606
Views
2
CrossRef citations to date
0
Altmetric
Invited Review Articles

Cytogenetic and molecular genetic methods for chromosomal translocations detection with reference to the KMT2A/MLL gene

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 180-206 | Received 19 May 2020, Accepted 27 Oct 2020, Published online: 18 Nov 2020

References

  • Koltsova AS, Pendina AA, Efimova OA, et al. On the complexity of mechanisms and consequences of chromothripsis: an update. Front Genet. 2019;10:393.
  • Nambiar M, Kari V, Raghavan SC. Chromosomal translocations in cancer. Biochim Biophys Acta. 2008;1786(2):139–152.
  • Yang JJ, Park TS, Wan TS. Recurrent cytogenetic abnormalities in acute myeloid leukemia. Methods Mol Biol. 2017;1541:223–245.
  • Rubnitz JE, Behm FG, Pui CH, et al. Genetic studies of childhood acute lymphoblastic leukemia with emphasis on p16, MLL, and ETV6 gene abnormalities: results of St Jude Total Therapy Study XII. Leukemia. 1997;11(8):1201–1206.
  • Rao RC, Dou Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer. 2015;15(6):334–346.
  • Meyer C, Burmeister T, Groger D, et al. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32(2):273–284.
  • Zerkalenkova E, Lebedeva S, Kazakova A, et al. A case of pediatric acute myeloid leukemia with t(11;16)(q23;q24) leading to a novel KMT2A-USP10 fusion gene. Genes Chromosomes Cancer. 2018;57(10):522–524.
  • Meyer C, Lopes BA, Caye-Eude A, et al. Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL-USP2 fusions. Leukemia. 2019;33(9):2306–2340.
  • Winters AC, Bernt KM. MLL-rearranged leukemias-an update on science and clinical approaches. Front Pediatr. 2017;5:4.
  • Pieters R, Schrappe M, De Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet. 2007;370(9583):240–250.
  • Balgobind BV, Raimondi SC, Harbott J, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood. 2009;114(12):2489–2496.
  • Tomizawa D, Koh K, Hirayama M, et al. Outcome of recurrent or refractory acute lymphoblastic leukemia in infants with MLL gene rearrangements: a report from the Japan Infant Leukemia Study Group. Pediatr Blood Cancer. 2009;52(7):808–813.
  • Marks DI, Moorman AV, Chilton L, et al. The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(q21;q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica. 2013;98(6):945–952.
  • Mrozek K, Marcucci G, Nicolet D, et al. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Cin Oncol. 2012;30(36):4515–4523.
  • Dohner H, Estey EH, Amadori S, European LeukemiaNet, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–474.
  • Smith ML, Hills RK, Grimwade D. Independent prognostic variables in acute myeloid leukaemia. Blood Rev. 2011;25(1):39–51.
  • Emerenciano M, Meyer C, Mansur MB, The Brazilian Collaborative Study Group of Infant Acute Leukaemia, et al. The distribution of MLL breakpoints correlates with outcome in infant acute leukaemia. Br J Haematol. 2013;161(2):224–236.
  • Tsaur GA, Meyer C, Riger TO, Regional Children’s Clinical Hospital No. 1, Research Institute of Medical Cell Technologies, First President of Russia B.N. Yeltsin Ural Federal University, et al. Relation between genomic DNA breakpoints in MLL gene and treatment outcome in infants with acute leukemia. Clin Oncohematol. 2016;9(1):22–29.
  • Rossler T, Marschalek R. An alternative splice process renders the MLL protein either into a transcriptional activator or repressor. Pharmazie. 2013;68(7):601–607.
  • Grimwade D, Vyas P, Freeman S. Assessment of minimal residual disease in acute myeloid leukemia. Curr Opin Oncol. 2010;22(6):656–663.
  • Burmeister T, Marschalek R, Schneider B, et al. Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia. 2006;20(3):451–457.
  • Van der Velden VH, Corral L, Valsecchi MG, et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia. 2009;23(6):1073–1079.
  • Jorgensen JL, Chen SS. Monitoring of minimal residual disease in acute myeloid leukemia: methods and best applications. Clin Lymphoma Myeloma Leuk. 2011;11(Suppl 1):S49–S53.
  • Druker BJ. Imatinib as a paradigm of targeted therapies. Adv Cancer Res. 2004;91:1–30.
  • Shaw AT, Yeap BY, Solomon BJ, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12(11):1004–1012.
  • Bruggemann M, Kotrova M. Minimal residual disease in adult ALL: technical aspects and implications for correct clinical interpretation. Blood Adv. 2017;1(25):2456–2466.
  • Fronkova E, Mejstrikova E, Avigad S, et al. Minimal residual disease (MRD) analysis in the non-MRD-based ALL IC-BFM 2002 protocol for childhood ALL: is it possible to avoid MRD testing? Leukemia. 2008;22(5):989–997.
  • Tjio JH, Puck TT. The somatic chomosomes of man. Proc Natl Acad Sci USA. 1958;44(12):1229–1237.
  • Caspersson T, Zech L, Johansson C. Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res. 1970;60(3):315–319.
  • den Nijs JI, Gonggrijp HS, Augustinus E, et al. Hot bands: a simple G-banding method for leukemic metaphases. Cancer Genet Cytogenet. 1985;15(3-4):373–374.
  • Carter NP, Ferguson-Smith MA, Perryman MT, et al. Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet. 1992;29(5):299–307.
  • ISCN. An international system for human cytogenomic nomenclature. Basel: Karger Publishers; 2016.
  • Oshimura M, Freeman AI, Sandberg AA. Chromosomes and causation of human cancer and leukemia. XXVI. Binding studies in acute lymphoblastic leukemia (ALL). Cancer. 1977;40(3):1161–1172.
  • Sandoval C, Head DR, Mirro J, Jr, et al. Translocation t(9;11)(p21;q23) in pediatric de novo and secondary acute myeloblastic leukemia. Leukemia. 1992;6(6):513–519.
  • Huret JL, Brizard A, Slater R, et al. Cytogenetic heterogeneity in t(11;19) acute leukemia: clinical, hematological and cytogenetic analyses of 48 patients–updated published cases and 16 new observations. Leukemia. 1993;7(2):152–160.
  • Mitelman F, Johansson B, Mertens F. Mitelman database of chromosome aberrations and gene fusions in cancer. 2019. Available from: https://mitelmandatabase.isb-cgc.org
  • Ziemin-van der Poel S, McCabe NR, Gill HJ, et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA. 1991;88(23):10735–10739.
  • Menten B, Maas N, Thienpont B, et al. Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports. J Med Genet. 2006;43(8):625–633.
  • Yunis JJ. High resolution of human chromosomes. Science. 1976;191(4233):1268–1270.
  • Ikeuchi T. Inhibitory effect of ethidium bromide on mitotic chromosome condensation and its application to high-resolution chromosome banding. Cytogenet Cell Genet. 1984;38(1):56–61.
  • Shlush LI, Mitchell A, Heisler L, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547(7661):104–108.
  • Gozzetti A, Le Beau MM. Fluorescence in situ hybridization: uses and limitations. Semin Hematol. 2000;37(4):320–333.
  • Southern E. Southern blotting. Nat Protoc. 2006;1(2):518–525.
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503–517.
  • Domer PH, Fakharzadeh SS, Chen CS, et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Proc Natl Acad Sci USA. 1993;90(16):7884–7888.
  • Mathew S, Behm F, Dalton J, et al. Comparison of cytogenetics, Southern blotting, and fluorescence in situ hybridization as methods for detecting MLL gene rearrangements in children with acute leukemia and with 11q23 abnormalities. Leukemia. 1999;13(11):1713–1720.
  • Okuda T, Shurtleff SA, Valentine MB, et al. Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood. 1995;85(9):2321–2330.
  • MacKinnon RN, Chudoba I. The use of M-FISH and M-BAND to define chromosome abnormalities. In: Campbell L, editor. Cancer cytogenetics. Methods in molecular biology (methods and protocols). Vol. 730. Totowa (NJ): Humana Press; 2011.
  • Speicher MR, Gwyn Ballard S, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet. 1996;12(4):368–375.
  • Schrock E, Du Manoir S, Veldman T, et al. Multicolor spectral karyotyping of human chromosomes. Science. 1996;273(5274):494–497.
  • Liehr T, Kosyakova N. Multiplex FISH and spectral karyotyping. In: Liehr T, editor. Fluorescence in situ hybridization (FISH). Springer protocols handbooks. Berlin, Heidelberg: Springer; 2017.
  • Muller S, Rocchi M, Ferguson-Smith MA, et al. Toward a multicolor chromosome bar code for the entire human karyotype by fluorescence in situ hybridization. Hum Genet. 1997;100(2):271–278.
  • Liehr T, Weise A, Heller A, et al. Multicolor chromosome banding (MCB) with YAC/BAC-based probes and region-specific microdissection DNA libraries. Cytogenet Genome Res. 2002;97(1–2):43–50.
  • Liehr T, Heller A, Starke H, et al. Microdissection based high resolution multicolor banding for all 24 human chromosomes. Int J Mol Med. 2002;9(4):335–339.
  • Sarova I, Brezinova J, Zemanova Z, et al. Characterization of chromosome 11 breakpoints and the areas of deletion and amplification in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer. 2013;52(7):619–635.
  • Wafa A, Moassass F, Liehr T, et al. Acute promyelocytic leukemia with the translocation t(15;17)(q22;q21) associated with t(1;2)(q42 ∼ 43;q11.2 ∼ 12): a case report. J Med Case Rep. 2016;10(1):203.
  • Gu J, Smith JL, Dowling PK. Fluorescence in situ hybridization probe validation for clinical use. Methods Mol Biol. 2017;1541:101–118.
  • Young AP, Jackson DJ, Wyeth RC. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ. 2020;8:e8806.
  • Meyer C, Schneider B, Reichel M, et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA. 2005;102(2):449–454.
  • Matveeva E, Kazakova A, Olshanskaya Y, et al. A new variant of KMT2A(MLL)-FLNA fusion transcript in acute myeloid leukemia with ins(X;11)(q28;q23q23). Cancer Genet. 2015;208(4):148–151.
  • Harrison CJ, Haas O, Harbott J, Biology and Diagnosis Committee of International Berlin-Frankfürt-Münster study group, et al. Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the Biology and Diagnosis Committee of the International Berlin-Frankfürt-Münster study group. Br J Haematol. 2010;151(2):132–142.
  • Mitterbauer-Hohendanner G, Mannhalter C. The biological and clinical significance of MLL abnormalities in haematological malignancies. Eur J Clin Invest. 2004;34(Suppl 2):12–24.
  • Cavazzini F, Bardi A, Tammiso E, et al. Validation of an interphase fluorescence in situ hybridization approach for the detection of MLL gene rearrangements and of the MLL/AF9 fusion in acute myeloid leukemia. Haematologica. 2006;91(3):381–385.
  • Fu JF, Liang DC, Shih LY. Analysis of acute leukemias with MLL/ENL fusion transcripts: identification of two novel breakpoints in ENL. Am J Clin Pathol. 2007;127(1):24–30.
  • Reichel M, Gillert E, Angermuller S, et al. Biased distribution of chromosomal breakpoints involving the MLL gene in infants versus children and adults with t(4;11) ALL. Oncogene. 2001;20(23):2900–2907.
  • Langer T, Metzler M, Reinhardt D, et al. Analysis of t(9;11) chromosomal breakpoint sequences in childhood acute leukemia: almost identical MLL breakpoints in therapy-related AML after treatment without etoposides. Genes Chromosomes Cancer. 2003;36(4):393–401.
  • Germini D, Bou Saada Y, Tsfasman T, et al. A one-step PCR-based assay to evaluate the efficiency and precision of genomic DNA-editing tools. Mol Ther Methods Clin Dev. 2017;5:43–50.
  • Zerkalenkova E, Panfyorova A, Kazakova A, et al. Molecular characteristic of acute leukemias with t(16;21)/FUS-ERG. Ann Hematol. 2018;97(6):977–988.
  • Ren S, Li M, Cai H, et al. A simplified method to prepare PCR template DNA for screening of transgenic and knockout mice. Contemp Top Lab Anim Sci. 2001;40(2):27–30.
  • Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe against cancer program. Leukemia. 2003;17(12):2474–2486.
  • Mauvieux L, Leymarie V, Helias C, et al. High incidence of Hox11L2 expression in children with T-ALL. Leukemia. 2002;16(12):2417–2422.
  • Barber RD, Harmer DW, Coleman RA, et al. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics. 2005;21(3):389–395.
  • San Miguel J, Van Dongen J, Bartram C, et al. Investigation of minimal residual disease (MRD) in acute leukemia (AL): international standardization and evaluation. In: Baig S, editor. Cancer Research Supported under BIOMED-1. Vol. 24. Amsterdam: Biomedical and Health Research IOS Press; 1998. p. 300–306.
  • Viswanatha D. Detection of the t(15;17), t(8;21), and inv(16) abnormalities in acute myeloid leukaemias. In: Killeen A, editor. Molecular pathology protocols. Totowa, (NJ): Humana Press; 2000. p. 115–146.
  • Zhang QY, Garner K, Viswanatha DS. Rapid detection of leukemia-associated translocation fusion genes using a novel combined RT-PCR and flow cytometric method. Leukemia. 2002;16(1):144–149.
  • Frenoy N, Chabli A, Sol O, et al. Application of a new protocol for nested PCR to the detection of minimal residual bcr/abl transcripts. Leukemia. 1994;8(8):1411–1414.
  • van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901–1928.
  • Morris T, Robertson B, Gallagher M. Rapid reverse transcription-PCR detection of hepatitis C virus RNA in serum by using the TaqMan fluorogenic detection system. J Clin Microbiol. 1996;34(12):2933–2936.
  • Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe against Cancer program. Leukemia. 2003;17(12):2318–2357.
  • Jansen MW, van der Velden VH, van Dongen JJ. Efficient and easy detection of MLL-AF4, MLL-AF9 and MLL-ENL fusion gene transcripts by multiplex real-time quantitative RT-PCR in TaqMan and LightCycler. Leukemia. 2005;19(11):2016–2018.
  • Harada S, Sizzle E, Lin MT, et al. Detection of chromosomal translocation in hematologic malignancies by a novel DNA-based looped ligation assay (LOLA). Clin Chem. 2017;63(7):1278–1287.
  • Sambrook J, Russell DW, editors. Rapid amplification of 5' cDNA ends. In: Molecular cloning: a laboratory manual. Chapter 8, Protocol 9. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2001. p. 8.54–8.60.
  • Thirman MJ, Levitan DA, Kobayashi H, et al. Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. Proc Natl Acad Sci USA. 1994;91(25):12110–12114.
  • Strehl S, Borkhardt A, Slany R, et al. The human LASP1 gene is fused to MLL in an acute myeloid leukemia with t(11;17)(q23;q21). Oncogene. 2003;22(1):157–160.
  • Osaka M, Rowley JD, Zeleznik-Le NJ. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc Natl Acad Sci USA. 1999;96(11):6428–6433.
  • Kuwada N, Kimura F, Matsumura T, et al. t(11;14)(q23;q24) generates an MLL-human gephyrin fusion gene along with a de facto truncated MLL in acute monoblastic leukemia. Cancer Res. 2001;61(6):2665–2669.
  • Ambardar S, Gupta R, Trakroo D, et al. High throughput sequencing: an overview of sequencing chemistry. Indian J Microbiol. 2016;56(4):394–404.
  • Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–59.
  • Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–352.
  • Drmanac R, Sparks AB, Callow MJ, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. 2010;327(5961):78–81.
  • Drmanac R, Drmanac S, Li H, et al. inventors; Complete Genomics, BGI Shenzhen, assignee. Stepwise sequencing by non-labeled reversible terminators or natural nucleotides. 2018.
  • Korostin D, Kulemin N, Naumov V, et al. Comparative analysis of novel MGISEQ-2000 sequencing platform vs Illumina HiSeq 2500 for whole-genome sequencing. PLoS One. 2020;15(3):e0230301.
  • Mak SST, Gopalakrishnan S, Caroe C, et al. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. Gigascience. 2017;6(8):1–13.
  • Patch AM, Nones K, Kazakoff SH, et al. Germline and somatic variant identification using BGISEQ-500 and HiSeq X Ten whole genome sequencing. PLoS One. 2018;13(1):e0190264.
  • Patterson J, Carpenter EJ, Zhu Z, et al. Impact of sequencing depth and technology on de novo RNA-Seq assembly. BMC Genomics. 2019;20(1):604.
  • Wang H, Dong Z, Zhang R, et al. Low-pass genome sequencing versus chromosomal microarray analysis: implementation in prenatal diagnosis. Genet Med. 2020;22(3):500–510.
  • Zhu FY, Chen MX, Ye NH, et al. Comparative performance of the BGISEQ-500 and Illumina HiSeq4000 sequencing platforms for transcriptome analysis in plants. Plant Methods. 2018;14:69.
  • Yohe S, Thyagarajan B. Review of clinical next-generation sequencing. Arch Pathol Lab Med. 2017;141(11):1544–1557.
  • Amarasinghe SL, Su S, Dong X, et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21(1):30.
  • Payne A, Holmes N, Rakyan V, et al. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics. 2019;35(13):2193–2198.
  • Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–138.
  • Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet. 2011;12(5):363–376.
  • Pollard MO, Gurdasani D, Mentzer AJ, et al. Long reads: their purpose and place. Hum Mol Genet. 2018;27(R2):R234–R241.
  • Miga KH, Koren S, Rhie A, et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585(7823):79–84.
  • Au CH, Ho DN, Ip BBK, et al. Rapid detection of chromosomal translocation and precise breakpoint characterization in acute myeloid leukemia by nanopore long-read sequencing. Cancer Genet. 2019;239:22–25.
  • Cummings PJ, Olszewicz J, Obom KM. Nanopore DNA sequencing for metagenomic soil analysis. J Vis Exp. 2017;14:130.
  • Heyer EE, Deveson IW, Wooi D, et al. Diagnosis of fusion genes using targeted RNA sequencing. Nat Commun. 2019;10(1):1388.
  • Zheng Z, Liebers M, Zhelyazkova B, et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med. 2014;20(12):1479–1484.
  • Akhras MS, Unemo M, Thiyagarajan S, et al. Connector inversion probe technology: a powerful one-primer multiplex DNA amplification system for numerous scientific applications. PLoS One. 2007;2(9):e915.
  • Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. 2017. DOI:https://doi.org/10.1002/wrna.1364
  • Poptsova MS, Il'icheva IA, Nechipurenko DY, et al. Non-random DNA fragmentation in next-generation sequencing. Sci Rep. 2014;4:4532.
  • Haile S, Corbett RD, Bilobram S, et al. Sources of erroneous sequences and artifact chimeric reads in next generation sequencing of genomic DNA from formalin-fixed paraffin-embedded samples. Nucleic Acids Res. 2019;47(2):e12.
  • Robbe P, Popitsch N, Knight SJL, 100,000 Genomes Project, et al. Clinical whole-genome sequencing from routine formalin-fixed, paraffin-embedded specimens: pilot study for the 100,000 Genomes Project. Genet Med. 2018;20(10):1196–1205.
  • Mahmoud M, Gobet N, Cruz-Davalos DI, et al. Structural variant calling: the long and the short of it. Genome Biol. 2019;20(1):246.
  • Guan P, Sung WK. Structural variation detection using next-generation sequencing data: a comparative technical review. Methods. 2016;102:36–49.
  • Kosugi S, Momozawa Y, Liu X, et al. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol. 2019;20(1):117.
  • Wang Q, Xia J, Jia P, et al. Application of next generation sequencing to human gene fusion detection: computational tools, features and perspectives. Brief Bioinform. 2013;14(4):506–519.
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
  • Haas BJ, Dobin A, Li B, et al. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 2019;20(1):213.
  • Vu TN, Deng W, Trac QT, et al. A fast detection of fusion genes from paired-end RNA-seq data. BMC Genomics. 2018;19(1):786.
  • ARRIBA [Internet]. San Francisco (CA): GitHub, Inc.; 2020 [cited 2020 Oct 10]. Available from: https://github.com/suhrig/arriba/
  • Kim B, Lee H, Shin S, et al. Clinical evaluation of massively parallel RNA sequencing for detecting recurrent gene fusions in hematologic malignancies. J Mol Diagn. 2019;21(1):163–170.
  • Selim AG, Moore AS. Molecular minimal residual disease monitoring in acute myeloid leukemia: challenges and future directions. J Mol Diagn. 2018;20(4):389–397.
  • Andreasen S, Kiss K, Melchior LC, et al. The ETV6-RET gene fusion is found in ETV6-rearranged low-grade sinonasal adenocarcinoma without NTRK3 involvement. Am J Surg Pathol. 2018;42(7):985–988.
  • Scolnick JA, Dimon M, Wang IC, et al. An efficient method for identifying gene fusions by targeted RNA sequencing from fresh frozen and FFPE samples. PLoS One. 2015;10(7):e0128916.
  • Skalova A, Vanecek T, Uro-Coste E, et al. Molecular profiling of salivary gland intraductal carcinoma revealed a subset of tumors harboring NCOA4-RET and novel TRIM27-RET fusions: a report of 17 cases. Am J Surg Pathol. 2018;42(11):1445–1455.
  • Afrin S, Zhang CRC, Meyer C, et al. Targeted next-generation sequencing for detecting MLL gene fusions in leukemia. Mol Cancer Res. 2018;16(2):279–285.
  • Strom SP. Current practices and guidelines for clinical next-generation sequencing oncology testing. Cancer Biol Med. 2016;13(1):3–11.
  • Abel H, Pfeifer J, Duncavage E. Translocation detection using next-generation sequencing. Amsterdam (Netherlands): Elsevier; 2015. p. 151–164.
  • Andersson AK, Ma J, Wang J, et al.; St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet. 2015;47(4):330–337.
  • Harewood L, Kishore K, Eldridge MD, et al. Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours. Genome Biol. 2017;18(1):125.
  • Lieberman-Aiden E, van Berkum NL, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–293.
  • Razin SV, Ulianov SV, Gavrilov AA. 3D genomics. Mol Biol (Mosk). 2019;53(6):911–923.
  • Mozheiko EA, Fishman VS. Detection of point mutations and chromosomal translocations based on massive parallel sequencing of enriched 3C libraries. Russ J Genet. 2019;55(10):1273–1281.
  • Wang S, Lee S, Chu C, et al. HiNT: a computational method for detecting copy number variations and translocations from Hi-C data. Genome Biol. 2020;21(1):73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.