240
Views
2
CrossRef citations to date
0
Altmetric
Invited Review Articles

Emerging technologies in pediatrics: the paradigm of neonatal diabetes mellitus

, , , , &
Pages 522-531 | Received 14 Dec 2019, Accepted 02 Apr 2020, Published online: 01 May 2020

References

  • Greeley SA, Naylor RN, Philipson LH, et al. Neonatal diabetes: an expanding list of genes allows for improved diagnosis and treatment. Curr Diab Rep. 2011;11(6):519–532.
  • World Health Organization. Global Report on Diabetes. Geneva: WHO Press, 2016. Available from: https://www.who.int/diabetes/global-report/en/
  • Zghebi SS, Steinke DT, Carr MJ, et al. Examining trends in type 2 diabetes incidence, prevalence and mortality in the UK between 2004 and 2014. Diabetes Obes Metab. 2017;19(11):1537–1545.
  • Bowman P, Flanagan SE, Hattersley AT. Future roadmaps for precision medicine applied to diabetes: rising to the challenge of heterogeneity. J Diabetes Res. 2018;2018:3061620.
  • McCarthy MI, Hattersley AT. Learning from molecular genetics: novel insights arising from the definition of genes for monogenic and type 2 diabetes. Diabetes. 2008;57(11):2889–2898.
  • De Franco E, Ellard S. Genome, exome, and targeted next-generation sequencing in neonatal diabetes. Pediatr Clin North Am. 2015;62(4):1037–1053.
  • Rozance PJ, Hay WW. Neonatal hyperglycemia. Neoreviews. 2010;11(11):e632–e639.
  • Demirbilek H, Galcheva S, Vuralli D, et al. Ion transporters, channelopathies, and glucose disorders. Int J Mol Sci. 2019;20(10):E2590. DOI:10.3390/ijms20102590
  • Johnson JH, Newgard CB, Milburn JL, et al. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem. 1990;265:6548–6551.
  • Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. CG. 2007;8(2):113–128.
  • Stuhlmann T, Planells-Cases R, Jentsch TJ. LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nat Commun. 2018;9(1):1974.
  • Osmai M, Osmai Y, Bang-Berthelsen CH, et al. MicroRNAs as regulators of beta-cell function and dysfunction. Diabetes Metab Res Rev. 2016;32(4):334–349.
  • Esguerra JLS, Nagao M, Ofori JK, et al. MicroRNAs in islet hormone secretion. Diabetes Obes Metab. 2018;20(Suppl 2):11–19.
  • Chen H, Lan HY, Roukos DH, et al. Application of microRNAs in diabetes mellitus. J Endocrinol. 2014;222(1):R1–R10.
  • Naylor RN, Greeley SA, Bell GI, et al. Genetics and pathophysiology of neonatal diabetes mellitus. J Diabetes Investig. 2011;2(3):158–169.
  • Docherty LE, Kabwama S, Lehmann A, et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia. 2013;56(4):758–762.
  • Temple IK, Gardner RJ, Mackay DJ, et al. Transient neonatal diabetes mellitus: widening our understanding of the aetiopathogenesis of diabetes. Diabetes. 2000;49(8):1359–1366.
  • Temple IK, Shield J. 6q24 transient neonatal diabetes. Rev Endocr Metab Disord. 2010;11(3):199–204.
  • Mackay DJ, Boonen SE, Clayton-Smith J, et al. A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum Genet. 2006;120(2):262–269.
  • Kamiya M, Judson H, Okazaki Y, et al. The cell cycle control gene ZAC/PLAG1 is imprinted-a strong candidate gene for transient neonatal diabetes. Hum Mol Genet. 2000;9(3):453–460.
  • Arima T, Drewell RA, Arney KL, et al. A conserved imprinting control region at the HYMAI/ZAC domain is implicated in transient neonatal diabetes mellitus. Hum Mol Genet. 2001;10(14):1475–1483.
  • Lemelman MB, Letourneau L, Greeley S. Neonatal diabetes mellitus: an update on diagnosis and management. Clin Perinatol. 2018;45(1):41–59.
  • Flanagan SE, Patch AM, Mackay DJG, et al. Mutations in ATP-sensitive K + channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes. 2007;56:1930–1937.
  • Stoy J, Steiner DF, Park SY, et al. Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Rev Endocr Metab Disord. 2010;11(3):205–215.
  • Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med. 2004;350(18):1838–1849.
  • Babenko AP, Polak M, Cavé H, et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med. 2006;355(5):456–466.
  • Bowman P, Broadbridge E, Knight BA, et al. Psychiatric morbidity in children with KCNJ11 neonatal diabetes. Diabet Med. 2016;33(10):1387–1391.
  • Landmeier KA, Lanning M, Carmody D, et al. ADHD, learning difficulties and sleep disturbances associated with KCNJ11-related neonatal diabetes. Pediatr Diabetes. 2017;18(7):518–523.
  • Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes. 2005;54(9):2503–2513.
  • Shimomura K, Hörster F, de Wet H, et al. A novel mutation causing DEND syndrome: a treatable channelopathy of pancreas and brain. Neurology. 2007;69(13):1342–1349.
  • Pearson ER, Flechtner I, Njølstad PR, et al. Hattersley AT; Neonatal Diabetes International Collaborative Group. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006;355(5):467–477.
  • Babiker T, Vedovato N, Patel K, et al. Successful transfer to sulphonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes. Diabetologia. 2016;59(6):1162–1166.
  • Proks P, de Wet H, Ashcroft FM. Molecular mechanism of sulphonylurea block of KATP channels carrying mutations that impair ATP inhibition and cause neonatal diabetes. Diabetes. 2013;62(11):3909–3919.
  • Shimomura K, Maejima Y. KATP channel mutations and neonatal diabetes. Intern Med. 2017;56(18):2387–2393.
  • Letourneau LR, Greeley S. Precision medicine: long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations. Curr Diab Rep. 2019;19(8):52.
  • Ashcroft FM, Puljung MC, Vedovato N. Neonatal diabetes and the KATP channel: from mutation to therapy. Trends Endocrinol Metab. 2017;28(5):377–387.
  • Mohamadi A, Clark LM, Lipkin PH, et al. Medical and developmental impact of transition from subcutaneous insulin to oral glyburide in a 15-yr-old boy with neonatal diabetes mellitus and intermediate DEND syndrome: extending the age of KCNJ11 mutation testing in neonatal DM. Pediatr Diabetes. 2009;11(3):203–207.
  • Mlynarski W, Tarasov AI, Gach A, et al. Sulfonylurea improves CNS function in a case of intermediate DEND syndrome caused by a mutation in KCNJ11. Nat Rev Neurol. 2007;3(11):640–645.
  • Slingerland AS, Nuboer R, Hadders-Algra M, et al. Improved motor development and good long-term glycaemic control with sulfonylurea treatment in a patient with the syndrome of intermediate developmental delay, early-onset generalised epilepsy and neonatal diabetes associated with the V59M mutation in the KCNJ11 gene. Diabetologia. 2006;49(11):2559–2563.
  • Støy J, Philipson LH, Bell GI, et al. Neonatal Diabetes International Collaborative Group. Insulin gene mutations as a cause of permanent neonatal diabetes. Pnas. 2007;104(38):15040–15044.
  • Polak M, Dechaume A, Cavé H, et al. Heterozygous missense mutations in the insulin gene are linked to permanent diabetes appearing in the neonatal period or in early infancy: a report from the French ND (Neonatal Diabetes) study group. Diabetes. 2008;57(4):1115–1119.
  • Edghill EL, Hattersley AT, Ellard S, et al.; The Neonatal Diabetes International Collaborative Group. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes. 2008;57(4):1034–1042.
  • Molven A, Søvik O, Bell GI, et al.; the Norwegian Childhood Diabetes Study Group. Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes. 2008;57(4):1131–1135.
  • Meur G, Simon A, Harun N, et al. Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention. Diabetes. 2010;59(3):653–661.
  • Rajan S, Eames SC, Park SY, et al. In vitro processing and secretion of mutant insulin proteins that cause permanent neonatal diabetes. Am J Physiol Endocrinol Metab. 2010;298(3):E403–E410.
  • Park SY, Ye H, Steiner DF, et al. Mutant proinsulin proteins associated with neonatal diabetes are retained in the endoplasmic reticulum and not efficiently secreted. Biochem Biophys Res Commun. 2010;391(3):1449–1454.
  • Colombo C, Porzio O, Liu M, et al. Early Onset Diabetes Study Group of the Italian Society of Pediatric Endocrinology and Diabetes (SIEDP). Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J Clin Invest. 2008;118:2148–2156.
  • Hodish I, Liu M, Rajpal G, et al. Misfolded proinsulin affects bystander proinsulin in neonatal diabetes. J Biol Chem. 2010;285(1):685–694.
  • Njølstad PR, Søvik O, Cuesta-Muñoz A, et al. Permanent neonatal diabetes mellitus due to glucokinase deficiency: an inborn error of the glucose/insulin signaling pathway. N Engl J Med. 2001;344(21):1588–1592.
  • Pal M. Medicinal chemistry approaches for glucokinase activation to treat type 2 diabetes. CMC. 2009;16(29):3858–3874.
  • Haynes NE, Corbett WL, Bizzarro FT, et al. Discovery, structure-activity relationships, pharmacokinetics, and efficacy of glucokinase activator (2R)-3-cyclopentyl-2-(4-methanesulfonylphenyl)-N-thiazol-2-yl-propionamide (RO0281675). J Med Chem. 2010;53(9):3618–3625.
  • Hattersley AT, Greeley SAW, Polak M, et al. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2018;19(Suppl 27):47–63.
  • Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–21.
  • Verbsky JW, Chatila TA. Immune dysregulation, polyendocrinopathy, enteropathy, Xlinked (IPEX) and IPEX-related disorders: an evolving web of heritable autoimmune diseases. Curr Opin Pediatr. 2013;25(6):708–714.
  • Bindl L, Torgerson T, Perroni L, et al. Successful use of the new immune-suppressor sirolimus in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, Xlinked syndrome). J Pediatr. 2005;147(2):256–259.
  • Yong PL, Russo P, Sullivan KE. Use of sirolimus in IPEX and IPEX-like children. J Clin Immunol. 2008;28(5):581–587.
  • Rao A, Kamani N, Filipovich A, et al. Successful bone marrow transplantation for IPEX syndrome after reduced-intensity conditioning. Blood. 2007;109(1):383–385.
  • Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet. 1998;20(2):143–148.
  • Khanim F, Kirk J, Latif F, et al. WFS1/wolframin mutations, Wolfram syndrome, and associated diseases. Hum Mutat. 2001;17(5):357–367.
  • Kumar S. Wolfram syndrome: important implications for pediatricians and pediatric endocrinologists. Pediatr Diabetes. 2010;11(1):28–37.
  • Harding HP, Zeng H, Zhang Y, et al. Mellitus and exocrine pancreatic dysfunction in perk -/- mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001;7(6):1153–1163.
  • Zhang P, McGrath B, Li S, et al. The PERK eukaryotic initiation factor 2a kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol. 2002;22(11):3864–3874.
  • Delépine M, Nicolino M, Barrett T, et al. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet. 2000;25(4):406–409.
  • Senée V, Vattem KM, Delépine M, et al. Wolcott-Rallison Syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes. 2004;53(7):1876–1883.
  • Melloul D, Tsur A, Zangen D. Pancreatic Duodenal Homeobox (PDX-1) in health and disease. J Pediatr Endocrinol Metab. 2002;15(9):1461–1472.
  • Thomas IH, Saini NK, Adhikari A, et al. Neonatal diabetes mellitus with pancreatic agenesis in an infant with homozygous IPF-1 Pro63fsX60 mutation. Pediatr Diabetes. 2009;10(7):492–496.
  • Sellick GS, Barker KT, Stolte-Dijkstra I, et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet. 2004;36(12):1301–1305.
  • Tutak E, Satar M, Yapicioğlu H, Altintaş A, Narli N, Hergüner O, Bayram Y. A Turkish newborn infant with cerebellar agenesis/neonatal diabetes mellitus and PTF1A mutation. Genet. Couns. 2009;20:147–152.
  • Watanabe N, Hiramatsu K, Miyamoto R, et al. A murine model of neonatal diabetes mellitus in Glis3-deficient mice. FEBS Lett. 2009;583(12):2108–2113.
  • Senée V, Chelala C, Duchatelet S, et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet. 2006;38(6):682–687.
  • Rubio-Cabezas O, Minton JA, Kantor I, et al. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes. 2010;59(9):2326–2331.
  • Ellard S, Lango Allen H, De Franco E, et al. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia. 2013;56(9):1958–1963.
  • Gao R, Liu Y, Gjesing AP, et al. Evaluation of a target region capture sequencing platform using monogenic diabetes as a study-model. BMC Genet. 2014;15(1):13.
  • Greeley SA, John PM, Winn AN, et al. The cost-effectiveness of personalized genetic medicine: the case of genetic testing in neonatal diabetes. Diabetes Care. 2011;34(3):622–627.
  • De Franco E, Flanagan SE, Houghton JA, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet. 2015;386(9997):957–963.
  • Bonnefond A, Philippe J, Durand E, et al. Highly sensitive diagnosis of 43 monogenic forms of diabetes or obesity through one-step PCR-based enrichment in combination with next-generation sequencing. Diabetes Care. 2014;37(2):460–467.
  • Anderson de la Llana S, Klee P, Santoni F, et al. Gene variants associated with transient neonatal diabetes mellitus in the very low birth weight infant. Horm Res Paediatr. 2015;84(4):283–288.
  • Kylat RI, Senguttuvan R, Bader MY. Personalized precision medicine in extreme preterm infants with transient neonatal diabetes mellitus. J Pediatr Endocrinol Metab. 2017;30(5):593–596.
  • Hancili S, Bonnefond A, Philippe J, et al. A novel NEUROG3 mutation in neonatal diabetes associated with a neuro-intestinal syndrome. Pediatr Diabetes. 2018;19(3):381–387.
  • Al Senani A, Hamza N, Al Azkawi H, et al. Genetic mutations associated with neonatal diabetes mellitus in Omani patients. J Pediatr Endocrinol Metab. 2018;31(2):195–204.
  • Demirbilek H, Hatipoglu N, Gul U, et al. Permanent neonatal diabetes mellitus and neurological abnormalities due to a novel homozygous missense mutation in NEUROD1. Pediatr Diabetes. 2018;19(5):898–904.
  • Rabbani B, Mahdieh N, Hosomichi K, et al. Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. J Hum Genet. 2012;57(10):621–632.
  • Allen HL, Flanagan SE, Shaw-Smith C, et al.; The International Pancreatic Agenesis Consortium. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet. 2012;44(1):20–22.
  • Flanagan SE, Haapaniemi E, Russell MA, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet. 2014;46(8):812–814.
  • Stoffers DA, Zinkin NT, Stanojevic V, et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997;15(1):106–110.
  • Schwitzgebel VM, Mamin A, Brun T, et al. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab. 2003;88(9):4398–4406.
  • Al-Shammari M, Al-Husain M, Al-Kharfy T, et al. novel PTF1A mutation in a patient with severe pancreatic and cerebellar involvement. Clin Genet. 2011;80(2):196–198.
  • Bonnefond A, Durand E, Sand O, et al. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome. PLOS One. 2010;5(10):e13630.
  • Shalev SA, Tenenbaum-Rakover Y, Horovitz Y, et al. Microcephaly, epilepsy, and neonatal diabetes due to compound heterozygous mutations in IER3IP1: insights into the natural history of a rare disorder. Pediatr Diabetes. 2014;15(3):252–256.
  • Chao CS, McKnight KD, Cox KL, et al. Novel GATA6 mutations in patients with pancreatic agenesis and congenital heart malformations. PLOS One. 2015;10(2):e0118449.
  • Velayos T, Martínez R, Alonso M, et al. Activating mutation in STAT3 results in neonatal diabetes through reduced insulin synthesis. Diabetes. 2017;66(4):1022–1029.
  • Hwang JL, Park SY, Ye H, et al.; T2D-Genes Consortium. Greeley SAW; T2D-Genes Consortium. FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr Diabetes. 2018;19(3):388–392.
  • Lin DC, Huang CY, Ting WH, et al. Mutations in glucokinase and other genes detected in neonatal and type 1B diabetes patient using whole exome sequencing may lead to disease-causing changes in protein activity. Biochim Biophys Acta Mol Basis Dis. 2019;1865(2):428–433.
  • Weedon MN, Cebola I, Patch AM, et al.; International Pancreatic Agenesis Consortium. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet. 2014;46(1):61–64.
  • Laurenzano SE, McFall C, Nguyen L, et al. Neonatal diabetes mellitus due to a novel variant in the INS gene. Cold Spring Harb Mol Case Stud. 2019;5(4):a004085.
  • Al-Khawaga S, Mohammed I, Saraswathi S, et al. The clinical and genetic characteristics of permanent neonatal diabetes (PNDM) in the state of Qatar. Mol Genet Genomic Med. 2019;7(10):e00753.
  • Aziz N, Zhao Q, Bry L, et al. College of American Pathologists’ laboratory standards for next-generation sequencing clinical tests. Arch Pathol Lab Med. 2015;139(4):481–493.
  • Richards S, Aziz N, Bale S, et al.; on behalf of the ACMG Laboratory Quality Assurance Committee. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for. Genet Med. 2015;17(5):405–424.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.