1,202
Views
23
CrossRef citations to date
0
Altmetric
Invited Review Articles

Recent evolutions of machine learning applications in clinical laboratory medicine

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 131-152 | Received 11 Jun 2020, Accepted 23 Sep 2020, Published online: 12 Oct 2020

References

  • Lippi G. Machine learning in laboratory diagnostics: valuable resources or a big hoax? Diagnosis. 2019. DOI:https://doi.org/10.1515/dx-2019-0060
  • Cabitza F, Banfi G. Machine learning in laboratory medicine: waiting for the flood? Clin Chem Lab Med. 2018;56(4):516–524.
  • Sivapalaratnam S. Artificial intelligence and machine learning in haematology. Br J Haematol. 2019;185(2):207–208.
  • Machine learning [Internet]. San Francisco: Deep AI; 2020 [cited 2020 May 18]. Available from: https://deepai.org/machine-learning-glossary-and-terms/machine-learning
  • Naugler C, Church DL. Automation and artificial intelligence in the clinical laboratory. Crit Rev Clin Lab Sci. 2019;56(2):98–110.
  • Durant T. Machine learning and laboratory medicine: now and the road ahead [Internet]. Washington: AACC; 2020 [cited 2020 May 18]. Available from: https://www.aacc.org/publications/cln/articles/2019/march/machine-learning-and-laboratory-medicine-now-and-the-road-ahead
  • Géron Aurélien. Hands-on machine learning with Scikit-Learn, Keras & TensorFlow. 2nd ed. Sebastopol (CA): O’Reilly Media; 2019.
  • De Bruyne S, Speeckaert MM, Delanghe JR. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit Rev Clin Lab Sci. 2018;55(1):1–20.
  • Lee SH. Natural language generation for electronic health records. NPJ Digit Med. 2018;1:63.
  • Bisong E. Building machine learning and deep learning models on Google cloud platform. Berkeley: Apress; 2019.
  • Babic B, Gerke S, Evgeniou T, et al. Algorithms on regulatory lockdown in medicine. Science. 2019;366(6470):1202–1204.
  • Zhang X, Li R, Zhang B, et al. An instance-based learning recommendation algorithm of imbalance handling methods. Appl Math Comput. 2019;351:204–218.
  • Tangkaratt V, Morimoto J, Sugiyama M. Model-based reinforcement learning with dimension reduction. Neural Netw. 2016;84:1–16.
  • Ripley BD. Pattern recognition and neural networks. Cambridge: Cambridge University Press; 1996.
  • Yan X, Su X. Linear regression analysis: theory and computing. Singapore: World Scientific; 2009.
  • Pedregrosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–2830.
  • Ozer ME, Sarica PO, Arga KY. New machine learning applications to accelerate personalized medicine in breast cancer: rise of the support vector machines. OMICS. 2020;24(5):241–246.
  • Mishra S, Datta-Gupta A. Applied statistical modeling and data analytics. Amsterdam: Elsevier; 2018.
  • Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24(12):1565–1567.
  • Tin KH. Random decision forests. Proceedings of the 3rd International Conference on Document Analysis and Recognition (Montreal Quebec, Canada); 1995.
  • Si S, Zhang H, Keerthi SS, et al. Gradient boosted decision trees for high dimensional sparse output. Proceedings of the 34th International Conference on Machine Learning; 2017 Aug 6–11; Sydney (Australia). PMLR; 2017.
  • Ogutu JO, Piepho HP, Schulz-Streeck T. A comparison of random forests, boosting and support vector machines for genomic selection. BMC Proc. 2011;5(Suppl. 3):S11.
  • Huang Y, Kangas LJ, Rasco BA. Applications of artificial neural networks (ANNs) in food science. Crit Rev Food Sci Nutr. 2007;47(2):113–126.
  • Ng A. Neural networks and deep learning [Internet]. California: Coursera; 2020 [cited 2020 Jun 6]. Available from: https://www.coursera.org/learn/neural-networks-deep-learning?specialization=deep-learning
  • Aloysius N, Geetha M. A review on deep convolutional neural networks. International Conference on Communication and Signal Processing (ICCSP); 2017 Apr 6–8; Chennai (India). IEEE; 2017.
  • Rawat W, Wang Z. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 2017;29(9):2352–2449.
  • Anwar SM, Majid M, Qayyum A, et al. Medical image analysis using convolutional neural networks: a review. J Med Syst. 2018;42(11):226.
  • Plebani M. Quality indicators to detect pre-analytical errors in laboratory testing. Clin Biochem Rev. 2012;33(3):85–88.
  • Carraro P, Zago T, Plebani M. Exploring the initial steps of the testing process: frequency and nature of pre-preanalytic errors. Clin Chem. 2012;58(3):638–642.
  • Rosenbaum MW, Baron JM. Using machine learning-based multianalyte delta checks to detect wrong blood in tube errors. Am J Clin Pathol. 2018;150(6):555–566.
  • Mitani T, Doi S, Yokota S, et al. Highly accurate and explainable detection of specimen mix-up using a machine learning model. Clin Chem Lab Med. 2020;58(3):375–383.
  • Benirschke RC, Gniadek TJ. Detection of falsely elevated point-of-care potassium results due to hemolysis using predictive analytics. Am J Clin Pathol. 2020;154(2):242–247.
  • Yu M, Bazydlo LAL, Bruns DE, et al. Streamlining quality review of mass spectrometry data in the clinical laboratory by use of machine learning. Arch Pathol Lab Med. 2019;143(8):990–998.
  • Oyaert M, Delanghe J. Progress in automated urinalysis. Ann Lab Med. 2019;39(1):15–22.
  • Liang Y, Kang R, Lian C, et al. An end-to-end system for automatic urinary particle recognition with convolutional neural network. J Med Syst. 2018;42(9):165.
  • Park Y, Kim SY, Kwon GC, et al. Automated versus conventional microscopic interpretation of antinuclear antibody indirect immunofluorescence test. Ann Clin Lab Sci. 2019;49(1):127–133.
  • Acevedo A, Alférez S, Merino A, et al. Recognition of peripheral blood cell images using convolutional neural networks. Comput Methods Programs Biomed. 2019;180:105020.
  • Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35(5):1299–1312.
  • Gameiro J, Branco T, Lopes JA. Artificial intelligence in acute kidney injury risk prediction. J Clin Med. 2020;9(3):678.
  • Van Biesen W, Vanmassenhove J, Decruyenaere J. Prediction of acute kidney injury using artificial intelligence: are we there yet? Nephrol Dial Transplant. 2020;35(2):204–205.
  • Koyner JL, Carey KA, Edelson DP, et al. The development of a machine learning inpatient acute kidney injury prediction model. Crit Care Med. 2018;46(7):1070–1077.
  • Parreco J, Soe-Lin H, Parks JJ, et al. Comparing machine learning algorithms for predicting acute kidney injury. Am Surg. 2019;85(7):725–729.
  • Low S, Vathsala A, Murali TM, et al. Electronic health records accurately predict renal replacement therapy in acute kidney injury. BMC Nephrol. 2019;20(1):32.
  • Tomašev N, Glorot X, Rae JW, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature. 2019;572(7767):116–119.
  • Lai H, Huang H, Keshavjee K, et al. Predictive models for diabetes mellitus using machine learning techniques. BMC Endocr Disord. 2019;19(1):101.
  • Ruan Y, Bellot A, Moysova Z, et al. Predicting the risk of inpatient hypoglycemia with machine learning using electronic health records. Diabetes Care. 2020;43(7):1504–1511.
  • Guevara E, Torres-Galván JC, Ramírez-Elías MG, et al. Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools. Biomed Opt Express. 2018;9(10):4998–5010.
  • Agibetov A, Seirer B, Dachs T-M, et al. Machine learning enables prediction of cardiac amyloidosis by routine laboratory parameters: a proof-of-concept study. J Clin Med. 2020;9(5):1334.
  • Daunhawer I, Kasser S, Koch G, et al. Enhanced early prediction of clinically relevant neonatal hyperbilirubinemia with machine learning. Pediatr Res. 2019;86(1):122–127.
  • Schneider J, Layefsky E, Udaltsova N, et al. Validation of an algorithm to identify patients at risk for colorectal cancer based on laboratory test and demographic data in diverse, community-based population. Clin Gastroenterol Hepatol. 2020. DOI:https://doi.org/10.1016/j.cgh.2020.04.054
  • Lee S, Hong S, Cha WC, et al. Predicting adverse outcomes for febrile patients in the emergency department using sparse laboratory data: development of a time adaptive model. JMIR Med Inform. 2020;8(3):e16117.
  • Wilkes EH, Rumsby G, Woodward GM. Using machine learning to aid the interpretation of urine steroid profiles. Clin Chem. 2018;64(11):1586–1595.
  • Altinier S, Sarti L, Varagnolo M, et al. An expert system for the classification of serum protein electrophoresis patterns. Clin Chem Lab Med. 2008;46(10):1458–1463.
  • Arlt W, Biehl M, Taylor AE, et al. Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J Clin Endocrinol Metab. 2011;96(12):3775–3784.
  • Van Renterghem P, Sottas PE, Saugy M, et al. Statistical discrimination of steroid profiles in doping control with support vector machines. Anal Chim Acta. 2013;768:41–48.
  • Kwon C, Farrell PM. The magnitude and challenge of false-positive newborn screening test results. Arch Pediatr Adolesc Med. 2000;154(7):714–718.
  • Peng G, Tang Y, Cowan TM, et al. Reducing false-positive results in newborn screening using machine learning. Int J Neonatal Screen. 2020;6(1):16.
  • Albini A, Bruno A, Bassani B, et al. Serum steroid ratio profiles in prostate cancer: a new diagnostic tool toward a personalized medicine approach. Front Endocrinol. 2018;9:110.
  • Wang Q, Chang L, Zhou M, et al. A spectral and morphologic method for white blood cell classification. Opt Laser Technol. 2016;84:144–148.
  • Ramesh N, Dangott B, Salama ME, et al. Isolation and two-step classification of normal white blood cells in peripheral blood smears. J Pathol Inform. 2012;3:13.
  • Prinyakupt J, Pluempitiwiriyawej C. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers. Biomed Eng Online. 2015;14(1):63.
  • Rezatofighi SH, Soltanian-Zadeh H. Automatic recognition of five types of white blood cells in peripheral blood. Comput Med Imaging Graph. 2011;35(4):333–343.
  • Nazlibilek S, Karacor D, Ercan T, et al. Automatic segmentation, counting, size determination and classification of white blood cells. Measurement. 2014;55:58–65.
  • Su MC, Cheng CY, Wang PC. A neural-network-based approach to white blood cell classification. Sci World J. 2014;2014:1–9.
  • Acevedo A, Merino A, Alférez S, et al. A dataset of microscopic peripheral blood cell images for development of automatic recognition systems. Data Brief. 2020;30:105474.
  • Matek C, Schwarz S, Spiekermann K, et al. Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nat Mach Intell. 2019;1(11):538–544.
  • Durant TJS, Olson EM, Schulz WL, et al. Very deep convolutional neural networks for morphologic classification of erythrocytes. Clin Chem. 2017;63(12):1847–1855.
  • Criel M, Godefroid M, Deckers B, et al. Evaluation of the red blood cell advanced software application on the CellaVision DM96. Int J Lab Hematol. 2016;38(4):366–374.
  • Egele A, Stouten K, van der Heul-Nieuwenhuijsen L, et al. Classification of several morphological red blood cell abnormalities by DM96 digital imaging. Int J Lab Hematol. 2016;38(5):e98–e101.
  • Torres K, Bachman CM, Delahunt CB, et al. Automated microscopy for routine malaria diagnosis: a field comparison on Giemsa-stained blood films in Peru. Malar J. 2018;17(1):339.
  • Abbas N, Saba T, Rehman A, et al. Plasmodium life cycle stage classification based quantification of malaria parasitaemia in thin blood smears. Microsc Res Techn. 2019;82(3):283–295.
  • Poostchi M, Silamut K, Maude RJ, et al. Image analysis and machine learning for detecting malaria. Transl Res. 2018;194:36–55.
  • Das DK, Mukherjee R, Chakraborty C. Computational microscopic imaging for malaria parasite detection: a systematic review. J Microsc. 2015;260(1):1–19.
  • Molina A, Alférez S, Boldú L, et al. Sequential classification system for recognition of malaria infection using peripheral blood cell images. J Clin Pathol. 2020;73(10):665–670.
  • Li H, Soto-Montoya H, Voisin M, et al. Octopi: open configurable high-throughput imaging platform for infectious disease diagnosis in the field. bioRxiv. 2019.
  • Go T, Kim JH, Byeon H, et al. Machine learning-based in-line holographic sensing of unstained malaria-infected red blood cells. J Biophotonics. 2018;11(9):e201800101.
  • Heraud P, Chatchawal P, Wongwattanakul M, et al. Infrared spectroscopy coupled to cloud-based data management as a tool to diagnose malaria: a pilot study in a malaria-endemic country. Malar J. 2019;18(1):348.
  • Mwanga EP, Minja EG, Mrimi E, et al. Detection of malaria parasites in dried human blood spots using mid-infrared spectroscopy and logistic regression analysis. Malar J. 2019;18(1):341.
  • De Moraes CM, Wanjiku C, Stanczyk NM, et al. Volatile biomarkers of symptomatic and asymptomatic malaria infection in humans. Proc Natl Acad Sci USA. 2018;115(22):5780–5785.
  • Ford BA, McElvania E. Machine learning takes laboratory automation to the next level. J Clin Microbiol. 2020;58(4):e00012.
  • Burton RJ, Albur M, Eberl M, et al. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections. BMC Med Inform Decis Mak. 2019;19(1):171.
  • Faron ML, Buchan BW, Relich RF, et al. Evaluation of the WASPLab segregation software to automatically analyze urine cultures using routine blood and MacConkey agars. J Clin Microbiol. 2020;58(4):e01683.
  • Savardi M, Ferrari A, Signoroni A. Automatic hemolysis identification on aligned dual-lighting images of cultured blood agar plates. Comput Methods Prog Biomed. 2018;156:13–24.
  • Smith KP, Kang AD, Kirby JE. Automated interpretation of blood culture gram stains by use of a deep convolutional neural network. J Clin Microbiol. 2017;56(3):e01521.
  • Athamanolap P, Hsieh K, Chen L, et al. Integrated bacterial identification and antimicrobial susceptibility testing using PCR and high-resolution melt. Anal Chem. 2017;89(21):11529–11536.
  • Huang L, Wu T. Novel neural network application for bacterial colony classification. Theor Biol Med Model. 2018;15(1):22.
  • Maeda Y, Sugiyama Y, Kogiso A, et al. Colony fingerprint-based discrimination of Staphylococcus species with machine learning approaches. Sensors. 2018;18(9):2789.
  • Zielinski B, Sroka-Oleksiak A, Rymarczyk D, et al. Deep learning approach to description and classification of fungi microscopic images. New York: arXiv; 2020 [cited 2020 Jun 2]. Available from: http://arxiv.org/abs/1906.09449
  • Weis CV, Jutzeler CR, Borgwardt K. Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review. Clin Microbiol Infect Dis. 2020;26(10):1310–1317.
  • Wang HY, Li WC, Huang KY, et al. Rapid classification of group B Streptococcus serotypes based on matrix-assisted laser desorption ionization-time of flight mass spectrometry and machine learning techniques. BMC Bioinformatics. 2019;20(Suppl. 19):703.
  • Ling J, Wang H, Li G, et al. A novel short-term high-lactose culture approach combined with a matrix-assisted laser desorption ionization-time of flight mass spectrometry assay for differentiating Escherichia coli and Shigella species using artificial neural networks. PLoS One. 2019;14(10):e0222636.
  • Desaire H, Hua D. Adaption of the Aristotle classifier for accurately identifying highly similar bacteria analyzed by MALDI-TOF MS. Anal Chem. 2020;92(1):1050–1057.
  • Chung CR, Wang HY, Lien F, et al. Incorporating statistical test and machine intelligence into strain typing of Staphylococcus haemolyticus based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. Front Microbiol. 2019;10:2120.
  • Schaumann R, Dallacker-Losensky K, Rosenkranz C, et al. Discrimination of human pathogen Clostridium species especially of the heterogeneous C. sporogenes and C. botulinum by MALDI-TOF mass spectrometry. Curr Microbiol. 2018;75(11):1506–1515.
  • Rodrigues C, Passet V, Rakotondrasoa A, et al. Identification of Klebsiella pneumoniae, Klebsiella quasipneumoniae, Klebsiella variicola and related phylogroups by MALDI-TOF mass spectrometry. Front Microbiol. 2018;9:3000.
  • Delavy M, Cerutti L, Croxatto A, et al. Machine learning approach for Candida albicans fluconazole resistance detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Front Microbiol. 2019;10:3000.
  • Tomachewski D, Galvão CW, de Campos Júnior A, et al. Ribopeaks: a web tool for bacterial classification through m/z data from ribosomal proteins. Bioinformatics. 2018;34(17):3058–3060.
  • Koya SK, Yurgelevic S, Brusatori M, et al. Rapid detection of Clostridium difficile toxins in stool by Raman spectroscopy. J Surg Res. 2019;244:111–116.
  • Hanson C, Bishop MM, Barney JT, et al. Effect of growth media and phase on Raman spectra and discrimination of mycobacteria. J Biophotonics. 2019;12(11):e201900150.
  • Guo S, Heinke R, Stöckel S, et al. Model transfer for Raman-spectroscopy-based bacterial classification. J Raman Spectrosc. 2018;49(4):627–637.
  • Boardman AK, Wong WS, Premasiri WR, et al. Rapid detection of bacteria from blood with surface-enhanced Raman spectroscopy. Anal Chem. 2016;88(16):8026–8035.
  • Novelli-Rousseau A, Espagnon I, Filiputti D, et al. Culture-free antibiotic-susceptibility determination from single-bacterium Raman spectra. Sci Rep. 2018;8(1):3957.
  • Ho CS, Jean N, Hogan CA, et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun. 2019;10(1):4927.
  • Liu J, Osadchy M, Ashton L, et al. Deep convolutional neural networks for Raman spectrum recognition: a unified solution. Analyst. 2017;142(21):4067–4074.
  • Zhang X, Lin T, Xu J, et al. DeepSpectra: an end-to-end deep learning approach for quantitative spectral analysis. Anal Chim Acta. 2019;1058:48–57.
  • Lasch P, Stämmler M, Zhang M, et al. FT-IR hyperspectral imaging and artificial neural network analysis for identification of pathogenic bacteria. Anal Chem. 2018;90(15):8896–8904.
  • Roux-Dalvai F, Gotti C, Leclercq M, et al. Fast and accurate bacterial species identification in urine specimens using LC–MS/MS mass spectrometry and machine learning. Mol Cell Proteomics. 2019;18(12):2492–2505.
  • Wu TF, Chen YC, Wang WC, et al. A rapid and low-cost pathogen detection platform by using a molecular agglutination assay. ACS Cent Sci. 2018;4(11):1485–1494.
  • Marston HD, Dixon DM, Knisely JM, et al. Antimicrobial resistance. JAMA. 2016;316(11):1193–1204.
  • Tang W, Ranganathan N, Shahrezaei V, et al. MALDI-TOF mass spectrometry on intact bacteria combined with a refined analysis framework allows accurate classification of MSSA and MRSA. PLoS One. 2019;14(6):e0218951.
  • Wang HY, Lee TY, Tseng YJ, et al. A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach. PLoS One. 2018;13(3):e0194289.
  • Wang HY, Lien F, Liu TP, et al. Application of a MALDI-TOF analysis platform (ClinProTools) for rapid and preliminary report of MRSA sequence types in Taiwan. PeerJ. 2018;6:e5784.
  • Wang HY, Chen CH, Lee TY, et al. Rapid detection of heterogeneous vancomycin-intermediate Staphylococcus aureus based on matrix-assisted laser desorption ionization time-of-flight: using a machine learning approach and unbiased validation. Front Microbiol. 2018;9:2393.
  • Asakura K, Azechi T, Sasano H, et al. Rapid and easy detection of low-level resistance to vancomycin in methicillin-resistant Staphylococcus aureus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One. 2018;13(3):e0194212.
  • Huang TS, Lee SSJ, Lee CC, et al. Detection of carbapenem-resistant Klebsiella pneumoniae on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using supervised machine learning approach. PLoS One. 2020;15(2):e0228459.
  • Burckhardt I, Zimmermann S. Susceptibility testing of bacteria using MALDI-TOF mass spectrometry. Front Microbiol. 2018;9:1744.
  • de Sousa T, Viala D, Théron L, et al. Putative protein biomarkers of Escherichia coli antibiotic multiresistance identified by MALDI mass spectrometry. Biology. 2020;9(3):56.
  • Ho PL, Yau CY, Ho LY, et al. Rapid detection of cfiA metallo-β-lactamase-producing Bacteroides fragilis by the combination of MALDI-TOF MS and CarbaNP. J Clin Pathol. 2017;70(10):868–873.
  • Sharaha U, Rodriguez-Diaz E, Sagi O, et al. Fast and reliable determination of Escherichia coli susceptibility to antibiotics: infrared microscopy in tandem with machine learning algorithms. J Biophotonics. 2019;12(7):e201800478.
  • Monk JM. Predicting antimicrobial resistance and associated genomic features from whole-genome sequencing. J Clin Microbiol. 2018;57(2):e01610.
  • Su M, Satola SW, Read TD. Genome-based prediction of bacterial antibiotic resistance. J Clin Microbiol. 2018;57(3):e01405.
  • Nguyen M, Long SW, McDermott PF, et al. Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J Clin Microbiol. 2018;57(2):e01260.
  • Deelder W, Christakoudi S, Phelan J, et al. Machine learning predicts accurately Mycobacterium tuberculosis drug resistance from whole genome sequencing data. Front Genet. 2019;10:922.
  • Kim J, Greenberg DE, Pifer R, et al. VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning. PLoS Comput Biol. 2020;16(1):e1007511.
  • Smith KP, Richmond DL, Brennan-Krohn T, et al. Development of MAST: a microscopy-based antimicrobial susceptibility testing platform. SLAS Technol. 2017;22(6):662–674.
  • Inglis TJJ, Paton TF, Kopczyk MK, et al. Same-day antimicrobial susceptibility test using acoustic-enhanced flow cytometry visualized with supervised machine learning. J Med Microbiol. 2020;69(5):657–669.
  • Athamanolap P, Hsieh K, O’Keefe CM, et al. Machine learning-assisted digital PCR and melt enables broad bacteria identification and pheno-molecular antimicrobial susceptibility test. bioRxiv; 2019.
  • Gerke S, Babic B, Evgeniou T, et al. The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. NPJ Digit Med. 2020;3:53.
  • Badrick T, Banfi G, Bietenbeck A, et al. Machine learning for clinical chemists. Clin Chem. 2019;65(11):1350–1356.
  • Heron M, Hanson VL, Ricketts I. Open source and accessibility: advantages and limitations. J Interact Sci. 2013;1(1):2.
  • Pakdel R, Herbert J. Adaptive cost efficient framework for cloud-based machine learning. 41st Annual Computer Software and Applications Conference (COMPSAC); 2017 Jul 4–8; Turin (Italy). IEEE; 2017.
  • Aithal S, Vaikunth Pai T. Cloud computing security issues – challenges and opportunities. Int J Manag Technol Soc Sci. 2017;1(1):33–42.
  • Goodman D. Cloud-based image classification service is not robust to adversarial examples: a forgotten battlefield. 2020. arXiv:2001.03460.
  • Ren K, Zheng T, Qin Z, et al. Adversarial attacks and defenses in deep learning. Engineering. 2020;6(3):346–360.
  • Gruson D, Helleputte T, Rousseau P, et al. Data science, artificial intelligence, and machine learning: opportunities for laboratory medicine and the value of positive regulation. Clin Biochem. 2019;69:1–7.
  • Flaumenhaft Y, Ben-Assuli O. Personal health records, global policy and regulation review. Health Policy. 2018;122(8):815–826.
  • Rocher L, Hendrickx JM, de Montjoye YA. Estimating the success of re-identifications in incomplete datasets using generative models. Nat Commun. 2019;10(1):3069.
  • Chen I, Szolovits P, Ghassemi M. Can AI help reduce disparities in general medical and mental health care? AMA J Ethics. 2019;21:E167–E179.
  • Char DS, Shah NH, Magnus D. Implementing machine learning in health care – addressing ethical challenges. N Engl J Med. 2018;378(11):981–983.
  • Gijsberts CM, Groenewegen KA, Hoefer IE, et al. Race/ethnic differences in the associations of the Framingham risk factors with carotid IMT and cardiovascular events. PLoS One. 2015;10(7):e0132321.
  • Rigby MJ. Ethical dimensions of using artificial intelligence in health care. AMA J Ethics. 2019;21:121–124.
  • Ardon O, Schmidt RL. Clinical laboratory employees’ attitudes toward artificial intelligence. Lab Med. 2020. DOI:https://doi.org/10.1093/labmed/lmaa023
  • Kumar S, Singh M. Big data analytics for healthcare industry: impact, applications, and tools. Big Data Min Anal. 2019;2(1):48–57.
  • Michalopoulos G, Qazi H, Wong A, et al. Automatic extraction of risk factors for dialysis patients from clinical notes using natural language processing techniques. Stud Health Technol Inform. 2020;270:53–57.
  • van Laar SA, Gombert-Handoko KB, Guchelaar H-J, et al. An electronic health record text mining tool to collect real-world drug treatment outcomes: a validation study in patients with metastatic renal cell carcinoma. Clin Pharmacol Ther. 2020;108(3):644–652.
  • Hartmann J, Van Keuren L. Text mining for clinical support. J Med Libr Assoc. 2019;107(4):603–605.
  • Peiffer-Smadja N, Dellière S, Rodriguez C, et al. Machine learning in the clinical microbiology laboratory: has the time come for routine practice? Clin Microbiol Infect. 2020;26(10):1300–1309.
  • Monteyne T, Coopman R, Kishabongo AS, et al. Analysis of protein glycation in human fingernail clippings with near-infrared (NIR) spectroscopy as an alternative technique for the diagnosis of diabetes mellitus. Clin Chem Lab Med. 2018;56(9):1551–1558.
  • De Bruyne S, Himpe J, Delanghe SE, et al. Carbamoylated nail proteins as assessed by near-infrared analysis are associated with load of uremic toxins and mortality in hemodialysis patients. Toxins. 2020;12(2):83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.