645
Views
10
CrossRef citations to date
0
Altmetric
Invited Review Articles

Molecular tissue profiling by MALDI imaging: recent progress and applications in cancer research

, , , , &
Pages 513-529 | Received 30 Jan 2021, Accepted 10 Jun 2021, Published online: 10 Jul 2021

References

  • He L, Long LR, Antani S, et al. Histology image analysis for carcinoma detection and grading. Comput Methods Programs Biomed. 2012;107(3):538–556.
  • Chen X, Zheng B, Liu H. Optical and digital microscopic imaging techniques and applications in pathology. Anal Cell Pathol (Amst). 2011;34(1–2):5–18.
  • Brunyé TT, Mercan E, Weaver DL, et al. Accuracy is in the eyes of the pathologist: the visual interpretive process and diagnostic accuracy with digital whole slide images. J Biomed Inform. 2017;66:171–179.
  • Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5):1016–1036.
  • Dietel M. Molecular pathology: a requirement for precision medicine in cancer. Oncol Res Treat. 2016;39(12):804–810.
  • Lee PY, Chin S-F, Low TY, et al. Probing the colorectal cancer proteome for biomarkers: current status and perspectives. J Proteomics. 2018;187:93–105.
  • Ščupáková K, Soons Z, Ertaylan G, et al. Spatial systems lipidomics reveals nonalcoholic fatty liver disease heterogeneity. Anal Chem. 2018;90(8):5130–5138.
  • Yoo BC, Kim KH, Woo SM, et al. Clinical multi-omics strategies for the effective cancer management. J Proteomics. 2018;188:97–106.
  • Agüi-Gonzalez P, Jähne S, Phan NTN. SIMS imaging in neurobiology and cell biology. J Anal Spectrom. 2019;34(7):1355–1368.
  • Tillner J, Wu V, Jones EA, et al. Faster, more reproducible DESI-MS for biological tissue imaging. J Am Soc Mass Spectrom. 2017;28(10):2090–2098.
  • Perez CJ, Bagga AK, Prova SS, et al. Review and perspectives on the applications of mass spectrometry imaging under ambient conditions. Rapid Commun Mass Spectrom. 2019;33(S3):27–53.
  • Schwamborn K, Caprioli RM. Molecular imaging by mass spectrometry-looking beyond classical histology. Nat Rev Cancer. 2010;10(9):639–646.
  • Reyzer ML, Caprioli RM. MALDI mass spectrometry for direct tissue analysis: a new tool for biomarker discovery. J Proteome Res. 2005;4(4):1138–1142.
  • Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017;14(1):90–96.
  • Chang WC, Huang LCL, Wang YS, et al. Matrix-assisted laser desorption/ionization (MALDI) mechanism revisited. Anal Chim Acta. 2007;582(1):1–9.
  • El-Aneed A, Cohen A, Banoub J. Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers. Appl Spectrosc Rev. 2009;44(3):210–230.
  • Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69(23):4751–4760.
  • Aichler M, Walch A. MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest. 2015;95(4):422–431.
  • Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev. 2013;113(4):2309–2342.
  • Cornett DS, Reyzer ML, Chaurand P, et al. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods. 2007;4(10):828–833.
  • Buchberger AR, Delaney K, Johnson J, et al. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem. 2018;90(1):240–265.
  • Stauber J, Macaleese L, Franck J, et al. On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J Am Soc Mass Spectrom. 2010;21(3):338–347.
  • Ly A, Buck A, Balluff B, et al. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc. 2016;11(8):1428–1443.
  • Schwartz SA, Reyzer ML, Caprioli RM. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom. 2003;38(7):699–708.
  • Gill EL, Yost RA, Vedam-Mai V, et al. Precast gelatin-based molds for tissue embedding compatible with mass spectrometry imaging. Anal Chem. 2017;89(1):576–580.
  • Nilsson A, Peric A, Strimfors M, et al. Mass spectrometry imaging proves differential absorption profiles of well-characterised permeability markers along the crypt-villus axis. Sci Rep. 2017;7(1):6352.
  • Enthaler B, Trusch M, Fischer M, et al. MALDI imaging in human skin tissue sections: focus on various matrices and enzymes. Anal Bioanal Chem. 2013;405(4):1159–1170.
  • Sinapic-acid. PubChem. [cited 2020 Sep 3]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Sinapic-acid
  • Salum ML, Giudicessi SL, Schmidt De León T, et al. Application of Z-sinapinic matrix in peptide MALDI-MS analysis. J Mass Spectrom. 2017;52(3):182–186.
  • Salum ML, Itovich LM, Erra-Balsells R. Z-sinapinic acid: the change of the stereochemistry of cinnamic acids as rational synthesis of a new matrix for carbohydrate MALDI-MS analysis. J Mass Spectrom. 2013;48(11):1160–1169.
  • Beavis RC, Chait BT, Fales HM. Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun Mass Spectrom. 1989;3(12):432–435.
  • Alpha-cyano-4-hydroxycinnamic acid. PubChem. [cited 2020 Sep 3]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5328791
  • Djidja M, Claude E, Snel MF, et al. Novel molecular tumour classification using MALDI-mass spectrometry imaging of tissue micro-array. Anal Bioanal Chem. 2010;397(2):587–601.
  • Marquardt C, Tolstik T, Bielecki C, et al. MALDI imaging-based classification of hepatocellular carcinoma and non-malignant lesions in fibrotic liver tissue. Z Gastroenterol. 2015;53(1):33–39.
  • Gobom J, Schuerenberg M, Mueller M, et al. Alpha-cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics. Anal Chem. 2001;73(3):434–438.
  • Beavis RC, Chaudhary T, Chait BT. α‐Cyano‐4‐hydroxycinnamic acid as a matrix for matrixassisted laser desorption mass spectromtry. Org Mass Spectrom. 1992;27(2):156–158.
  • Jaskolla TW, Papasotiriou DG, Karas M. Comparison between the matrices alpha-cyano-4-hydroxycinnamic acid and 4-chloro-alpha-cyanocinnamic acid for trypsin, chymotrypsin, and pepsin digestions by MALDI-TOF mass spectrometry. J Proteome Res. 2009;8(7):3588–3597.
  • 2,5-Dihydroxybenzoic acid. PubChem. [cited 2020 Sep 3]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/3469
  • Strupat K, Karas M, Hillenkamp F. 2,5-Dihydroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry. Int J Mass Spectrom Ion Process. 1991;111:89–102.
  • Teearu A, Vahur S, Haljasorg U, et al. 2,5-Dihydroxybenzoic acid solution in MALDI-MS: ageing and use for mass calibration. J Mass Spectrom. 2014;49(10):970–979.
  • Fuchs B, Süss R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res. 2010;49(4):450–475.
  • Hao C, Ma X, Fang S, et al. Positive- and negative-ion matrix-assisted laser desorption/ionization mass spectrometry of saccharides. Rapid Commun Mass Spectrom. 1998;12(7):345–348.
  • Tripković T, Charvy C, Alves S, et al. Identification of protein binders in artworks by MALDI-TOF/TOF tandem mass spectrometry. Talanta. 2013;113:49–61.
  • 1_5-Naphthalenediamine. PubChem. [cited 2020 Sep 3]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/1_5-Naphthalenediamine
  • Thomas A, Charbonneau JL, Fournaise E, et al. Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. Anal Chem. 2012;84(4):2048–2054.
  • Ellis SR, Brown SH, In Het Panhuis M, et al. Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res. 2013;52(4):329–353.
  • 9-Aminoacridine. PubChem. [cited 2020 Sep 3]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/9-Aminoacridine
  • Li X, Nakayama K, Goto T, et al. Comparative evaluation of the extraction and analysis of urinary phospholipids and lysophospholipids using MALDI-TOF/MS. Chem Phys Lipids. 2019;223:7–18.
  • Morikawa-Ichinose T, Fujimura Y, Murayama F, et al. Improvement of sensitivity and reproducibility for imaging of endogenous metabolites by matrix-assisted laser desorption/ionization-mass spectrometry. J Am Soc Mass Spectrom. 2019;30(8):1512–1520.
  • Angelini R, Vitale R, Patil VA, et al. Lipidomics of intact mitochondria by MALDI-TOF/MS. J Lipid Res. 2012;53(7):1417–1425.
  • 2′,4′,6′-Trihydroxyacetophenone. PubChem. [cited 2020 Sep 3]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/2_4_6_-Trihydroxyacetophenone
  • Fukuyama Y, Nakajima C, Izumi S, et al. Membrane protein analyses using alkylated trihydroxyacetophenone (ATHAP) as a MALDI matrix. Anal Chem. 2016;88(3):1688–1695.
  • Stübiger G, Belgacem O. Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal Chem. 2007;79(8):3206–3213.
  • Schwamborn K, Caprioli RM. MALDI Imaging Mass spectrometry-painting molecular pictures. Mol Oncol. 2010;4(6):529–538.
  • Ait-Belkacem R, Sellami L, Villard C, et al. Mass spectrometry imaging is moving toward drug protein co-localization. Trends Biotechnol. 2012;30(9):466–474.
  • Perry WJ, Patterson NH, Prentice BM, et al. Uncovering matrix effects on lipid analyses in MALDI imaging mass spectrometry experiments. J Mass Spectrom. 2020;55(4):e4491.
  • Giordano S, Pifferi V, Morosi L, et al. A nanostructured matrices assessment to study drug distribution in solid tumor tissues by mass spectrometry imaging. Nanomaterials. 2017;7(3):71.
  • Shanta SR, Kim TY, Hong JH, et al. A new combination MALDI matrix for small molecule analysis: application to imaging mass spectrometry for drugs and metabolites. Analyst. 2012;137(24):5757–5762.
  • Huizing LRS, Ellis SR, Beulen B, et al. Development and evaluation of matrix application techniques for high throughput mass spectrometry imaging of tissues in the clinic. Clin Mass Spectrom. 2019;12:7–15.
  • Gemperline E, Rawson S, Li L. Optimization and comparison of multiple MALDI matrix application methods for small molecule mass spectrometric imaging. Anal Chem. 2014;86(20):10030–10035.
  • Franck J, Arafah K, Barnes A, et al. Improving tissue preparation for matrix-assisted laser desorption ionization mass spectrometry imaging. Part 1: using microspotting. Anal Chem. 2009;81(19):8193–8202.
  • Hankin JA, Barkley RM, Murphy RC. Sublimation as a method of matrix application for mass spectrometric imaging. J Am Soc Mass Spectrom. 2007;18(9):1646–1652.
  • Ščupáková K, Balluff B, Tressler C, et al. Cellular resolution in clinical MALDI mass spectrometry imaging: the latest advancements and current challenges. Clin Chem Lab Med. 2020;58(6):914–929.
  • Vaysse PM, Heeren RMA, Porta T, et al. Mass spectrometry imaging for clinical research - latest developments, applications, and current limitations. Analyst. 2017;142(15):2690–2712.
  • Bowman AP, Blakney GT, Hendrickson CL, et al. Ultra-high mass resolving power, mass accuracy, and dynamic range MALDI mass spectrometry imaging by 21-T FT-ICR MS. Anal Chem. 2020;92(4):3133–3142.
  • Woods AS, Jackson SN. The application and potential of ion mobility mass spectrometry in imaging MS with a focus on lipids. Methods Mol Biol. 2010;656:99–111.
  • Ryan DJ, Spraggins JM, Caprioli RM. Protein identification strategies in MALDI imaging mass spectrometry: a brief review. Curr Opin Chem Biol. 2019;48:64–72.
  • Spraggins JM, Rizzo DG, Moore JL, et al. MALDI FTICR IMS of intact proteins: using mass accuracy to link protein images with proteomics data. J Am Soc Mass Spectrom. 2015;26(6):974–985.
  • Rohner TC, Staab D, Stoeckli M. MALDI mass spectrometric imaging of biological tissue sections. Mech Ageing Dev. 2005;126(1):177–185.
  • Cillero-Pastor B, Heeren RMA. Matrix-assisted laser desorption ionization mass spectrometry imaging for peptide and protein analyses: a critical review of on-tissue digestion. J Proteome Res. 2014;13(2):325–335.
  • Paine MRL, Ellis SR, Maloney D, et al. Digestion-free analysis of peptides from 30-year-old formalin-fixed, paraffin-embedded tissue by mass spectrometry imaging. Anal Chem. 2018;90(15):9272–9280.
  • Powers TW, Jones EE, Betesh LR, et al. Matrix assisted laser desorption ionization imaging mass spectrometry workflow for spatial profiling analysis of N-linked glycan expression in tissues. Anal Chem. 2013;85(20):9799–9806.
  • Eshghi ST, Yang S, Wang X, et al. Imaging of N-linked glycans from formalin-fixed paraffin-embedded tissue sections using MALDI mass spectrometry. ACS Chem Biol. 2014;9(9):2149–2156.
  • Powers TW, Neely BA, Shao Y, et al. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays. PLoS One. 2014;9(9):e106255.
  • Trede D, Kobarg JH, Oetjen J, et al. On the importance of mathematical methods for analysis of MALDI-imaging mass spectrometry data. J Integr Bioinform. 2012;9(1):189.
  • Ràfols P, Vilalta D, Brezmes J, et al. Signal preprocessing, multivariate analysis and software tools for MA(LDI)-TOF mass spectrometry imaging for biological applications. Mass Spectrom Rev. 2018;37(3):281–306.
  • Norris JL, Cornett DS, Mobley JA, et al. Processing MALDI mass spectra to improve mass spectral direct tissue analysis. Int J Mass Spectrom. 2007;260(2–3):212–221.
  • Mascini NE, Teunissen J, Rob Noorlag R, et al. Tumor classification with MALDI-MSI data of tissue microarrays: a case study. Methods. 2018;151:21–27.
  • Deininger SO, Cornett DS, Paape R, et al. Normalization in MALDI-TOF imaging datasets of proteins: practical considerations. Anal Bioanal Chem. 2011;401(1):167–181.
  • Jones EA, Deininger SO, Hogendoorn PC, et al. Imaging mass spectrometry statistical analysis. J Proteomics. 2012;75(16):4962–4989.
  • Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview. WIREs Data Mining Knowl Discov. 2012;2(1):86–97.
  • Bemis K, Harry A, Eberlin L, et al. Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics. 2015;31(14):2418–2420.
  • Eliceiri KW ,Berthold MR ,Goldberg IG, et al. Biological imaging software tools. Nat Methods. 2012;9:697–710.
  • Pirman D. Quantitative profiling of tissue drug distribution by MS imaging. Bioanalysis. 2015;7(20):2649–2656.
  • Fonville J, Carter C, Cloarec O, et al. Robust data processing and normalization strategy for MALDI mass spectrometric imaging. Anal Chem. 2012;84(3):1310–1319.
  • Clemis E, Smith D, Camenzind A, et al. Quantitation of spatially-localized proteins in tissue samples using MALDI-MRM imaging. Anal Chem. 2012;84(8):3514–3522.
  • Kallback P, Nilsson A, Shariatgorji M, et al. msIQuant-quantitation software for mass spectrometry imaging enabling fast access, visualization, and analysis of large data sets. Anal Chem. 2016;88(8):4346–4353.
  • Sleno L, Volmer D. Assessing the properties of internal standards for quantitative matrix-assisted laser desorption/ionization mass spectrometry of small molecules. Rapid Commun Mass Spectrom. 2006;20(10):1517–1524.
  • Pirman D, Reich R, Kiss A, et al. Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard. Anal Chem. 2013;85(2):1081–1089.
  • Groseclose MR, Castellino S. A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry. Anal Chem. 2013;85(21):10099–10106.
  • Lou S, Balluff B, de Graaff MA, et al. High-grade sarcoma diagnosis and prognosis: biomarker discovery by mass spectrometry imaging. Proteomics. 2016;16(11–12):1802–1813.
  • Na CH, Hong JH, Kim WS, et al. Identification of protein markers specific for papillary renal cell carcinoma using imaging mass spectrometry. Mol Cells. 2015;38(7):624–629.
  • Hahne H, Mazur PK, Trajkovic-Arsic M, et al. MALDI imaging mass spectrometry for in situ proteomic analysis of preneoplastic lesions in pancreatic cancer. PLoS One. 2012;7(6):e39424.
  • Balluff B, Rauser S, Meding S, et al. MALDI imaging identifies prognostic seven-protein signature of novel tissue markers in intestinal-type gastric cancer. Am J Pathol. 2011;179(6):2720–2729.
  • Rauser S, Marquardt C, Balluff B, et al. Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry. J Proteome Res. 2010;9(4):1854–1863.
  • Kriegsmann M, Casadonte R, Kriegsmann J, et al. Reliable entity subtyping in non-small cell lung cancer by matrix-assisted laser desorption/ionization imaging mass spectrometry on formalin-fixed paraffin-embedded tissue specimens. Mol Cell Proteomics. 2016;15(10):3081–3089.
  • Briggs MT, Condina MR, Ho YY, et al. MALDI mass spectrometry imaging of early- and late-stage serous ovarian cancer tissue reveals stage-specific N-glycans. Proteomics. 2019;19(21–22):e1800482.
  • West CA, Wang M, Herrera H, et al. N-linked glycan branching and fucosylation are increased directly in hcc tissue as determined through in situ glycan imaging. J Proteome Res. 2018;17(10):3454–3462.
  • Kunzke T, Balluff B, Feuchtinger A, et al. Native glycan fragments detected by MALDI-FT-ICR mass spectrometry imaging impact gastric cancer biology and patient outcome. Oncotarget. 2017;8(40):68012–68025.
  • Patterson NH, Alabdulkarim B, Lazaris A, et al. Assessment of pathological response to therapy using lipid mass spectrometry imaging. Sci Rep. 2016;6:36814.
  • Uchiyama Y, Hayasaka T, Masaki N, et al. Imaging mass spectrometry distinguished the cancer and stromal regions of oral squamous cell carcinoma by visualizing phosphatidylcholine (16:0/16:1) and phosphatidylcholine (18:1/20:4). Anal Bioanal Chem. 2014;406(5):1307–1316.
  • Goto T, Terada N, Inoue T, et al. The expression profile of phosphatidylinositol in high spatial resolution imaging mass spectrometry as a potential biomarker for prostate cancer. PLoS One. 2014;9(2):e90242.
  • Iorgulescu JB, Torre M, Harary M, et al. The misclassification of diffuse gliomas: rates and outcomes. Clin Cancer Res. 2019;25(8):2656–2663.
  • Meding S, Nitsche U, Balluff B, et al. Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging. J Proteome Res. 2012;11(3):1996–2003.
  • Bedard PL, Hansen AR, Ratain MJ, et al. Tumour heterogeneity in the clinic. Nature. 2013;501(7467):355–364.
  • Balluff B, Frese CK, Maier SK, et al. De novo discovery of phenotypic intratumour heterogeneity using imaging mass spectrometry. J Pathol. 2015;235(1):3–13.
  • Steurer S, Singer JM, Rink M, et al. MALDI imaging-based identification of prognostically relevant signals in bladder cancer using large-scale tissue microarrays. Urol Oncol Semin Orig Investig. 2014;32:1225–1233.
  • Nipp M, Elsner M, Balluff B, et al. S100-A10, thioredoxin, and S100-A6 as biomarkers of papillary thyroid carcinoma with lymph node metastasis identified by MALDI Imaging. J Mol Med. 2012;90(2):163–174.
  • Marko-Varga G, Fehniger TE, Rezeli M, et al. Drug localization in different lung cancer phenotypes by MALDI mass spectrometry imaging. J Proteomics. 2011;74(7):982–992.
  • Giordano S, Zucchetti M, Decio A, et al. Heterogeneity of paclitaxel distribution in different tumor models assessed by MALDI mass spectrometry imaging. Sci Rep. 2016;6:39284.
  • Végvári Á, Fehniger TE, Rezeli M, et al. Experimental models to study drug distributions in tissue using MALDI mass spectrometry imaging. J Proteome Res. 2013;12(12):5626–5633.
  • Machálková M, Pavlatovská B, Michálek J, et al. Drug penetration analysis in 3D cell cultures using fiducial-based Semiautomatic Coregistration of MALDI MSI and Immunofluorescence Images. Anal Chem. 2019;91(21):13475–13484.
  • Nilsson A, Fehniger TE, Gustavsson L, et al. Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS One. 2010;5(7):e11411.
  • Buck A, Halbritter S, Späth C, et al. Distribution and quantification of irinotecan and its active metabolite SN-38 in colon cancer murine model systems using MALDI MSI. Anal Bioanal Chem. 2015;407(8):2107–2116.
  • Mahmoud K, Cole LM, Newton J, et al. Detection of the epidermal growth factor receptor, amphiregulin and epiregulin in formalin-fixed paraffin-embedded human placenta tissue by matrix-assisted laser desorption/ionization mass spectrometry imaging. Eur J Mass Spectrom (Chichester). 2013;19(1):17–28.
  • Munteanu B, Meyer B, Von Reitzenstein C, et al. Label-free in situ monitoring of histone deacetylase drug target engagement by matrix-assisted laser desorption ionization-mass spectrometry biotyping and imaging. Anal Chem. 2014;86(10):4642–4647.
  • Aichler M, Elsner M, Ludyga N, et al. Clinical response to chemotherapy in oesophageal adenocarcinoma patients is linked to defects in mitochondria. J Pathol. 2013;230(4):410–419.
  • Mascini NE, Eijkel GB, Ter Brugge P, et al. The use of mass spectrometry imaging to predict treatment response of patient-derived xenograft models of triple-negative breast cancer. J Proteome Res. 2015;14(2):1069–1075.
  • Addie RD, Balluff B, Bovée JVMG, et al. Current state and future challenges of mass spectrometry imaging for clinical research. Anal Chem. 2015;87(13):6426–6433.
  • Fujimura Y, Miura D. MALDI Mass spectrometry imaging for visualizing in situ metabolism of endogenous metabolites and dietary phytochemicals. Metabolites. 2014;4(2):319–346.
  • Fung AWS, Sugumar V, Ren AH, et al. Emerging role of clinical mass spectrometry in pathology. J Clin Pathol. 2020;73(2):61–69.
  • Piehowski PD, Zhu Y, Bramer LM, et al. Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat Commun. 2020;11(1):8.
  • Alexandrov T. MALDI imaging mass spectrometry: statistical data analysis and current computational challenges. BMC Bioinformatics. 2012;13( 16):S11.
  • Ovchinnikova K, Kovalev V, Stuart L, et al. OffsampleAI: artificial intelligence approach to recognize off-sample mass spectrometry images. BMC Bioinformatics. 2020;21(1):129.
  • Klein O, Kanter F, Kulbe H, et al. MALDI-Imaging for classification of epithelial ovarian cancer histotypes from a tissue microarray using machine learning methods. Proteomics Clin Appl. 2019;13(1):e1700181.
  • Cawley G, Talbot N. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 2010;11:2079–2107.
  • Scott A, Jones J, Orschell C, et al. Mass spectrometry imaging enriches biomarker discovery approaches with candidate mapping. Health Phys. 2014;106(1):120–128.
  • Li Y, Wu F, Ngom A. A review on machine learning principles for multiview biological data integration. Br Bioinform. 2018;19:325–340.
  • Hill S, Neve R, Bayani N, et al. Integrating biological knowledge into variable selection: an empirical Bayes approach with an application in cancer biology. BMC Bioinformatics. 2012;13:94.
  • Zhou H, Skolnick J. A knowledge-based approach for predicting gene-disease associations. Bioinformatics. 2016;32(18):2831–2838.
  • Soltwisch J, Kettling H, Vens-Cappell S, et al. Mass spectrometry imaging with laser-induced postionization. Science. 2015;348(6231):211–215.
  • Niehaus M, Soltwisch J, Belov ME, et al. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat Methods. 2019;16(9):925–931.
  • Heijs B, Potthoff A, Soltwisch J, et al. MALDI-2 for the enhanced analysis of N-linked glycans by mass spectrometry imaging. Anal Chem. 2020;92(20):13904–13911.
  • Ellis SR, Soltwisch J, Paine MRL, et al. Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging of lipids. Chem Commun (Camb). 2017;53(53):7246–7249.
  • Dekker TJA, Ballu BD, Jones EA, et al. Multicenter matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) identifies proteomic differences in breast-cancer-associated stroma. J Proteome Res. 2014;13(11):4730–4738.
  • Ly A, Longuespée R, Casadonte R, et al. Site-to-site reproducibility and spatial resolution in MALDI-MSI of peptides from formalin-fixed paraffin-embedded samples. Proteomics Clin Appl. 2019;13(1):e1800029.
  • Seeley EH, Caprioli RM. 3D imaging by mass spectrometry: a new frontier. Anal Chem. 2012;84(5):2105–2110.
  • Giordano S, Morosi L, Veglianese P, et al. 3D mass spectrometry imaging reveals a very heterogeneous drug distribution in tumors. Sci Rep. 2016;6:37027.
  • Vos DRN, Jansen I, Lucas M, et al. Strategies for managing multi-patient 3D mass spectrometry imaging data. J Proteomics. 2019;193:184–191.
  • Chaurand P, Schwartz SA, Billheimer D, et al. Integrating histology and imaging mass spectrometry. Anal Chem. 2004;76(4):1145–1155.
  • Lotz JM, Hoffmann F, Lotz J, et al. Integration of 3D multimodal imaging data of a head and neck cancer and advanced feature recognition. Biochim Biophys Acta Proteins Proteom. 2017;1865(7):946–956.
  • Ryabchykov O, Popp J, Bocklitz T. Fusion of MALDI spectrometric imaging and Raman spectroscopic data for the analysis of biological samples. Front Chem. 2018;6:257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.