Endocrinol Metab. 2018;32(5):725–738.
  • Frost ML, Moore AE, Siddique M, et al. 18F-fluoride PET as a noninvasive imaging biomarker for determining treatment efficacy of bone active agents at the hip: a prospective, randomized, controlled clinical study. J Bone Miner Res. 2013;28(6):1337–1347.
  • Eastell R, Pawel Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017;5(11):908–923.
  • Vasikaran S, Cooper C, Eastell R, et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med. 2011;48:1271–1274.
  • Koivula MK, Risteli L, Juha Risteli J. Measurement of aminoterminal propeptide of type I procollagen (PINP) in serum. Clin Biochem. 2012;45(12):920–927.
  • Alvarez L, Torregrosa JV, Peris P, et al. Effect of hemodialysis and renal failure on serum biochemical markers of bone turnover. J Bone Miner Metab. 2004;22(3):254–259.
  • Morovat A, Catchpole A, Meurisse A, et al. IDS iSYS automated intact procollagen-1-N-terminus pro-peptide assay: method evaluation and reference intervals in adults and children. Clin Chem Lab Med. 2013;51(10):2009–2018.
  • Cavalier E, Lukas P, Carlisi A, et al. Aminoterminal propeptide of type I procollagen (PINP) in chronic kidney disease patients: the assay matters. Clin Chim Acta. 2013;425:117–118.
  • Marin L, Koivula MK, Jukkola-Vuorinen A, et al. Comparison of total and intact aminoterminal propeptide of type I procollagen assays in patients with breast cancer with or without bone metastases. Ann Clin Biochem. 2011;48(5):447–451.
  • Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–469.
  • Levinger I, Seeman E, Jerums G, et al. Glucose-loading reduces bone remodeling in women and osteoblast function in vitro. Physiol Rep. 2016;4(3):e12700.
  • Lin X, Brennan-Speranza TC, Levinger I, et al. Undercarboxylated osteocalcin: experimental and human evidence for a role in glucose homeostasis and muscle regulation of insulin sensitivity. Nutrients. 2018;10(7):847–867.
  • Suzuki Y, Maruyama-Nagao A, Sakuraba K, et al. Level of serum undercarboxylated osteocalcin correlates with bone quality assessed by calcaneal quantitative ultrasound sonometry in young Japanese females. Exp Ther Med. 2017;13(5):1937–1943.
  • Eastell R, Garnero P, Audebert C, et al. Reference intervals of bone turnover markers in healthy premenopausal women: results from a cross-sectional European study. Bone. 2012;50(5):1141–1147.
  • Glover SJ, Gall M, Schoenborn-Kellenberger O, et al. Establishing a reference interval for bone turnover markers in 637 healthy, young, premenopausal women from the United Kingdom, France, Belgium, and the United States. J Bone Miner Res. 2009;24(3):389–397.
  • Alberti C, Chevenne D, Mercat I, et al. Serum concentration of insulin-like growth factor (IGF-1) and IGF-binding protein-3 (IGFBP-3), IGF-1/IGFBP-3 ratio, and markers of bone turnover: reference values for French children and adolescents and z-score comparability with other references. Clin Chem. 2011;52:1424–1435.
  • Vasikaran SD, Chubb SP, Ebeling PR, et al. Harmonised Australian reference intervals for serum PINP and CTX in adults. Clin Biochem Rev. 2014;35(4):237–242.
  • Guanabens N, Filella X, Monegal A, et al. Reference intervals for bone turnover markers in Spanish premenopausal women. Clin Chem Lab Med. 2016;54(2):293–303.
  • Jørgensen NR, Møllehave LT, Hansen YBL, et al. Comparison of two automated assays of BTM (CTX and P1NP) and reference intervals in a Danish population. Osteoporos Int. 2017;28(7):2103–2113.
  • Diez-Perez A, Naylor KE, Abrahamsen B, et al. International Osteoporosis Foundation and European Calcified Tissue Society Working Group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos Int. 2017;28(3):767–774.
  • DeBoer M, Weber DR, Zemel BS, et al. Bone mineral accrual is associated with parathyroid hormone and 1,25-dihydroxyvitamin D levels in children and adolescents. J Clin Endocrinol Metab. 2015;100(10):3814–3821.
  • Delvin E, Alos N, Rauch F, et al. Vitamin D nutritional status and bone turnover markers in childhood acute lymphoblastic leukemia survivors: a PETALE study. Clin Nutr. 2019;38(2):912–919.
  • Szulc P, Naylor K, Hoyle NR, et al. National Bone Health Alliance Bone Turnover Marker Project. Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int. 2017;28(9):2541–2556.
  • Crofton PM, Evans N, Taylor MRH, et al. Serum Crosslaps: pediatric reference intervals from birth to 19 years of age. Clin Chem. 2002;48(4):671–673.
  • Crofton PM, Evans N, Taylor MRH, et al. Procollagen type I amino-terminal propeptide: pediatric reference data and relationship with procollagentype I carboxyl-terminal propeptide. Clin Chem. 2004;50(11):2173–2176.
  • Rauchenzauner M, Schmid A, Heinz-Erian P, et al. Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab. 2007;92(2):443–449.
  • Huang Y, Eapen E, Steele S, et al. Establishment of reference intervals for bone markers in children and adolescents. Clin Biochem. 2011;44(10-11):771–778.
  • Wyness SP, Roberts WI, Straseski JA. Pediatric reference intervals for four serum bone markers using two automated immunoassays. Clin Chim Acta. 2013;415:169–172.
  • Bayer M. Reference values of osteocalcin and procollagen type I N-propeptide plasma levels in a healthy Central European population aged 0-18 years. Osteoporos Int. 2014;25(2):729–736.
  • Gennai I, Di Iorgi N, Reggiardo G, et al. Age- and sex-matched reference curves for serum collagen type I C-telopeptides and bone alkaline phosphatase in children and adolescents: an alternative multivariate statistical analysis approach. Clin Biochem. 2016;49(10-11):802–807.
  • Ambroszkiewicz J, Gajewska J, Rowicka G, et al. Assessment of biochemical bone turnover markers and bone mineral density in thin and normal-weight children. Cartilage. 2018;9(3):255–262.
  • Cavalier E, Eastell R, Jorgensen NR, et al. A multicenter study to evaluate harmonization of assays for N-terminal propeptide of type I procollagen (PINP): a report from the IFCC-IOF Joint Committee for Bone Metabolism. Clin Chem Lab Med. 2019;57(10):1546–1555.
  • Karsenty G, Paula Mera P. Molecular bases of the crosstalk between bone and muscle. Bone. 2018;115:43–49.
  • Daniele G, Winnier D, Mari A, et al. The potential role of the osteopontin–osteocalcin–osteoprotegerin triad in the pathogenesis of prediabetes in humans. Acta Diabetol. 2018;55(2):139–148.
  • Yeap BB, Alfonso H, Chubb SAP, et al. Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. J. Clin Endocrinol. Metab. 2015;100(1):63–71.
  • Yeap BB, Davis WA, Peters K, et al. Circulating osteocalcin is unrelated to glucose homoeostasis in adults with type 1 diabetes. J Diab Complications. 2017;31(6):948–951.
  • Lee NJ, Ali N, Zhang L, et al. Osteoglycin, a novel coordinator of bone and glucose homeostasis. Mol Metab. 2018;13:30–44.
  • Franceschi R, Longhi S, Cauvin V, et al. Bone geometry, quality, and bone markers in children with type 1 diabetes mellitus. Calcif Tissue Int. 2018;102(6):657–665.
  • Chen SC, Shepherd S, McMillan M, et al. Skeletal fragility and its clinical determinants in children with type 1 diabetes. J Clin Endocrinol Metab. 2019;104(8):3585–3594.
  • Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporos Int. 2007;18(4):427–444.
  • Cortet B, Lucas S, Legroux-Gerot I, et al. Bone disorders associated with diabetes mellitus and its treatments. Joint Bone Spine. 2019;86(3):315–320.
  • Hygum K, Starup-Linde J, Harsløf T, et al. Diabetes mellitus, a state of low bone turnover – a systematic review and meta-analysis. Eur J Endocrinol. 2017;176(3):R137–R157.
  • Starup-Linde J, Eriksen SA, Lykkeboe S, et al. Biochemical markers of bone turnover in diabetes patients – a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int. 2014;25(6):1697–1708.
  • Hygum K, Starup-Linde J, Langdahl BL. Diabetes and bone. Osteoporos Sarcopenia. 2019;5(2):29–37.
  • Ardawi MS, Akhbar DH, Alshaikh A, et al. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone. 2013;56(2):355–362.
  • Starup-Linde J, Lykkeboe S, Gregersen S, et al. Bone structure and predictors of fracture in type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2016;101(3):928–936.
  • Ho-Pham LT, Chau PMN, Do AT, et al. Type 2 diabetes is associated with higher trabecular bone density but lower cortical bone density: the Vietnam Osteoporosis Study. Osteoporos Int. 2018;29(9):2059–2067.
  • Ebrahimpur M, Sharifi F, Nezhad FA, et al. Effect of diabetes on BMD and TBS values as determinants of bone health in the elderly: Bushehr Elderly Health Program. J Diabetes Metab Disord. 2019;18(1):99–106.
  • Kanazawa I, Sugimoto T. Diabetes mellitus-induced bone fragility. Intern Med. 2018;57(19):2773–2785.
  • Kindler JM, Pollock NK, Laing EM, et al. Insulin resistance and the IGF-I-cortical bone relationship in children ages 9–13 years. J Bone Miner Res. 2017;32(7):1537–1545.
  • Ma C, Tonks KT, Center JR, et al. Complex interplay among adiposity, insulin resistance and bone health. Clin Obes. 2018;8(2):131–139.
  • Sarkar PD, Choudhury AB. Relationships between serum osteocalcin levels versus blood glucose, insulin resistance and markers of systemic inflammation in central Indian type 2 diabetic patients. Eur Rev Med Pharmacol Sci. 2013;17(12):1631–1635.
  • Mitchell A, Fall T, Melhus H, et al. Type 2 diabetes in relation to hip bone density, area, and bone turnover in Swedish men and women: a cross-sectional study. Calcif Tissue Int. 2018;103(5):501–511.
  • Afghani A, Cruz ML, Goran MI. Impaired glucose tolerance and bone mineral content in overweight Latino children with a family history of type 2 diabetes. Diabetes Care. 2005;28(2):372–378.
  • Pollock NK, Bernard PJ, Wenger K, et al. Lower bone mass in prepubertal overweight children with prediabetes. J Bone Miner Res. 2010;25(12):2760–2769.
  • Pan H, Wu N, Yang T, et al. Association between bone mineral density and type 1 diabetes mellitus: a meta-analysis of cross-sectional studies. Diabetes Metab Res Rev. 2014;30(7):531–542.
  • Raisingani M, Brar Preneet B, Brenda Kohn B, et al. Skeletal growth and bone mineral acquisition in type 1 diabetic children; abnormalities of the GH/IGF-1 axis. Growth Horm IGF Res. 2017;34:13–21.
  • Pater A, Sypniewska G, Pilecki O. Biochemical markers of bone cell activity in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2010;23(1-2):81–86.
  • Madsen JOB, Jørgensen NR, Pociot F, et al. Bone turnover markers in children and adolescents with type 1 diabetes-a systematic review. Pediatr Diabetes. 2019;20:510–522.
  • Wierzbicka E, Swiercz A, Pludowski P, et al. Skeletal status, body composition, and glycaemic control in adolescents with type 1 diabetes mellitus. J Diabetes Res. 2018;2018:1–14.
  • Faienza MF, Ventura A, Delvecchio M, et al. High sclerostin and dickkopf-1 (DKK-1) serum levels in children and adolescents with type 1 diabetes mellitus. J Clin Endocrinol Metab. 2017;102(4):1174–1181.
  • Tsentidis C, Gourgiotis D, Kossiva L, et al. Higher levels of s-RANKL and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: a multivariate cross-sectional analysis. Osteoporos Int. 2016;27(4):1631–1643.
  • Gaudio A, Privitera F, Battaglia K, et al. Sclerostin levels associated with inhibition of the Wnt/beta-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(10):3744–3750.
  • Tsentidis C, Gourgiotis D, Kossiva L, et al. Sclerostin distribution in children and adolescents with type 1 diabetes mellitus and correlation with bone metabolism and bone mineral density. Pediatr Diabetes. 2016;17(4):289–299.
  • Tsentidis C, Gourgiotis D, Kossiva L, et al. Increased levels of Dickkopf-1 are indicative of Wnt/β-catenin downregulation and lower osteoblast signaling in children and adolescents with type 1 diabetes mellitus, contributing to lower bone mineral density. Osteoporos Int. 2017;28(3):945–953.
  • Razny U, Polus A, Goralska J, et al. Effect of insulin resistance on whole blood mRNA and microRNA expression affecting bone turnover. Eur J Endocrinol. 2019;181(5):525–537.
  • Daniele G, Winnier D, Mari A, et al. Sclerostin and insulin resistance in prediabetes: evidence of a cross talk between bone and glucose metabolism. Dia Care. 2015;38(8):1509–1517.
  • Holloway-Kew KL, De Abreu LLF, Kotowicz MA, et al. Bone turnover markers in men and women with impaired fasting glucose and diabetes. Calcif Tissue Int. 2019;104(6):599–604.
  • Jiajue R, Jiang Y, Wang O, et al. Suppressed bone turnover was associated with increased osteoporotic fracture risks in non-obese postmenopausal Chinese women with type 2 diabetes mellitus. Osteoporos Int. 2014;25(8):1999–2005.
  • Feldbrin Z, Shargorodsky M. Bone remodelling markers in hypertensive patients with and without diabetes mellitus: link between bone and glucose metabolism. Diabetes Metab Res Rev. 2015;31(7):752–757.
  • Thrailkill KM, Fowlkes JL. The role of vitamin D in the metabolic homeostasis of diabetic bone. Clinic Rev Bone Miner Metab. 2013;11(1):28–37.
  • Joergensen C, Gall MA, Schmedes A, et al. Vitamin D levels and mortality in type 2 diabetes. Diabetes Care. 2010;33(10):2238–2243.
  • George PS, Pearson ER, Witham MD. Effect of vitamin D supplementation on glycaemic control and insulin resistance: a systematic review and meta-analysis. Diabet. Med. 2012;29(8):e142–e150.
  • Swart K, Lips P, Brouwer IA, et al. Effects of vitamin D supplementation on markers for cardiovascular disease and type 2 diabetes: an individual participant data meta-analysis of randomized controlled trials. Am J Clin Nutr. 2018;107(6):1043–1053.
  • Ye Z, Sharp SJ, Burgess S, et al. Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2015;3(1):35–42.
  • Huang CY, Hao-Hsiang Chang HH, Lu CW, et al. Vitamin D status and risk of metabolic syndrome among non-diabetic young adults. Clin Nutr. 2015;34(3):484–489.
  • Pannu PK, Piers LS, Soares MJ, et al. Vitamin D status is inversely associated with markers of risk for type 2 diabetes: a population based study in Victoria, Australia. Plos One. 2017;12(6):e0178825.
  • Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J Steroid Biochem Mol Biol. 2018;175:177–189.
  • Rafiq S, Jeppesen PB. Is hypovitaminosis D related to incidence of type 2 diabetes and high fasting glucose level in healthy subjects: a systematic review and meta-analysis of observational studies. Nutrients. 2018;10(1):59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.