1,380
Views
11
CrossRef citations to date
0
Altmetric
Invited Review Articles

Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner’s guide

, , &
Pages 77-100 | Received 25 Mar 2020, Accepted 09 Jun 2020, Published online: 01 Jul 2020

References

  • Fauci AS. Infectious diseases: considerations for the 21st century. Clin Infect Dis. 2001;32(5):675–685.
  • Relman DA. The search for unrecognized pathogens. Science. 1999;284(5418):1308–1310.
  • Cassell GH. Infectious causes of chronic inflammatory diseases and cancer. Emerging Infect Dis. 1998;4(3):475–487.
  • Díaz P, Valenzuela Valderrama M, Bravo J, et al. Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front Microbiol. 2018;9:5.
  • Testerman TL, Morris J. Beyond the stomach: an updated view of Helicobacter pylori pathogenesis, diagnosis, and treatment. World J Gastroenterol. 2014;20(36):12781–12808.
  • Kłodzińska SN, Priemel PA, Rades T, et al. Combining diagnostic methods for antimicrobial susceptibility testing – a comparative approach. J Microbiol Methods. 2018;144:177–185.
  • Madden GR, Weinstein RA, Sifri CD. Diagnostic stewardship for healthcare-associated infections: opportunities and challenges to safely reduce test use. Infect Control Hosp Epidemiol. 2018;39(2):214–218.
  • Caliendo AM, Gilbert DN, Ginocchio CC, et al. Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis. 2013;57(suppl 3):S139–S170.
  • Leekha S, Terrell CL, Edson RS. General principles of antimicrobial therapy. Mayo Clin Proc. 2011;86(2):156–167.
  • Gilbert GL. Knowing when to stop antibiotic therapy. Med J Aust. 2015;202(3):121–122.
  • Macfarlane-Smith LR, Ahmed S, Wilcox MH. Molecular versus culture-based testing for gastrointestinal infection. Curr Opin Gastroenterol. 2018;34(1):19–24.
  • Tenover FC. The role for rapid molecular diagnostic tests for infectious diseases in precision medicine. Expert Rev Precis Med Drug Dev. 2018;3(1):69–77.
  • Greco R, Barbanti MC, Mancini N, et al. Adjuvant role of SeptiFast to improve the diagnosis of sepsis in a large cohort of hematological patients. Bone Marrow Transplant. 2018;53(4):410–416.
  • Tang XJ, Yang Z, Chen XB, et al. Verification and large scale clinical evaluation of a national standard protocol for Salmonella spp./Shigella spp. screening using real-time PCR combined with guided culture. J Microbiol Methods. 2018;145:14–19.
  • Nasseri B, Soleimani N, Rabiee N, et al. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron. 2018;117:112–128.
  • Ballard ZS, Brown C, Ozcan A. Mobile technologies for the discovery, analysis, and engineering of the global microbiome. ACS Nano. 2018;12(4):3065–3082.
  • Koydemir HC, Ozcan A. Wearable and implantable sensors for biomedical applications. Annu Rev Anal Chem (Palo Alto Calif). 2018;11(1):127–146.
  • Purohit B, Kumar A, Mahato K, et al. Smartphone-assisted personalized diagnostic devices and wearable sensors. Curr Opin Biomed Eng. 2020;13:42–50.
  • Alawsi T, Al-Bawi Z. A review of smartphone point-of-care adapter design. Eng Rep. 2019;1(2):e12039.
  • Kim SA, Park SH, Lee SI, et al. Rapid and simple method by combining FTA™ card DNA extraction with two set multiplex PCR for simultaneous detection of non-O157 Shiga toxin-producing Escherichia coli strains and virulence genes in food samples. Lett Appl Microbiol. 2017;65(6):482–488.
  • Zhang Y, Wan D, Zhou X, et al. Diurnal variations in iron concentrations and expression of genes involved in iron absorption and metabolism in pigs. Biochem Biophys Res Commun. 2017;490(4):1210–1214.
  • Opota O, Laurent S, Pillonel T, et al. Genomics of the new species Kingella negevensis: diagnostic issues and identification of a locus encoding a RTX toxin. Microbes Infect. 2017;19(11):546–552.
  • Takase Y, Usui K, Shimizu K, et al. Highly sensitive detection of a HER2 12-base pair duplicated insertion mutation in lung cancer using the Eprobe-PCR method. PLoS One. 2017;12(2):e0171225.
  • Babion I, Snoek BC, van de Wiel MA, et al. A strategy to find suitable reference genes for miRNA quantitative PCR analysis and its application to cervical specimens. J Mol Diagn. 2017;19(5):625–637.
  • Becker K, Denis O, Roisin S, et al. Detection of mecA- and mecC-Positive methicillin-resistant Staphylococcus aureus (MRSA) isolates by the new Xpert MRSA Gen 3 PCR assay. J Clin Microbiol. 2016;54(1):180–184.
  • Li M, Yang Y, He Y, et al. Detection and cell sorting of Pseudonocardia species by fluorescence in situ hybridization and flow cytometry using 16S rRNA-targeted oligonucleotide probes. Appl Microbiol Biotechnol. 2018;102(7):3375–3386.
  • Ellington MJ, Ekelund O, Aarestrup FM, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect. 2017;23(1):2–22.
  • Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed. 2013;98(6):236–238.
  • Leski TA, Malanoski AP, Stenger DA, et al. Target amplification for broad spectrum microbial diagnostics and detection. Future Microbiol. 2010;5(2):191–203.
  • Lau BT, Wood-Bouwens C, Ji HP. Robust multiplexed clustering and denoising of digital PCR assays by data gridding. Anal Chem. 2017;89(22):11913–11917.
  • Schoepp NG, Schlappi TS, Curtis MS, et al. Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples. Sci Transl Med. 2017;9(410):eaal3693.
  • Beliveau BJ, Kishi JY, Nir G, et al. OligoMiner provides a rapid, flexible environment for the design of genome-scale oligonucleotide in situ hybridization probes. Proc Natl Acad Sci USA. 2018;115(10):E2183–e2192.
  • Cantera JL, White H, Diaz MH, et al. Assessment of eight nucleic acid amplification technologies for potential use to detect infectious agents in low-resource settings. PLoS One. 2019;14(4):e0215756.
  • Boulter N, Suarez FG, Schibeci S, et al. A simple, accurate and universal method for quantification of PCR. BMC Biotechnol. 2016;16:27.
  • Lan P, Li F, Abad J, et al. Simultaneous detection and differentiation of three Potyviridae viruses in sweet potato by a multiplex TaqMan real time RT-PCR assay. J Virol Methods. 2018;252:24–31.
  • Qiu J, Wilson A, El-Sagheer AH, et al. Combination probes with intercalating anchors and proximal fluorophores for DNA and RNA detection. Nucleic Acids Res. 2016;44(17):e138.
  • Fachmann MSR, Löfström C, Hoorfar J, et al. Detection of Salmonella enterica in meat in less than 5 hours by a low-cost and noncomplex sample preparation method. Appl Environ Microbiol. 2017;83(5):e03151.
  • Taylor SC, Laperriere G, Germain H. Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Sci Rep. 2017;7(1):2409.
  • Pekin D, Skhiri Y, Baret JC, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip. 2011;11(13):2156–2166.
  • Chen WW, Balaj L, Liau LM, et al. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids. 2013;2:e109.
  • White RA, 3rd, Quake SR, Curr K. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J Virol Methods. 2012;179(1):45–50.
  • van Ginkel JH, Huibers M, van Es RJJ, et al. Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients. BMC Cancer. 2017;17(1):428.
  • Sidstedt M, Hedman J, Romsos EL, et al. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR. Anal Bioanal Chem. 2018;410(10):2569–2583.
  • Farrar JS, Wittwer CT. Extreme PCR: efficient and specific DNA amplification in 15–60 seconds. Clin Chem. 2015;61(1):145–153.
  • Wheeler EK, Hara CA, Frank J, et al. Under-three minute PCR: probing the limits of fast amplification. Analyst. 2011;136(18):3707–3712.
  • Shaw KJ, Docker PT, Yelland JV, et al. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling. Lab Chip. 2010;10(13):1725–1728.
  • Giordano BC, Ferrance J, Swedberg S, et al. Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal Biochem. 2001;291(1):124–132.
  • Krishnan M, Ugaz VM, Burns MA. PCR in a Rayleigh-Bénard convection cell. Science. 2002;298(5594):793.
  • Chou WP, Chen PH, Miao M, et al. Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater. Biotechniques. 2011;50(1):52–57.
  • Braun D, Goddard NL, Libchaber A. Exponential DNA replication by laminar convection. Phys Rev Lett. 2003;91(15):158103.
  • Priye A, Hassan YA, Ugaz VM. Microscale chaotic advection enables robust convective DNA replication. Anal Chem. 2013;85(21):10536–10541.
  • Muddu R, Hassan YA, Ugaz VM. Chaotically accelerated polymerase chain reaction by microscale Rayleigh-Bénard convection. Angew Chem Int Ed Engl. 2011;50(13):3048–3052.
  • Hennig M, Braun D. Convective polymerase chain reaction around micro immersion heater. Appl Phys Lett. 2005;87(18):183901.
  • Braun D. PCR by thermal convection. Mod Phys Lett B. 2004;18(16):775–784.
  • Wheeler EK, Benett W, Stratton P, et al. Convectively driven polymerase chain reaction thermal cycler. Anal Chem. 2004;76(14):4011–4016.
  • Agrawal N, Hassan YA, Ugaz VM. A pocket-sized convective PCR thermocycler. Angew Chem Int Ed Engl. 2007;46(23):4316–4319.
  • Zhang C, Xing D. Parallel DNA amplification by convective polymerase chain reaction with various annealing temperatures on a thermal gradient device. Anal Biochem. 2009;387(1):102–112.
  • Chen Z, Qian S, Abrams WR, et al. Thermosiphon-based PCR reactor: experiment and modeling. Anal Chem. 2004;76(13):3707–3715.
  • Chung KH, Park SH, Choi YH. A palmtop PCR system with a disposable polymer chip operated by the thermosiphon effect. Lab Chip. 2010;10(2):202–210.
  • Chang HF, Tsai YL, Tsai CF, et al. A thermally baffled device for highly stabilized convective PCR. Biotechnol J. 2012;7(5):662–666.
  • Hsieh YF, Lee DS, Chen PH, et al. A real-time convective PCR machine in a capillary tube instrumented with a CCD-based fluorometer. Sens Actuators B Chem. 2013;183:434–440.
  • Rajendran VK, Bakthavathsalam P, Bergquist PL, et al. A portable nucleic acid detection system using natural convection combined with a smartphone. Biosens Bioelectron. 2019;134:68–75.
  • Jiang L, Mancuso M, Lu Z, et al. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics. Sci Rep. 2014;4:4137.
  • Priye A, Ugaz VM. Convective PCR thermocycling with smartphone-based detection: a versatile platform for rapid, inexpensive, and robust mobile diagnostics. In: Lu C, Verbridge SS, editors. Microfluidic methods for molecular biology. Cham, Switzerland: Springer International Publishing, 2016. p. 55–69.
  • Zhao Y, Chen F, Li Q, et al. Isothermal amplification of nucleic acids. Chem Rev. 2015;115(22):12491–12545.
  • Kordas A, Papadakis G, Milioni D, et al. Rapid Salmonella detection using an acoustic wave device combined with the RCA isothermal DNA amplification method. Sens Biosensing Res. 2016;11:121–127.
  • Xu H, Wu D, Jiang Y, et al. Loopback rolling circle amplification for ultrasensitive detection of Kras gene. Talanta. 2017;164:511–517.
  • Lu X, Shi X, Wu G, et al. Visual detection and differentiation of Classic Swine Fever Virus strains using nucleic acid sequence-based amplification (NASBA) and G-quadruplex DNAzyme assay. Sci Rep. 2017;7:44211.
  • Kersting S, Rausch V, Bier FF, et al. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Microchim Acta. 2014;181(13–14):1715–1723.
  • Moore MD, Jaykus LA. Development of a recombinase polymerase amplification assay for detection of epidemic human Noroviruses. Sci Rep. 2017;7:40244.
  • Wu YD, Xu MJ, Wang QQ, et al. Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for detection of Toxoplasma gondii in the environment. Vet Parasitol. 2017;243:199–203.
  • Chen X, Wu X, Gan M, et al. Rapid detection of Staphylococcus aureus in dairy and meat foods by combination of capture with silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification. J Dairy Sci. 2015;98(3):1563–1570.
  • Mikš-Krajnik M, Lim HSY, Zheng Q, et al. Loop-mediated isothermal amplification (LAMP) coupled with bioluminescence for the detection of Listeria monocytogenes at low levels on food contact surfaces. Food Control. 2016; 60:237–240.
  • Wang Y, Li H, Wang Y, et al. Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Listeria monocytogenes. Int J Nanomedicine. 2017;12:473–486.
  • Bakthavathsalam P, Longatte G, Jensen SO, et al. Locked nucleic acid molecular beacon for multiplex detection of loop mediated isothermal amplification. Sens Actuat B-Chem. 2018;268:255–263.
  • Qiu T, Wang Y, Yu J, et al. Label-free, homogeneous, and ultrasensitive detection of pathogenic bacteria based on target-triggered isothermally exponential amplification. RSC Adv. 2016;6(66):62031–62037.
  • Wang L, Q C, Wu H, et al. Technical aspects of nicking enzyme assisted amplification. Analyst. 2018;143(6):1444–1453.
  • Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.
  • Mok E, Wee E, Wang Y, et al. Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction. Sci Rep. 2016;6:37837.
  • Ali MM, Li F, Zhang Z, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev. 2014;43(10):3324–3341.
  • Ma Y, Teng F, Libera M. Solid-phase nucleic acid sequence-based amplification and length-scale effects during RNA amplification. Anal Chem. 2018;90(11):6532–6539.
  • Rohrman BA, Richards-Kortum RR. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip. 2012;12(17):3082–3088.
  • Lau HY, Botella JR. Advanced DNA-based point-of-care diagnostic methods for plant diseases detection. Front Plant Sci. 2017;8:2016.
  • Chen X, Wang X, Jin N, et al. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification. Int J Mol Sci. 2012;13(11):14421–14433.
  • Mabey D, Peeling RW, Ustianowski A, et al. Diagnostics for the developing world. Nat Rev Microbiol. 2004;2(3):231–240.
  • Bissonnette L, Bergeron M. The GenePOC Platform, a rational solution for extreme point-of-care testing. Micromachines. 2016;7(6):94.
  • Drain PK, Hyle EP, Noubary F, et al. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis. 2014;14(3):239–249.
  • Dorman SE, Schumacher SG, Alland D, et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis. 2018;18(1):76–84.
  • Lafleur LK, Bishop JD, Heiniger EK, et al. A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip. 2016;16(19):3777–3787.
  • MacLeod JA, Nemeth AC, Dicke WC, et al. Fast, sensitive point of care electrochemical molecular system for point mutation and select agent detection. Lab Chip. 2016;16(13):2513–2520.
  • Spencer DH, Sellenriek P, Burnham CA. Validation and implementation of the GeneXpert MRSA/SA blood culture assay in a pediatric setting. Am J Clin Pathol. 2011;136(5):690–694.
  • Wang S, Lifson MA, Inci F, et al. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings. Expert Rev Mol Diagn. 2016;16(4):449–459.
  • Mutlu AY, Kılıç V, Özdemir GK, et al. Smartphone-based colorimetric detection via machine learning. Analyst. 2017;142(13):2434–2441.
  • McCracken KE, Tat T, Paz V, et al. Smartphone-based fluorescence detection of bisphenol A from water samples. RSC Adv. 2017;7(15):9237–9243.
  • Kong JE, Wei Q, Tseng D, et al. Highly stable and sensitive nucleic acid amplification and cell-phone-based readout. ACS Nano. 2017;11(3):2934–2943.
  • Fronczek CF, Park TS, Harshman DK, et al. Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv. 2014;4(22):11103–11110.
  • Truett GE, Heeger P, Mynatt RL, et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). BioTechniques. 2000;29(1):52–54.
  • Park KS, Huang CH, Lee K, et al. Rapid identification of health care-associated infections with an integrated fluorescence anisotropy system. Sci Adv. 2016;2(5):e1600300.
  • Angus SV, Cho S, Harshman DK, et al. A portable, shock-proof, surface-heated droplet PCR system for Escherichia coli detection. Biosens Bioelectron. 2015;74:360–368.
  • Priye A, Wong S, Bi Y, et al. Lab-on-a-Drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal Chem. 2016;88(9):4651–4660.
  • Lee D, Chou WP, Yeh SH, et al. DNA detection using commercial mobile phones. Biosens Bioelectron. 2011;26(11):4349–4354.
  • Chan K, Wong PY, Parikh C, et al. Moving toward rapid and low-cost point-of-care molecular diagnostics with a repurposed 3D printer and RPA. Anal Biochem. 2018;545:4–12.
  • Stedtfeld RD, Tourlousse DM, Seyrig G, et al. Gene-Z: a device for point of care genetic testing using a smartphone. Lab Chip. 2012;12(8):1454–1462.
  • Song J, Pandian V, Mauk MG, et al. Smartphone-based mobile detection platform for molecular diagnostics and spatiotemporal disease mapping. Anal Chem. 2018;90(7):4823–4831.
  • Chen W, Yu H, Sun F, et al. Mobile platform for multiplexed detection and differentiation of disease-specific nucleic acid Sequences, Using Microfluidic Loop-Mediated Isothermal Amplification and Smartphone Detection. Anal Chem. 2017;89(21):11219–11226.
  • Huang X, Lin X, Urmann K, et al. Smartphone-based in-gel loop-mediated isothermal amplification (gLAMP) system enables rapid Coliphage MS2 quantification in environmental waters. Environ Sci Technol. 2018;52(11):6399–6407.
  • Damhorst GL, Duarte-Guevara C, Chen W, et al. Smartphone-imaged HIV-1 reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on a chip from whole blood. Engineering (Beijing). 2015;1(3):324–335.
  • Papadakis G, Murasova P, Hamiot A, et al. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples. Biosens Bioelectron. 2018;111:52–58.
  • Yang K, Peretz-Soroka H, Liu Y, et al. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. Lab Chip. 2016;16(6):943–958.
  • Veigas B, Jacob JM, Costa MN, et al. Gold on paper-paper platform for Au-nanoprobe TB detection. Lab Chip. 2012;12(22):4802–4808.
  • Park TS, Li W, McCracken KE, et al. Smartphone quantifies Salmonella from paper microfluidics. Lab Chip. 2013;13(24):4832–4840.
  • Park TS, Cho S, Nahapetian TG, et al. Smartphone detection of UV LED-enhanced particle immunoassay on paper microfluidics. SLAS Technol. 2017;22(1):7–12.
  • Rajendran VK, Bakthavathsalam P, Bergquist PL, et al. Smartphone detection of antibiotic resistance using convective PCR and a lateral flow assay. Sens Actuat B- Chem. 2019;298:126849.
  • Choi JR, Hu J, Tang R, et al. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip. 2016;16(3):611–621.
  • Kaarj K, Akarapipad P, Yoon JY. Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Sci Rep. 2018;8(1):12438.
  • Ho NRY, Lim GS, Sundah NR, et al. Visual and modular detection of pathogen nucleic acids with enzyme-DNA molecular complexes. Nat Commun. 2018;9(1):3238.
  • Fischbach J, Xander NC, Frohme M, et al. Shining a light on LAMP assays-a comparison of LAMP visualization methods including the novel use of berberine. BioTechniques. 2015;58(4):189–194.
  • Tanner NA, Zhang Y, Evans TC. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. BioTechniques. 2015;58(2):59–68.
  • Kong C, Wang Y, Fodjo EK, et al. Loop-mediated isothermal amplification for visual detection of Vibrio parahaemolyticus using gold nanoparticles. Mikrochim Acta. 2017;185(1):35.
  • Huang X, Xu D, Chen J, et al. Smartphone-based analytical biosensors. Analyst. 2018;143(22):5339–5351.
  • Wu TH, Chang CC, Vaillant J, et al. DNA biosensor combining single-wavelength colorimetry and a digital lock-in amplifier within a smartphone. Lab Chip. 2016;16(23):4527–4533.
  • Huang YW, Ugaz VM. Smartphone-based detection of unlabeled DNA via electrochemical dissolution. Analyst. 2013;138(9):2522–2526.
  • Ainla A, Mousavi MPS, Tsaloglou MN, et al. Open-source potentiostat for wireless electrochemical detection with smartphones. Anal Chem. 2018;90(10):6240–6246.
  • Park S, Zhang Y, Lin S, et al. Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv. 2011;29(6):830–839.
  • Brook I. Microbiology of polymicrobial abscesses and implications for therapy. J Antimicrob Chemother. 2002;50(6):805–810.
  • Burnham CAD, Leeds J, Nordmann P, et al. Diagnosing antimicrobial resistance. Nat Rev Microbiol. 2017;15(11):697–703.
  • Sucala M, Cuijpers P, Muench F, et al. Anxiety: there is an app for that. A systematic review of anxiety apps. Depress Anxiety. 2017;34(6):518–525.
  • Chen H, Liu K, Li Z, et al. Point of care testing for infectious diseases. Clin Chim Acta. 2019;493:138–147.
  • Phillips JE, McCune S, Fantz CR, et al. Assay integrity of a PCR Influenza point-of-care test remains following artificial system contamination. J Appl Lab Med. 2019;4(3):422–426.
  • Azar MM, Landry ML. Detection of Influenza A and B viruses and respiratory syncytial virus by use of clinical laboratory improvement amendments of 1988 (CLIA)- waived point-of-care assays: a paradigm shift to molecular tests. J Clin Microbiol. 2018;56(7):e00367.
  • Sharma S, Crawley A, O’Kennedy R. Strategies for overcoming challenges for decentralised diagnostics in resource-limited and catastrophe settings. Expert Rev Mol Diagn. 2017;17(2):109–118.
  • Gleason AW. mHealth – Opportunities for transforming global health care and barriers to adoption. J Electron Resour Med Libr. 2015;12(2):114–125.
  • Majumder S, Deen MJ. Smartphone sensors for health monitoring and diagnosis. Sensors (Basel). 2019;19(9):e2164.
  • Lightley D. When is a mobile app classed as a medical device. MHRA Compliant Apps. Genetic Digital. 2013 [cited 2020 Jun 13]. Available from: https://www.geneticdigital.co.uk/when-should-an-app-be-classed-as-a-device/.
  • Van Norman GA. Drugs and devices: comparison of European and U.S. approval processes. J Am Coll Cardiol Basic Trans Science. 2016;1(5):399–412.
  • Gous N, Boeras DI, Cheng B, et al. The impact of digital technologies on point-of-care diagnostics in resource-limited settings. Expert Rev Mol Diagn. 2018;18(4):385–397.
  • Curfman GD, Redberg RF. Medical devices-balancing regulation and innovation. N Engl J Med. 2011;365(11):975–977.
  • Cobelens F, Kampen SV, Ochodo E, et al. Research on implementation of interventions in tuberculosis control in low- and middle-income countries: a systematic review. PLoS Med. 2012;9(12):e1001358.
  • Andre E, Isaacs C, Affolabi D, et al. Connectivity of diagnostic technologies: improving surveillance and accelerating tuberculosis elimination. Int J Tuberc Lung Dis. 2016;20(8):999–1003.
  • Alamo ST, Kunutsor S, Walley J, et al. Performance of the new WHO diagnostic algorithm for smear-negative pulmonary tuberculosis in HIV prevalent settings: a multisite study in Uganda. Trop Med Int Health. 2012;17(7):884–895.
  • Banamu JK, Lavu E, Johnson K, et al. Impact of GxAlert on the management of ripampicin-resistant tuberculosis patients, Port Moresby, papua New Guinea. Public Health Action. 2019;9(1):s19–s24.
  • Ssengooba W, Respeito D, Mambuque E, et al. Do Xpert MTB/RIF cycle threshold values provide information about patient delays for tuberculosis diagnosis? BMJ Glob Health. 2017;2(Suppl 2):A45.
  • Tom-Aba D, Olaleye A, Olayinka AT, et al. Innovative technological approach to Ebola virus disease outbreak response in Nigeria using the open data kit and form hub technology. PLoS One. 2015;10(6):e0131000.
  • Miao G, Zhang L, Zhang J, et al. Free convective PCR: from principle study to commercial applications-A critical review. Anal Chim Acta. 2020;1108:177–197.
  • Chan HN, Tan MJA, Wu H. Point-of-care testing: applications of 3D printing. Lab Chip. 2017;17(16):2713–2739.
  • Wan L, J G, Chen T, et al. LampPort: a handheld digital microfluidic device for loop-mediated isothermal amplification (LAMP). Biomed Microdevices. 2019;21(1):9.
  • Ziegler I, Fagerström A, Strålin K, et al. Evaluation of a commercial multiplex PCR assay for detection of pathogen DNA in blood from patients with suspected sepsis. PLoS One. 2016;11(12):e0167883
  • Dincer C, Bruch R, Kling A, et al. Multiplexed point-of-care testing – xPOCT. Trends Biotechnol. 2017;35(8):728–742.
  • Araz MK, Tentori AM, Herr AE. Microfluidic multiplexing in bioanalyses. J Lab Autom. 2013;18(5):350–366.
  • Rusling JF. Multiplexed electrochemical protein detection and translation to personalized cancer diagnostics. Anal Chem. 2013;85(11):5304–5310.
  • Zhou Y, Huang X, Liu C, et al. Color-multiplexing-based fluorescent test paper: dosage-sensitive visualization of arsenic(III) with discernable scale as low as 5 ppb. Anal Chem. 2016;88(12):6105–6109.
  • Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44(14):4792–4834.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.