2,585
Views
12
CrossRef citations to date
0
Altmetric
Invited Review Articles

Progress in understanding COVID-19: insights from the omics approach

ORCID Icon, , &
Pages 242-252 | Received 08 Aug 2020, Accepted 11 Nov 2020, Published online: 29 Dec 2020

References

  • Coronavirus disease (COVID-19) outbreak situation [Internet]. Geneva: WHO; [cited 2020 Nov 7]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
  • Lippi G, Plebani M. The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks. Clin Chem Lab Med. 2020;58(7):1063–1069.
  • Gates B. Responding to Covid-19 - a once-in-a-century pandemic? N Engl J Med. 2020;382(18):1677–1679.
  • Eckhardt M, Hultquist JF, Kaake RM, et al. A systems approach to infectious disease. Nat Rev Genet. 2020;21(6):339–354.
  • Naqvi AAT, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165878.
  • Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574.
  • Narayanan K, Huang C, Makino S. SARS coronavirus accessory proteins. Virus Res. 2008;133(1):113–121.
  • Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020;92(5):522–528.
  • Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69.
  • Tai W, He L, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020;17(6):613–620.
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263.
  • Benvenuto D, Giovanetti M, Ciccozzi A, et al. The 2019-new coronavirus epidemic: Evidence for virus evolution. J Med Virol. 2020;92(4):455–459.
  • Xu M, Wang D, Wang H, et al. COVID-19 diagnostic testing: technology perspective. Clin Transl Med. 2020;10(4):e158.
  • D'CruzRJ, Currier AW, Sampson VB. Laboratory testing methods for novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Front Cell Dev Biol. 2020;8:468.
  • Cristea IM, Graham D. Virology meets proteomics. Proteomics. 2015;15(12):1941–1942.
  • Lum KK, Cristea IM. Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev Proteomics. 2016;13(3):325–340.
  • Struwe W, Emmott E, Bailey M, COVID-19 MS Coalition, et al. The COVID-19 MS Coalition-accelerating diagnostics, prognostics, and treatment. Lancet. 2020;395(10239):1761–1762.
  • Lucia G, Olivier P, Jean A. Pathogen proteotyping: A rapidly developing application of mass spectrometry to address clinical concerns. Clin Mass Spectrom. 2019;14:9–17.
  • Gouveia D, Grenga L, Gaillard JC, et al. Shortlisting SARS-CoV-2 peptides for targeted studies from experimental data-dependent acquisition tandem mass spectrometry data. Proteomics. 2020;20(14):e2000107.
  • Zecha J, Lee CY, Bayer FP, et al. Data, reagents, assays and merits of proteomics for SARS-CoV-2 research and testing. Mol Cell Proteomics. 2020;19(9):1503–1522.
  • Ihling C, Tänzler D, Hagemann S, et al. Mass Spectrometric Identification of SARS-CoV-2 Proteins from Gargle Solution Samples of COVID-19 Patients. J Proteome Res. 2020;19(11):4389–4392.
  • Karel B, Mart ML, Bart LH, et al. Targeted proteomics for the detection of SARS-CoV-2 proteins. bioRxiv. Forthcoming. [cited 2020 Oct 3]. DOI:https://doi.org/10.1101/2020.04.23.057810
  • Davidson AD, Williamson MK, Lewis S, et al. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med. 2020;12(1):68.
  • Morais Cardozo KH, Lebkuchen A, Goncalves Okai G, et al. Fast and lowcost detection of SARS-CoV-2 peptides by tandem mass spectrometry in clinical samples. Research Square. Forthcoming. [cited 2020 Oct 3]. DOI:https://doi.org/10.21203/rs.3.rs-28883/v1
  • FIND COVID-19 resource center [Internet]. Geneva: the Foundation for Innovative New Diagnostics; [cited 2020 Sep 23]. Available from: https://www.finddx.org/covid-19/pipeline/
  • Dinnes J, Deeks JJ, Adriano A, Cochrane COVID-19 Diagnostic Test Accuracy Group, et al. Cochrane COVID-19 diagnostic test accuracy group. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev. 2020;(8):CD013705.
  • Yu X, Bian X, Throop A, et al. Exploration of panviral proteome: high-throughput cloning and functional implications in virus-host interactions. Theranostics. 2014;4(8):808–822.
  • Zhu H, Hu S, Jona G, et al. Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc Natl Acad Sci U S A. 2006;103(11):4011–4016.
  • Hongye W, Xin H, Xian W, et al. SARS-CoV-2 proteome microarray for mapping COVID-19 antibody interactions at amino acid resolution. ACS Cent Sci. [cited 2020 Nov 3]. DOI:https://doi.org/10.1101/2020.03.26.994756
  • Xiaomei Z, Xian W, Wang D, et al. Proteome-wide analysis of differentially-expressed SARS-CoV-2 antibodies in early COVID-19 infection. medRxiv. Forthcoming. [cited 2020 Oct 3 ]. DOI:https://doi.org/10.1101/2020.04.14.20064535
  • Okba NMA, Müller MA, Li W, et al. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis. 2020;26(7):1478–1488.
  • Krammer F, Simon V. Serology assays to manage COVID-19. Science. 2020;368(6495):1060–1061.
  • Sun B, Feng Y, Mo X, et al. Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):940–948.
  • Sun P, Qie S, Liu Z, et al. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: A single arm meta-analysis. J Med Virol. 2020;92(6):612–617.
  • Xu X, Yu C, Qu J, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020;47(5):1275–1280.
  • Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513.
  • Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect. 2020;80(6):607–613.
  • Thiel V, Weber F. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev. 2008;19(2):121–132.
  • Chen L, Liu HG, Liu W, et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43(3):203–208.
  • Frieman M, Heise M, Baric R. SARS coronavirus and innate immunity. Virus Res. 2008;133(1):101–112.
  • Liu L, Wei Q, Nishiura K, et al. Spatiotemporal interplay of severe acute respiratory syndrome coronavirus and respiratory mucosal cells drives viral dissemination in rhesus macaques. Mucosal Immunol. 2016;9(4):1089–1101.
  • Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2020; [cited 2020 Oct 3]. DOI:https://doi.org/10.1002/jmv.26232
  • Xu P, Wang L, Chen D, et al. The application of proteomics in the diagnosis and treatment of bronchial asthma. Ann Transl Med. 2020;8(4):132.
  • Cao Z, Robinson RA. The role of proteomics in understanding biological mechanisms of sepsis. Proteomics Clin Appl. 2014;8(1–2):35–52.
  • Brown KJ, Formolo CA, Seol H, et al. Advances in the proteomic investigation of the cell secretome. Expert Rev Proteomics. 2012;9(3):337–345.
  • Hou X, Zhang X, Wu X, et al. Serum protein profiling reveals a landscape of inflammation and immune signaling in early-stage COVID-19 infection. Mol Cell Proteomics. 2020;19(11):1749–1759.
  • Wu D, Shu T, Yang X, et al. Plasma metabolomic and lipidomic alterations associated with COVID-19. medRxiv. Forthcoming. [cited 2020 Oct 3]. DOI:https://doi.org/10.1101/2020.04.05.20053819
  • Kyle JE, Burnum-Johnson KE, Wendler JP, et al. Plasma lipidome reveals critical illness and recovery from human Ebola virus disease. Proc Natl Acad Sci USA. 2019;116(9):3919–3928.
  • Song JW, Lam SM, Fan X, et al. Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis.Cell Metab. 2020;32(2):188–202.
  • Bley H, Schöbel A, Herker E. Whole Lotta lipids-from HCV RNA replication to the mature viral particle. IJMS. 2020;21(8):2888.
  • Queiroz A, Pinto IFD, Lima M, et al. Lipidomic analysis reveals serum alteration of plasmalogens in patients infected with ZIKA virus. Front Microbiol. 2019. DOI:https://doi.org/10.3389/fmicb.2019.00753
  • Maile MD, Standiford TJ, Engoren MC, et al. Associations of the plasma lipidome with mortality in the acute respiratory distress syndrome: a longitudinal cohort study. Respir Res. 2018;19(1):60.
  • Izquierdo-Useros N, Naranjo-Gómez M, Erkizia I, et al. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLOS Pathog. 2010;6(3):e1000740.
  • Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393.
  • Li J, Van Vranken JG, Pontano Vaites L, et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat Methods. 2020;17(4):399–404.
  • Guan WJ, Ni ZY, Hu Y, China Medical Treatment Expert Group for Covid-19, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720.
  • National Health Commission of the People's Republic of China. Diagnosis and treatment scheme of severe and critical cases in novel coronavirus (trial 2nd edition). China; 2020.
  • Shen B, Yi X, Sun Y, et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020;182(1):59–72.
  • Laura S, Maurizio B, Giovanni C, et al. Urine proteome biomarkers in kidney diseases:limits, perspectives, and first focus on normal urine. Biomarker Insights. 2016;11:41–48.
  • Yanchang L, Yihao W, Huiying L, et al. Urine proteome of COVID-19 patients. medRxiv. 2020.
  • Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69–71.
  • Bojkova D, Klann K, Koch B, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 2020;583(7816):469–472.
  • Athanasios A, Charalampos V, Vasileios T, et al. Protein-protein interaction (PPI) network: recent advances in drug discovery. Curr Drug Metab. 2017;18(1):5–10.
  • Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–468.
  • Delguste M, Peerboom N, Le Brun G, et al. Regulatory mechanisms of the mucin-like region on herpes simplex virus during cellular attachment. ACS Chem Biol. 2019;14(3):534–542.
  • Zhang Y, Zhao W, Mao Y, et al. Site-specific N-glycosylation characterization of recombinant SARS-CoV-2 spike proteins. Mol Cell Proteomics. 2020 [cited 2020 Oct 3]. DOI:https://doi.org/10.1074/mcp.RA120.002295
  • Yong Z, Wanjun Z, Yonghong M, et al. Mucin-type O-glycosylation landscapes of SARS-CoV-2 spike proteins. bioRxiv. Forthcoming. [cited 2020 Oct 3]. DOI:https://doi.org/10.1101/2020.07.29.227785
  • Zhen J, Kim J, Zhou Y, et al. Antibody characterization using novel ERLIC-MS/MS-based peptide mapping. MAbs. 2018;10(7):951–959.
  • Pal S, Ganesan K, Eswaran S. Chemical crosslinking-mass spectrometry (CXL-MS) for proteomics, antibody-drug conjugates (ADCs) and cryo-electron microscopy (cryo-EM). IUBMB Life. 2018;70(10):947–960.
  • Lechner A, Giorgetti J, Gahoual R, et al. Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016–2018. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1122–1123:1–17.
  • Cong Y, Zhang Z, Zhang S, et al. Quantitative MS analysis of therapeutic mAbs and their glycosylation for pharmacokinetics study. Proteomics Clin Appl. 2016;10(4):303–314.
  • Liu J, Zheng X, Tong Q, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020;92(5):491–494.
  • Seger C, Salzmann L. After another decade: LC-MS/MS became routine in clinical diagnostics. Clin Biochem. 2020;82:2–11.
  • Schubert S, Kostrzewa M. MALDI-TOF MS in the microbiology laboratory: current trends. Curr Issues Mol Biol. 2017;23:17–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.