764
Views
5
CrossRef citations to date
0
Altmetric
Invited Review Articles

Novel biomarkers in Alzheimer’s disease using high resolution proteomics and metabolomics: miRNAS, proteins and metabolites

, ORCID Icon, & ORCID Icon
Pages 167-179 | Received 21 Jul 2020, Accepted 04 Oct 2020, Published online: 02 Nov 2020

References

  • Herrera-Espejo S, Santos-Zorrozua B, Álvarez-González P, et al. A systematic review of microrna expression as biomarker of late-onset Alzheimer's disease. Mol Neurobiol. 2019;56(12):8376–8391.
  • Ulep MG, Saraon SK, McLea S. Alzheimer disease. J Nurse Pract. 2018;14(3):129–135.
  • Kazim SF, Iqbal K. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer’s disease. Mol Neurodegener. 2016. DOI:https://doi.org/10.1186/s13024-016-0119-y
  • Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer's disease. Mol Neurodegener. 2011;6:85.
  • Larroya-García A, Navas-Carrillo D, Orenes-Piñero E. Impact of gut microbiota on neurological diseases: diet composition and novel treatments. Crit Rev Food Sci Nutr. 2019;59(19):3102–3116.
  • Abate G, Marziano M, Rungratanawanich W, et al. Nutrition and AGE-ing: focusing on Alzheimer's disease. Oxid Med Cell Longev. 2017;2017:7039816.
  • Orenes-Piñero E, Montoro-García S, Patel JV, et al. Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol. 2013;167(5):1651–1659.
  • Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47:155–162.
  • Nowak JS, Michlewski G. miRNAs in development and pathogenesis of the nervous system. Biochem Soc Trans. 2013;41(4):815–820.
  • Turchinovich A, Samatov TR, Tonevitsky AG, et al. Circulating miRNAs: cell-cell communication function? Front. Genet. 2013;4:119.
  • Navas-Carrillo D, Marín F, Valdés M, et al. Deciphering acute coronary syndrome biomarkers: High-resolution proteomics in platelets, thrombi and microparticles. Crit Rev Clin Lab Sci. 2017;54(1):49–58.
  • Orenes-Piñero E, Cortón M, González-Peramato P, et al. Searching urinary tumor markers for bladder cancer using a two-dimensional differential gel electrophoresis (2D-DIGE) approach. J Proteome Res. 2007;6(11):4440–4448.
  • Navas-Carrillo D, Rodriguez JM, Montoro-García S, et al. High-resolution proteomics and metabolomics in thyroid cancer: deciphering novel biomarkers. Crit Rev Clin Lab Sci. 2017;54(7-8):446–457.
  • Markley JL, Brüschweiler R, Edison AS, et al. The future of NMR-based metabolomics. Curr Opin Biotechnol. 2017;43:34–40.
  • Hurtado MO, Kohler I, de Lange EC. Next-generation biomarker discovery in Alzheimer's disease using metabolomics – from animal to human studies. Bioanalysis. 2018;10(18):1525–1546.
  • Grasso G. Mass spectrometry is a multifaceted weapon to be used in the battle against Alzheimer's disease: amyloid beta peptides and beyond. Mass Spectrom Rev. 2019;38(1):34–48.
  • Htike TT, Mishra S, Kumar S, et al. Peripheral biomarkers for early detection of Alzheimer's and Parkinson's diseases. Mol Neurobiol. 2019;56(3):2256–2277.
  • Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med. 2016;8(6):595–608.
  • Zou K, Kim D, Kakio A, et al. Amyloid beta-protein (Abeta)1-40 protects neurons from damage induced by Abeta1-42 in culture and in rat brain. J Neurochem. 2003;87(3):609–619.
  • Drummond E, Goñi F, Liu S, et al. Potential novel approaches to understand the pathogenesis and treat Alzheimer's disease. J Alzheimers Dis. 2018;64(s1):S299–S312.
  • Huse JT, Doms RW. Closing in on the amyloid cascade: recent insights into the cell biology of Alzheimer’s disease. Mol Neurobiol. 2000;22:81–98.
  • Wang JZ, Grundke-Iqbal I, Iqbal K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci. 2007;25(1):59–68.
  • Du X, Wang X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener. 2018;7:2.
  • Grehan S, Tse E, Taylor JM. Two distal downstream enhancers direct expression of the human apolipoprotein E gene to astrocytes in the brain. J Neurosci. 2001;21(3):812–822.
  • Barba I, Fernandez-Montesinos R, Garcia-Dorado D, et al. Alzheimer's disease beyond the genomic era: nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. J Cell Mol Med. 2008;12(5A):1477–1485.
  • Holtzman DM. Role of apoE/Aβ interactions in the pathogenesis of Alzheimer’s disease and cerebral amyloid angiopathy. J Mol Neurosci. 2001;17(2):147–155.
  • Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993;261(5123):921–923.
  • Gupta VB, Laws SM, Villemagne VL, AIBL Research Group, et al. Plasma apolipoprotein E and Alzheimer disease risk: the AIBL study of aging. Neurology. 2011;76(12):1091–1098.
  • Shi Y, Yamada K, Liddelow SA, Alzheimer’s Disease Neuroimaging Initiative, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–527.
  • Navas-Carrillo D, Ríos A, Rodríguez JM, et al. Familial nonmedullary thyroid cancer: screening, clinical, molecular and genetic findings. BBA-Revs on Cancer. 2014;1846(2):468–476.
  • Long JM, Lahiri DK. MicroRNA-101 downregulates Alzheimer's amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun. 2011;404(4):889–895.
  • Hébert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA. 2008;105(17):6415–6420.
  • Boissonneault V, Plante I, Rivest S, et al. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem. 2009;284(4):1971–1981.
  • Tan L, Yu JT, Hu N, et al. Non-coding RNAs in Alzheimer's disease. Mol Neurobiol. 2013;47(1):382–393.
  • Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport. 2007;18:297–300.
  • Kumar S, Vijayan M, Reddy PH. MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer's disease. Hum Mol Genet. 2017;26(19):3808–3822.
  • Kiko T, Nakagawa K, Tsuduki T, et al. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer's disease. J Alzheimer’s Dis. 2014;39(2):253–259.
  • Wang L, Liu J, Wang Q, et al. MicroRNA-200a-3p mediates neuroprotection in Alzheimer-related deficits and attenuates amyloid-beta overproduction and tau hyperphosphorylation via coregulating BACE1 and PRKACB. Front Pharmacol. 2019;10:806.
  • Ansari A, Maffioletti E, Milanesi E, PharmaCog Consortium, et al. miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer's disease. Neurobiol Aging. 2019;82:102–109.
  • Takousis P, Sadlon A, Schulz J, et al. Differential expression of microRNAs in Alzheimer's disease brain, blood, and cerebrospinal fluid. Alzheimers Dement. 2019;15(11):1468–1477.
  • Siedlecki-Wullich D, Català-Solsona J, Fábregas C, et al. Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer's disease. Alzheimers Res Ther. 2019;11(1):46.
  • Seubert P, Vigo-Pelfrey C, Esch F, et al. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature. 1992;359(6393):325–327.
  • Motter R, Vigo‐Pelfrey C, Kholodenko D, et al. Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer's disease. Ann Neurol. 1995;38(4):643–648.
  • Strozyk D, Blennow K, White LR, et al. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology. 2003;60(4):652–656.
  • Blennow K, Wallin A, Agren H, et al. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol. 1995;26(3):231–245.
  • Pottiez G, Yang L, Stewart T, et al. Mass-spectrometry-based method to quantify in parallel tau and amyloid β 1-42 in csf for the diagnosis of Alzheimer's disease. J Proteome Res. 2017;16(3):1228–1238.
  • Niemantsverdriet E, Ottoy J, Somers C, et al. The cerebrospinal fluid Aβ1-42/Aβ1-40 ratio improves concordance with amyloid-PET for diagnosing Alzheimer's disease in a clinical setting. J Alzheimers Dis. 2017;60(2):561–576.
  • Rufino-Ramos D, Albuquerque PR, Carmona V, et al. Extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J Control Release. 2017;262:247–258.
  • Lee S, Mankhong S, Kang JH. Extracellular vesicle as a source of Alzheimer's biomarkers: opportunities and challenges. IJMS. 2019;20(7):1728.
  • Chiasserini D, van Weering JR, Piersma SR, et al. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset. J Proteomics. 2014;106:191–204.
  • Muraoka S, Jedrychowski MP, Yanamandra K, et al. Proteomic profiling of extracellular vesicles derived from cerebrospinal fluid of Alzheimer's disease patients: a pilot study. Cells. 2020;9(9):1959.
  • Cilento EM, Jin L, Stewart T, et al. Mass spectrometry: a platform for biomarker discovery and validation for Alzheimer's and Parkinson's diseases. J Neurochem. 2019;151(4):397–416.
  • Maccarrone G, Turck CW, Martins-de-Souza D. Shotgun mass spectrometry workflow combining IEF and LC-MALDI-TOF/TOF. Protein J. 2010;29(2):99–102.
  • Pannee J, Portelius E, Oppermann M, et al. A selected reaction monitoring (SRM)-based method for absolute quantification of Aβ38, Aβ40, and Aβ42 in cerebrospinal fluid of Alzheimer's disease patients and healthy controls. J Alzheimers Dis. 2013;33(4):1021–1032.
  • Mattsson N, Zegers I, Andreasson U, et al. Reference measurement procedures for Alzheimer's disease cerebrospinal fluid biomarkers: definitions and approaches with focus on amyloid β42. Biomark Med. 2012;6(4):409–417.
  • Ringman JM, Schulman H, Becker C, et al. Proteomic changes in cerebrospinal fluid of presymptomatic and affected persons carrying familial Alzheimer disease mutations. Arch Neurol. 2012;69(1):96–104.
  • Hendrickson RC, Lee AY, Song Q, et al. High resolution discovery proteomics reveals candidate disease progression markers of Alzheimer's disease in human cerebrospinal fluid. PLoS One. 2015;10(8):e0135365.
  • Hölttä M, Minthon L, Hansson O, et al. An integrated workflow for multiplex CSF proteomics and peptidomics-identification of candidate cerebrospinal fluid biomarkers of Alzheimer's disease. J Proteome Res. 2015;14(2):654–663.
  • Wildsmith KR, Schauer SP, Smith AM, et al. Identification of longitudinally dynamic biomarkers in Alzheimer's disease cerebrospinal fluid by targeted proteomics. Mol Neurodegener. 2014;9:22.
  • Bader JM, Geyer PE, Müller JB, et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer's disease. Mol Syst Biol. 2020;16(6):e9356.
  • Wang H, Dey KK, Chen PC, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer's disease. Mol Neurodegener. 2020;15(1):43.
  • Zhou M, Haque RU, Dammer EB, et al. Targeted mass spectrometry to quantify brain-derived cerebrospinal fluid biomarkers in Alzheimer's disease. Clin Proteomics. 2020;17:19.
  • Mapstone M, Lin F, Nalls MA, et al. What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for Alzheimer's disease. Neurobiol Aging. 2017;51:148–155.
  • Wilkins JM, Trushina E. Application of metabolomics in Alzheimer's disease. Front Neurol. 2018;8:719.
  • Gonzalez-Riano C, Garcia A, Barbas C. Metabolomics studies in brain tissue: a review. J Pharm Biomed Anal. 2016;130:141–168.
  • Chouraki V, Preis SR, Yang Q, et al. Association of amine biomarkers with incident dementia and Alzheimer's disease in the Framingham Study. Alzheimers Dement. 2017;13(12):1327–1336.
  • de Leeuw FA, Peeters CFW, Kester MI, et al. Blood-based metabolic signatures in Alzheimer's disease. Alzheimers Dement (Amst). 2017;8:196–207.
  • St John-Williams L, Blach C, Toledo JB, Alzheimer’s Disease Metabolomics Consortium, et al. Targeted metabolomics and medication classification data from participants in the ADNI1 cohort. Sci Data. 2017;4:170140.
  • Graham SF, Chevallier OP, Elliott CT, et al. Untargeted metabolomic analysis of human plasma indicates differentially affected polyamine and L-arginine metabolism in mild cognitive impairment subjects converting to Alzheimer's disease. PLoS One. 2015;10(3):e0119452.
  • Sun C, Gao M, Wang F, et al. Serum metabolomic profiling in patients with Alzheimer disease and amnestic mild cognitive impairment by GC/MS. Biomed Chromatogr. 2020;34:e4875.
  • Mahajan UV, Varma VR, Griswold ME, et al. Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: a targeted metabolomic and transcriptomic study. PLoS Med. 2020;17(1):e1003012.
  • Sancesario GM, Bernardini S. Alzheimer's disease in the omics era. Clin Biochem. 2018;59:9–16.
  • Portelius E, Brinkmalm G, Pannee J, et al. Proteomic studies of cerebrospinal fluid biomarkers of Alzheimer's disease: an update. Expert Rev Proteomics. 2017;14(11):1007–1020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.