888
Views
4
CrossRef citations to date
0
Altmetric
Invited Review Articles

Clot activators and anticoagulant additives for blood collection. A critical review on behalf of COLABIOCLI WG-PRE-LATAM

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 207-224 | Received 15 May 2020, Accepted 06 Nov 2020, Published online: 02 Dec 2020

References

  • Cornes MP, Church S, van Dongen-Lases E, et al. The role of European Federation of Clinical Chemistry and Laboratory Medicine working group for preanalytical phase in standardization and harmonization of the preanalytical phase in Europe. Ann Clin Biochem. 2016;53(Pt 5):539–547.
  • Stonys R, Banys V, Vitkus D, et al. Can chewing gum be another source of preanalytical variability in fasting outpatients? eJIFCC. 2020;31(1):28–45.
  • Arredondo ME, Aranda E, Astorga R, et al. Breakfast can affect routine hematology and coagulation laboratory testing: an evaluation on behalf of COLABIOCLI WG-PRE-LATAM. TH Open. 2019;03(04):e367–e376.
  • Bajaña W, Aranda E, Arredondo ME, et al. Impact of an Andean breakfast on biochemistry and immunochemistry laboratory tests: an evaluation on behalf COLABIOCLI WG-PRE-LATAM. Biochem Med (Zagreb). 2019;19:020702.
  • Lima-Oliveira G, Guidi GC, Salvagno GL, et al. Estimation of the imprecision on clinical chemistry testing due to fist clenching and maintenance during venipuncture. Clin Biochem. 2016;49(18):1364–1367.
  • Lima-Oliveira G, Guidi GC, Salvagno GL, et al. The impact of fist clenching and its maintenance during venipuncture on routine hematology testing. J Clin Lab Anal. 2017;31(5):e22108.
  • Lippi G, Lima-Oliveira G, Guidi GC. Does fist pumping/clenching during venipuncture activate blood coagulation? Blood Coagul Fibrinolysis. 2016;27(3):357–358.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. A new device to relieve venipuncture pain can affect haematology test results. Blood Transfus. 2014;12(1):S6–S10.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. Quality impact on diagnostic blood specimen collection using a new device to relieve venipuncture pain. Indian J Clin Biochem. 2013;28(3):235–241.
  • Bowen RA, Hortin GL, Csako G, et al. Impact of blood collection devices on clinical chemistry assays. Clin Biochem. 2010;43(1–2):4–25.
  • Kricka LJ, Park JY, Senior MB, et al. Processing controls in blood collection tubes reveals interference. Clin Chem. 2005;51(12):2422–2423.
  • Lima-Oliveira G, Cesare Guidi G, Guimaraes AVP, et al. Preanalytical nonconformity management regarding primary tube mixing in Brazil. J Med Biochem. 2017;36(1):39–43.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. Processing of diagnostic blood specimens: is it really necessary to mix primary blood tubes after collection with evacuated tube system? Biopreserv Biobank. 2014;12(1):53–59.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. Effects of vigorous mixing of blood vacuum tubes on laboratory test results. Clin Biochem. 2013;46(3):250–254.
  • Lima-Oliveira G, Adcock DM, Salvagno GL, et al. Mixing of thawed coagulation samples prior to testing: is any technique better than another? Clin Biochem. 2016;49(18):1399–1401.
  • Favaloro EJ, Oliver S, Mohammed S, et al. Potential misdiagnosis of von Willebrand disease and haemophilia caused by ineffective mixing of thawed plasma. Haemophilia. 2017;23(5):e436–e443.
  • Lippi G, Salvagno GL, Danese E, et al. Inversion of lithium heparin gel tubes after centrifugation is a significant source of bias in clinical chemistry testing. Clin Chim Acta. 2014;436:183–187.
  • Lippi G, Lima-Oliveira G, Brocco G, et al. Estimating the intra- and inter-individual imprecision of manual pipetting. Clin Chem Lab Med. 2017;55:962–966.
  • International Organization for Standardization. Medical laboratories – REquirements for quality and competence. ISO document 15189. Geneva (Switzerland): International Organization for Standardization; 2012.
  • Lippi G, Cornes MP, Grankvist K, et al. EFLM WG-preanalytical phase opinion paper: local validation of blood collection tubes in clinical laboratories. Clin Chem Lab Med. 2016;54(5):755–760.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. Sodium citrate vacuum tubes validation: preventing preanalytical variability in routine coagulation testing. Blood Coagul Fibrinolysis. 2013;24(3):252–255.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. Brand of dipotassium EDTA vacuum tube as a new source of pre-analytical variability in routine haematology testing. Br J Biomed Sci. 2013;70(1):6–9.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. K(3)EDTA vacuum tubes validation for routine hematological testing. ISRN Hematol. 2012;2012:1–5.
  • Lima-Oliveira G, Salvagno GL, Lippi G, et al. Quality management of preanalytical phase: impact of lithium heparin vacuum tubes changes on clinical chemistry tests. Accred Qual Assur. 2013;18(5):429–434.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. Preanalytical management: serum vacuum tubes validation for routine clinical chemistry. Biochem Med. 2012;22:180–186.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. Different manufacturers of syringes: a new source of variability in blood gas, acid-base balance and related laboratory test? Clin Biochem. 2012;45(9):683–687.
  • Bowen RA, Remaley AT. Interferences from blood collection tube components on clinical chemistry assays. Biochem Med. 2014;24(1):31–44.
  • Lima-Oliveira G, Volanski W, Lippi G, et al. Pre-analytical phase management: a review of the procedures from patient preparation to laboratory analysis. Scand J Clin Lab Invest. 2017;77(3):153–163.
  • International Organization for Standardization. Single-use containers for human venous blood specimen collection. ISO document 6710. Geneva (Switzerland): International Organization for Standardization; 2017.
  • Grankvist K, Gomez R, Nybo M, et al. Preanalytical aspects on short- and long-term storage of serum and plasma. Diagnosis (Berl). 2019;6:51–56.
  • Lima-Oliveira G, Monneret D, Guerber F, et al. Sample management for clinical biochemistry assays: are serum and plasma interchangeable specimens? Crit Rev Clin Lab Sci. 2018;55(7):480–500.
  • Plebani M, Banfi G, Bernardini S, et al. Serum or plasma? An old question looking for new answers. Clin Chem Lab Med. 2020;58(2):178–187.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. Abnormal gel flotation caused by contrast media during adrenal vein sampling. Biochem Med (Zagreb). 2016;26(3):444–450.
  • Walsh PN. Platelets and coagulation proteins. Fed Proc. 1981;40(7):2086–2091.
  • Kalafatis M, Egan JO, van 't Veer C, et al. The regulation of clotting factors. Crit Rev Eukaryot Gene Expr. 1997;7(3):241–280.
  • Winter WE, Greene DN, Beal SG, et al. Clotting factors: clinical biochemistry and their roles as plasma enzymes. Adv Clin Chem. 2020;94:31–84.
  • Kubier A, O'Brien M. Endogenous anticoagulants. Top Companion Anim Med. 2012;27(2):81–87.
  • Lipe B, Ornstein DL. Deficiencies of natural anticoagulants, protein C, protein S, and antithrombin. Circulation. 2011;124(14):e365.
  • Castellino FJ, Ploplis VA. The protein C pathway and pathologic processes. J Thromb Haemost. 2009;7(Suppl 1):140–145.
  • Strickland DK, Kessler CM. Biochemical and functional properties of protein C and protein S. Clin Chim Acta. 1987;170(1):1–23.
  • Persson KE, Stenflo J, Linse S, et al. Binding of calcium to anticoagulant protein S: role of the fourth EGF module. Biochemistry. 2006;45(35):10682–10689.
  • Dorsey A, Pilli VS, Fried H, et al. Protein S: a multifunctional anticoagulant. Biomed Res Clin Prac. 2017;2(5). DOI:https://doi.org/10.15761/BRCP.1000151
  • Franchi F, Biguzzi E, Martinelli I, et al. Normal reference ranges of antithrombin, protein C and protein S: effect of sex, age and hormonal status. Thromb Res. 2013;132(2):e152–e157.
  • Chattopadhyay R, Sengupta T, Majumder R. Inhibition of intrinsic Xase by protein S: a novel regulatory role of protein S independent of activated protein C. Arterioscler Thromb Vasc Biol. 2012;32(10):2387–2393.
  • Roemisch J, Gray E, Hoffmann JN, et al. Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul Fibrinolysis. 2002;13(8):657–670.
  • Rosenberg JS, McKenna PW, Rosenberg RD. Inhibition of human factor IXa by human antithrombin. J Biol Chem. 1975;250(23):8883–8888.
  • Rao LV, Nordfang O, Hoang AD, et al. Mechanism of antithrombin III inhibition of factor VIIa/tissue factor activity on cell surfaces. Comparison with tissue factor pathway inhibitor/factor Xa-induced inhibition of factor VIIa/tissue factor activity. Blood. 1995;85(1):121–129.
  • Stead N, Kaplan AP, Rosenberg RD. Inhibition of activated factor XII by antithrombin-heparin cofactor. J Biol Chem. 1976;251(21):6481–6488.
  • Opal SM, Kessler CM, Roemisch J, et al. Antithrombin, heparin, and heparan sulfate. Crit Care Med. 2002;30(5 Suppl):S325–S31.
  • Weisel JW. Fibrinogen and fibrin. Adv Protein Chem. 2005;70:247–299.
  • Kataoka K, Yamada S, Toki N. Effects of cryoglobulin on fibrin clot formation and fibrinolysis. Acta Haematol. 1984;71(2):90–96.
  • Etienne J, Sarmini H, Borgard JP, et al. Biochemical problems caused by some cryoglobulins. Biomedicine. 1978;29(4):117–120.
  • Bowen RA, Chan Y, Ruddel ME, et al. Immunoassay interference by a commonly used blood collection tube additive, the organosilicone surfactant silwet L-720. Clin Chem. 2005;51(10):1874–1882.
  • Bock PE, Srinivasan KR, Shore JD. Activation of intrinsic blood coagulation by ellagic acid: insoluble ellagic acid-metal ion complexes are the activating species. Biochemistry. 1981;20(25):7258–7266.
  • Ivanov I, Matafonov A, Sun MF, et al. Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation. Blood. 2017;129(11):1527–1537.
  • Scott CF. Mechanism of the participation of the contact system in the Vroman effect. Review and summary. J Biomater Sci Polym Ed. 1991;2(3):173–181.
  • Vogler EA, Siedlecki CA. Contact activation of blood-plasma coagulation. Biomaterials. 2009;30(10):1857–1869.
  • De Vries AJ, Lansink-Hartgring AO, Fernhout FJ, et al. The activated clotting time in cardiac surgery: should Celite or kaolin be used? Interact Cardiovasc Thorac Surg. 2017;24:549–554.
  • Vogler EA, Graper JC, Harper GR. inventors; Becton, Dickinson and Company (Franklin Lakes, NJ), assignee. Tube having unitary blood coagulation activator and method for its preparation. US patent 5326535. 1994.
  • Rapaport SI. Evidence that glass increases plasma PTA activity. J Lab Clin Med. 1958;52(4):624–633.
  • Laessig RH, Hassemer DJ, Hoffman GL, et al. A comparison of hard and soft glass blood-drawing tubes. Am J Clin Pathol. 1979;72(6):952–955.
  • Preissner CM, Reilly WM, Cyr RC, et al. Plastic versus glass tubes: effects on analytical performance of selected serum and plasma hormone assays. Clin Chem. 2004;50(7):1245–1247.
  • Kasai M, Yamazaki S, Miyake S, inventors; Terumo Corporation, assignee. Blood collecting tube. US patent US4985026A. 1991.
  • Ernst DJ. Plastic collection tubes decrease risk of employee injury. MLO Med Lab Obs. 2001;33(48):44–46, 48, 50.
  • Hill BM, Laessig RH, Koch DD, et al. Comparison of plastic vs. glass evacuated serum-separator (SST) blood-drawing tubes for common clinical chemistry determinations. Clin Chem. 1992;38(8 Pt 1):1474–1478.
  • Bush V. Effects of pre-analytical variables in therapeutic drug monitoring. Chapter 2. In: Dasgupta A, editor. Therapeutic drug monitoring. Cambridge (MA): Academic Press; 2012. p. 31–48.
  • Kratz A, Stanganelli N, Van Cott EM. A comparison of glass and plastic blood collection tubes for routine and specialized coagulation assays: a comprehensive study. Arch Pathol Lab Med. 2006;130(1):39–44.
  • Smets EM, Dijkstra-Lagemaat JE, Blankenstein MA. Influence of blood collection in plastic vs. glass evacuated serum-separator tubes on hormone and tumour marker levels. Clin Chem Lab Med. 2004;42:435–439.
  • Tarn D, Ashley CE, Xue M, et al. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res. 2013;46(3):792–801.
  • Margolis J. The effect of colloidal silica on blood coagulation. Aust J Exp Biol Med Sci. 1961;39:249–258.
  • Baker SE, Sawvel AM, Zheng N, et al. Controlling bioprocesses with inorganic surfaces: layered clay hemostatic agents. Chem Mater. 2007;19(18):4390–4392.
  • Soulier JP, Prou-Wartelle O. [Effects of various adsorbants on coagulation factors (author's transl)]. Nouv Rev Fr Hematol. 1975;15:195–211.
  • National Center for Biotechnology Information. Kaolin, CID = 56841936. PubChem Database [cited 2020 Apr. 5]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Kaolin
  • Franco F, Pérez-Maqueda LA, Pérez-Rodríguez JL. The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. J Colloid Interface Sci. 2004;274(1):107–117.
  • Karimi L, Salem A. The role of bentonite particle size distribution on kinetic of cation exchange capacity. J Ind Eng Chem. 2011;17(1):90–95.
  • Murray HH. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci. 2000;17(5–6):207–221.
  • Wikoff DS, Bennett DC, Brorby GP. Evaluation of potential human health risk associated with consumption of edible products from livestock fed ration supplemented with Red Lake Diatomaceous Earth. Food Addit Contam Part A. 2020;37:804–814.
  • Dubrowny NE, Harrop AJ, inventors; Becton, Dickinson & Company (Franklin Lakes, NJ), assignee. Collection device. United States patent 6686204B2. 2004.
  • Stubbs MT, Bode W. Coagulation factors and their inhibitors. Curr Opin Struct Biol. 1994;4(6):823–832.
  • Dimeski G, Masci PP, Trabi M, et al. Evaluation of the Becton-Dickinson rapid serum tube: does it provide a suitable alternative to lithium heparin plasma tubes? Clin Chem Lab Med. 2010;48(5):651–657.
  • Dimeski G, Johnston J, Masci PP, et al. Evaluation of the Greiner Bio-One serum separator BCA Fast Clot tube. Clin Chem Lab Med. 2017;55(8):1135–1141.
  • Hsu E, Moosavi L. Biochemistry, Antithrombin III. Treasure Island (FL): StatPearls; 2020.
  • Matafonov A, Sarilla S, Sun MF, et al. Activation of factor XI by products of prothrombin activation. Blood. 2011;118(2):437–445.
  • Moore GW, Tugnait S, Savidge GF. A new-generation dilute Russell's viper venom time assay system for lupus anticoagulants: evaluation of detection utilising frozen reagents and controls. Br J Biomed Sci. 2005;62(3):127–132.
  • Speijer H, Govers-Riemslag JW, Zwaal RF, et al. Platelet procoagulant properties studied with snake venom prothrombin activators. Thromb Haemost. 1987;57(3):349–355.
  • Marsh N, Williams V. Practical applications of snake venom toxins in haemostasis. Toxicon. 2005;45(8):1171–1181.
  • Zhao KN, Dimeski G, de Jersey J, et al. Next-generation rapid serum tube technology using prothrombin activator coagulant: fast, high-quality serum from normal samples. Clin Chem Lab Med. 2019;57(4):483–497.
  • Exner T, Rickard KA. Contact activation by ellagic acid - the concept of soluble activator disputed. Thromb Res. 1982;26(2):83–89.
  • Lyberg T, Nakstad B, Hetland O, et al. Procoagulant (thromboplastin) activity in human bronchoalveolar lavage fluids is derived from alveolar macrophages. Eur Respir J. 1990;3(1):61–67.
  • Hetland O, Brovold AB, Holme R, et al. Thromboplastin (tissue factor) in plasma membranes of human monocytes. Biochem J. 1985;228(3):735–743.
  • Lopez ML, Bruges G, Crespo G, et al. Thrombin selectively induces transcription of genes in human monocytes involved in inflammation and wound healing. Thromb Haemost. 2014;112(5):992–1001.
  • Quick AJ, Stefanini M. The chemical state of the calcium reacting in the coagulation of blood. J Gen Physiol. 1948;32(2):191–202.
  • Shalaev EY, Johnson-Elton TD, Chang L, et al. Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: implications for freeze-drying. Pharm Res. 2002;19(2):195–201.
  • Adcock DM, Kressin DC, Marlar RA. Minimum specimen volume requirements for routine coagulation testing: dependence on citrate concentration. Am J Clin Pathol. 1998;109(5):595–599.
  • Lippi G, Salvagno GL, Montagnana M, et al. Quality standards for sample collection in coagulation testing. Semin Thromb Hemost. 2012;38(6):565–575.
  • Ver Elst K, Vermeiren S, Schouwers S, et al. Validation of the minimal citrate tube fill volume for routine coagulation tests on ACL TOP 500 CTS®. Int J Lab Hematol. 2013;35(6):614–619.
  • Reneke J, Etzell J, Leslie S, et al. Prolonged prothrombin time and activated partial thromboplastin time due to underfilled specimen tubes with 109 mmol/L (3.2%) citrate anticoagulant. Am J Clin Pathol. 1998;109(6):754–757.
  • Caruso B, Bovo C, Guidi GC. Causes of preanalytical interferences on laboratory immunoassays. eJIFCC. 2020;31(1):70–84.
  • Rankin B. Humans by altitude; 2016 [cited 2020 Feb 10]. Available from: http://www.radicalcartography.net/index.html?howhigh.
  • Marlar RA, Potts RM, Marlar AA. Effect on routine and special coagulation testing values of citrate anticoagulant adjustment in patients with high hematocrit values. Am J Clin Pathol. 2006;126(3):400–405.
  • Jou JM, Lewis SM, Briggs C, et al. ICSH review of the measurement of the erythocyte sedimentation rate. Int J Lab Hematol. 2011;33(2):125–132.
  • Adcock DM, Kressin DC, Marlar RA. Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing. Am J Clin Pathol. 1997;107(1):105–110.
  • Payne S, MacKinnon K, Keeney M, et al. Effect of 3.2 vs. 3.8% sodium citrate concentration on anti-Xa levels for patients on therapeutic low molecular weight heparin. Clin Lab Haematol. 2003;25(5):317–319.
  • Moore GL. Additive solutions for better blood preservation. Crit Rev Clin Lab Sci. 1987;25(3):211–229.
  • Knight JA, Searles DA, Clayton FC. The effect of desferrioxamine on stored erythrocytes: lipid peroxidation, deformability, and morphology. Ann Clin Lab Sci. 1996;26(4):283–290.
  • Mustard JF. Some in vitro effects of various concentrations of disodium ethylenediamine tetracetate, potassium oxalate, and sodium citrate on coagulation of blood. Am J Clin Pathol. 1958;30(6):498–506.
  • Mel'nikov AF. Coagulation activity of the oxalate and citrate plasma. Lab Delo. 1976:246–247.
  • Barkhan P. The effect of oxalate and citrate on the platelet count of whole blood and plasma. J Clin Pathol. 1957;10(1):26–28.
  • Quick AJ, Stefanini M. The concentration of the labile factor of the prothrombin complex in human, dog, and rabbit blood; its significance in the determination of prothrombin activity. J Lab Clin Med. 1948;33(7):819–826.
  • Buc HA, Demaugre F, Cepanec C, et al. The metabolic effects of oxalate on intact red blood cells. Biochim Biophys Acta. 1980;628(2):136–144.
  • Eastham RD, Denson KW, Evans DA. The effects of sodium citrate and potassium ammonium oxalate on the erythrocyte sedimentation rate. Acta Med Scand. 1958;161(4):277–288.
  • Pal GK, Pal P. Collection of blood samples. In: Textbook of practical physiology. 2nd ed. Hyderabad, India: Orient Longman; 2005.
  • Von Burg R. Oxalic acid and sodium oxalate. J Appl Toxicol. 1994;14(3):233–237.
  • Reiter J. CFD analysis of EDTA-CaCl2 reaction in a microfluidic channel to aid in design of novel calorimeter device [master's thesis]. Boston (MA): Northeastern University; 2015.
  • Narayanan S. Effect of anticoagulants used for blood collection on laboratory tests. Jpn J Clin Pathol. 1996;103:73–80.
  • Goossens W, Van Duppen V, Verwilghen RL. K2- or K3-EDTA: the anticoagulant of choice in routine haematology? Clin Lab Haematol. 1991;13(3):291–295.
  • Narayanan S. The preanalytic phase. An important component of laboratory medicine. Am J Clin Pathol. 2000;113(3):429–452.
  • Recommendations of the International Council for Standardization in haematology for ethylenediaminetetraacetic acid anticoagulation of blood for blood cell counting and sizing. International Council for Standardization in Haematology: Expert Panel on Cytometry. Am J Clin Pathol. 1993;100:371–372.
  • Lesesve JF, Haristoy X, Thouvenin M, et al. Pseudoleucopenia due to in vitro leukocyte agglutination polynuclear neutrophils: experience of a laboratory, review of the literature and future management. Ann Biol Clin (Paris). 2000;58(4):417–424.
  • Yoneyama A, Nakahara K. [EDTA-dependent pseudothrombocytopenia–differentiation from true thrombocytopenia]. Nihon Rinsho. 2003;61(4):569–574.
  • Abal CC, Calviño LR, Manso LR, et al. Pseudothrombocytopenia by ethylenediaminetetraacetic acid can jeopardize patient safety – a case report. eJIFCC. 2020;31(1):65–69.
  • Bartels PC, Schoorl M, Lombarts AJ. Screening for EDTA-dependent deviations in platelet counts and abnormalities in platelet distribution histograms in pseudothrombocytopenia. Scand J Clin Lab Invest. 1997;57(7):629–636.
  • Kovacs F, Varga M, Pataki Z, et al. Pseudothrombocytopenia with multiple anticoagulant sample collection tubes. Interv Med Appl Sci. 2016;8(4):181–183.
  • Robier C, Neubauer M, Sternad H, et al. Hirudin-induced pseudothrombocytopenia in a patient with EDTA-dependent platelet aggregation: report of a new laboratory artefact. Int J Lab Hematol. 2010;32:452–453.
  • Schuff-Werner P, Steiner M, Fenger S, et al. Effective estimation of correct platelet counts in pseudothrombocytopenia using an alternative anticoagulant based on magnesium salt. Br J Haematol. 2013;162(5):684–692.
  • Mannuß S, Schuff-Werner P, Dreißiger K, et al. Magnesium sulfate as an alternative in vitro anticoagulant for the measurement of platelet parameters? Am J Clin Pathol. 2016;145(6):806–814.
  • Mannuß S, Schuff-Werner P, Dreißiger K, et al. Inhibition of agonist-induced platelet aggregation by magnesium sulfate warrants its use as an alternative in vitro anticoagulant in pseudothrombocytopenia. Platelets. 2020;31(5):680–685.
  • Mollnes TE, Garred P, Bergseth G. Effect of time, temperature and anticoagulants on in vitro complement activation: consequences for collection and preservation of samples to be examined for complement activation. Clin Exp Immunol. 1988;73(3):484–488.
  • Watkins J, Wild G, Smith S. Nafamostat to stabilise plasma samples taken for complement measurements. Lancet. 1989;1(8643):896–897.
  • Bergseth G, Ludviksen JK, Kirschfink M, et al. An international serum standard for application in assays to detect human complement activation products. Mol Immunol. 2013;56(3):232–239.
  • Pfeifer PH, Kawahara MS, Hugli TE. Possible mechanism for in vitro complement activation in blood and plasma samples: futhan/EDTA controls in vitro complement activation. Clin Chem. 1999;45(8 Pt 1):1190–1199.
  • Goldstein BN, Wesler J, Nowacki AS, et al. Investigations of blood ammonia analysis: Test matrices, storage, and stability. Clin Biochem. 2017;50(9):537–539.
  • Ong JP, Aggarwal A, Krieger D, et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med. 2003;114(3):188–193.
  • Lima-Oliveira G, Salvagno GL, Danese E, et al. Sodium citrate blood contamination by K2 -ethylenediaminetetraacetic acid (EDTA): impact on routine coagulation testing. Int J Lab Hematol. 2015;37(3):403–409.
  • Rabenstein DL, Robert JM, Peng J. Multinuclear magnetic resonance studies of the interaction of inorganic cations with heparin. Carbohydr Res. 1995;278(2):239–256.
  • Spadarella G, Di Minno A, Donati MB, et al. From unfractionated heparin to pentasaccharide: Paradigm of rigorous science growing in the understanding of the in vivo thrombin generation. Blood Rev. 2020;39:100613.
  • Gray E, Hogwood J, Mulloy B. The anticoagulant and antithrombotic mechanisms of heparin. Handb Exp Pharmacol. 2012;207:43–61.
  • Narayanan S, Hamasaki N. Current concepts of coagulation and fibrinolysis. Adv Clin Chem. 1998;33:133–168.
  • Landt M, Hortin GL, Smith CH, et al. Interference in ionized calcium measurements by heparin salts. Clin Chem. 1994;40(4):565–570.
  • Toffaletti JG, Wildermann RF. The effects of heparin anticoagulants and fill volume in blood gas syringes on ionized calcium and magnesium measurements. Clin Chim Acta. 2001;304(1–2):147–151.
  • Toffaletti J, Thompson T. Effects of blended lithium-zinc heparin on ionized calcium and general clinical chemistry tests. Clin Chem. 1995;41(2):328–329.
  • Toffaletti J. Use of novel preparations of heparin to eliminate interference in ionized calcium measurements: have all the problems been solved? Clin Chem. 1994;40(4):508–509.
  • Wilhite TR, Smith CH, Landt M. Interference of zinc heparin anticoagulant in determination of plasma magnesium. Clin Chem. 1994;40(5):848–849.
  • Remko M, Broer R, Remková A, et al. How strong are Ca2+–heparin and Zn2+–heparin interactions? Chem Phys Lett. 2015;621:12–17.
  • Toffaletti J, Ernst P, Hunt P, et al. Dry electrolyte-balanced heparinized syringes evaluated for determining ionized calcium and other electrolytes in whole blood. Clin Chem. 1991;37(10 Pt 1):1730–1733.
  • van Berkel M, Scharnhorst V. Electrolyte-balanced heparin in blood gas syringes can introduce a significant bias in the measurement of positively charged electrolytes. Clin Chem Lab Med. 2011;49(2):249–252.
  • Lippi G, Nybo M, Cadamuro J, et al. Blood glucose determination: effect of tube additives. Adv Clin Chem. 2018;84:101–123.
  • Chan AY, Swaminathan R, Cockram CS. Effectiveness of sodium fluoride as a preservative of glucose in blood. Clin Chem. 1989;35(2):315–317.
  • Meites S, Saniel-Banrey K. Preservation, distribution, and assay of glucose in blood, with special reference to the newborn. Clin Chem. 1979;25(4):531–534.
  • Rhys NH, Bruni F, Imberti S, et al. Glucose and mannose: a link between hydration and sweetness. J Phys Chem B. 2017;121(33):7771–7776.
  • Liss E, Bechtel S. Improvement of glucose preservation in blood samples. J Clin Chem Clin Biochem. 1990;28(10):689–690.
  • Chapman BE, Kuchel PW. Fluoride transmembrane exchange in human erythrocytes measured with 19F NMR magnetization transfer. Eur Biophys J. 1990;19(1):41–45.
  • Shi RZ, Seeley ES, Bowen R, et al. Rapid blood separation is superior to fluoride for preventing in vitro reductions in measured blood glucose concentration. J Clin Pathol. 2009;62(8):752–753.
  • Bueding E, Goldfarb W. The effect of sodium fluoride and sodium iodoacetate on glycolysis in human blood. J Biol Chem. 1941;14:539–544.
  • Silveira MC, Carvajal E, Bon EP. Assay for in vivo yeast invertase activity using NaF. Anal Biochem. 1996;238(1):26–28.
  • El Sayed SM, El-Magd RM, Shishido Y, et al. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects. J Bioenerg Biomembr. 2012;44(1):61–79.
  • Mikesh LM, Bruns DE. Stabilization of glucose in blood specimens: mechanism of delay in fluoride inhibition of glycolysis. Clin Chem. 2008;54(5):930–932.
  • Fernandez L, Jee P, Klein MJ, et al. A comparison of glucose concentration in paired specimens collected in serum separator and fluoride/potassium oxalate blood collection tubes under survey 'field' conditions. Clin Biochem. 2013;46(4–5):285–288.
  • Schmidt MM, Dringen R. Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front Neuroenergetics. 2009;1:1
  • Williamson JR. Glycolytic control mechanisms. 3. Effects of iodoacetamide and fluoroacetate on glucose metabolism in the perfused rat heart. J Biol Chem. 1967;242(19):4476–4485.
  • Beutler E, Blume KG, Kaplan JC, et al. International Committee for Standardization in Haematology: recommended methods for red-cell enzyme analysis. Br J Haematol. 1977;35(2):331–340.
  • Uchida K, Matuse R, Toyoda E, et al. A new method of inhibiting glycolysis in blood samples. Clin Chim Acta. 1988;172(1):101–108.
  • Uchida K, Okuda S, Tanaka K. inventors; TERUMO CORPORATION, assignee. Method of inhibiting glycolysis in blood samples. European. 1990.
  • Bonetti G, Carta M, Montagnana M, et al. Effectiveness of citrate buffer-fluoride mixture in Terumo tubes as an inhibitor of in vitro glycolysis. Biochem Med. 2016;26:68–76.
  • Fobker M. Stability of glucose in plasma with different anticoagulants. Clin Chem Lab Med. 2014;52:1057–1060.
  • Saracevic A, Dukic L, Juricic G, et al. Various glycolysis inhibitor-containing tubes for glucose measurement cannot be used interchangeably due to clinically unacceptable biases between them. Clin Chem Lab Med. 2018;56(2):236–241.
  • Muller C, Lukas P, Bohmert M, et al. Hirudin or hirudin-like factor - that is the question: insights from the analyses of natural and synthetic HLF variants. FEBS Lett. 2020;594(5):841–850.
  • Cheng B, Liu F, Guo Q, et al. Identification and characterization of hirudin-HN, a new thrombin inhibitor, from the salivary glands of Hirudo nipponia. PeerJ. 2019;7:e7716.
  • Chang JY. The functional domain of hirudin, a thrombin-specific inhibitor. FEBS Lett. 1983;164(2):307–313.
  • Bexborn F, Engberg AE, Sandholm K, et al. Hirudin versus heparin for use in whole blood in vitro biocompatibility models. J Biomed Mater Res A. 2009;89(4):951–959.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. Venous stasis and whole blood platelet aggregometry: a question of data reliability and patient safety. Blood Coagul Fibrinolysis. 2015;26(6):665–668.
  • Chapman K, Favaloro EJ. Time dependent reduction in platelet aggregation using the multiplate analyser and hirudin blood due to platelet clumping. Platelets. 2018;29(3):305–308.
  • Calam RR, Cooper MH. Recommended "order of draw" for collecting blood specimens into additive-containing tubes. Clin Chem. 1982;28(6):1399.
  • Lima-Oliveira G, Salvagno GL, Danese E, et al. Contamination of lithium heparin blood by K2-ethylenediaminetetraacetic acid (EDTA): an experimental evaluation. Biochem Med (Zagreb). 2014;24(3):359–367.
  • Johnston MB, Bernard Jr AJ, Flaschka HA. EDTA and complex formation. J Chem Educ. 1958;35(12):601–606.
  • Sharratt CL, Gilbert CJ, Cornes MC, et al. EDTA sample contamination is common and often undetected, putting patients at unnecessary risk of harm. Int J Clin Pract. 2009;63(8):1259–1262.
  • Davidson DF. EDTA analysis on the Roche MODULAR analyser. Ann Clin Biochem. 2007;44(3):294–296.
  • Chadwick K, Whitehead SJ, Ford C, et al. KEDTA sample contamination: a reappraisal. J Appl Lab Med. 2019;3(6):925–935.
  • Barbato L, Campelo MD, Pigozzo S, et al. Rejection of hemolyzed sample can jeopardize patient safety. eJIFCC. 2020;31(1):15–20.
  • Salvagno G, Lima-Oliveira G, Brocco G, et al. The order of draw: myth or science? Clin Chem Lab Med. 2013;51(12):2281–2285.
  • Sulaiman RA, Cornes MP, Whitehead SJ, et al. Effect of order of draw of blood samples during phlebotomy on routine biochemistry results. J Clin Pathol. 2011;64(11):1019–1020.
  • Cornes MR, Sulaiman RA, Whitehead SJ, et al. Incorrect order of draw of blood samples does not cause potassium EDTA sample contamination. Br J Biomed Sci. 2012;69(3):136–138.
  • Indevuyst C, Schuermans W, Bailleul E, et al. The order of draw: much ado about nothing? Int J Lab Hematol. 2015;37(1):50–55.
  • Lima-Oliveira G, Lippi G, Salvagno GL, et al. Incorrect order of draw could be mitigate the patient safety: a phlebotomy management case report. Biochem Med (Zagreb)). 2013;23(2):218–223.
  • Cornes MP, Davidson F, Darwin L, et al. Multi-centre observational study of spurious hyperkalaemia due to EDTA contamination. Clin Lab. 2010;56(11–12):597–599.
  • Cornes MP, Ford C, Gama R. Spurious hyperkalaemia due to EDTA contamination: common and not always easy to identify. Ann Clin Biochem. 2008;45(Pt 6):601–603.
  • Cornes MP, Ford C, Gama R. Undetected spurious hypernatraemia wastes health-care resources. Ann Clin Biochem. 2011;48(Pt 1):87–88.
  • Cadamuro J, Felder TK, Oberkofler H, et al. Relevance of EDTA carryover during blood collection. Clin Chem Lab Med. 2015;53(8):1271–1278.
  • CLSI. Procedures for collection of diagnostic blood specimens by venipuncture. CLSI GP41. 7th ed. Wayne, PA: Clinical Laboratory Standards Institute; 2017.
  • Simundic AM, Bolenius K, Cadamuro J, et al. Joint EFLM-COLABIOCLI recommendation for venous blood sampling. Clin Chem Lab Med. 2018;56(12):2015–2038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.