190
Views
8
CrossRef citations to date
0
Altmetric
Invited Review Articles

Evaluation of pathophysiological relationships between renin-angiotensin and ACE-ACE2 systems in cardiovascular disorders: from theory to routine clinical practice in patients with heart failure

, , &
Pages 530-545 | Received 19 Apr 2021, Accepted 10 Jun 2021, Published online: 01 Jul 2021

References

  • Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015;385(9970):812–824.
  • Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13(6):368–378.
  • Jones NR, Roalfe AK, Adoki I, et al. Survival of patients with chronic heart failure in the community: a systematic review and meta-analysis. Eur J Heart Fail. 2019;21(11):1306–1325.
  • Murphy SP, Ibrahim NE, Januzzi JL. Heart failure with reduced ejection fraction: a review. JAMA. 2020;324(5):488–504.
  • Basu R, Poglitsch M, Yogasundaram H, et al. Roles of angiotensin peptides and recombinant human ACE2 in heart failure. J Am Coll Cardiol. 2017;69(7):805–819. 2021
  • Braunwald E. Another step toward personalized care of patients with heart failure. Eur J Heart Fail. 2015;17(10):988–990.
  • Vittorini S, Clerico A. Cardiovascular biomarkers: increasing impact of laboratory medicine in cardiology practice. Clin Chem Lab Med. 2008;46:748–763.
  • Hlatky MA, Greenland P, Arnett DK, et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119(17):2408–2416.
  • Wang TJ. Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation. 2011;123(5):551–565.
  • Farmakis D, Mueller C, Apple FS. High-sensitivity cardiac troponin assays for cardiovascular risk stratification in the general population. Eur Heart J. 2020;41(41):4050–4056.
  • Clerico A, Zaninotto M, Passino C, et al. Evidence on clinical relevance of cardiovascular risk evaluation in the general population using cardio-specific biomarkers. Clin Chem Lab Med. 2020;59(1):79–90.
  • Yancy CW, Jessup M, Bozkurt B, et al. ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70:735–803.
  • Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–2200.
  • Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(3):267–315.
  • Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42(14):1289–1367.
  • Roig E, Perez-Villa F, Morales M, et al. Clinical implications of increased plasma angiotensin II despite ACE inhibitor therapy in patients with congestive heart failure. Eur Heart J. 2000;21(1):53–57.
  • Hubers SA, Brown NJ. Combined angiotensin receptor antagonism and neprilysin inhibition. Circulation. 2016;133(11):1115–1124.
  • Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–828.
  • Mori J, Patel VB, Abo Alrob O, et al. Angiotensin 1-7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation. Circ Heart Fail. 2014;7(2):327–339.
  • Patel VB, Zhong JC, Grant MB, et al. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res. 2016;118(8):1313–1326.
  • Zhong J, Basu R, Guo D, et al. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation. 2010;122(7):717–728.
  • Mercure C, Yogi A, Callera GE, et al. Angiotensin(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ Res. 2008;103(11):1319–1326.
  • Cabandugama PK, Gardner MJ, Sowers JR. The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med Clin North Am. 2017;101(1):129–137.
  • Rossi F, Mascolo A, Mollace V. The pathophysiological role of natriuretic peptide-RAAS cross talk in heart failure. Int J Cardiol. 2017;226:121–125.
  • Arendse LB, Danser AHJ, Poglitsch M, et al. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacol Rev. 2019;71(4):539–570.
  • Epelman S, Tang WH, Chen SY, et al. Detection of soluble angiotensin-converting enzyme 2 in heart failure: insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. J Am Coll Cardiol. 2008;52(9):750–754.
  • Haschke M, Schuster M, Poglitsch M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52(9):783–792.
  • Brojakowska A, Narula J, Shimoni R, et al. Clinical implications of SARS-CoV-2 interaction with renin angiotensin system. JACC review topic of the week. J Am Coll Cardiol. 2020;75:3083–3095.
  • Campbell RA, Boilard E, Rondina MT. Is there a role for the ACE2 receptor in SARS-CoV-2 interactions with platelets? J Thromb Haemost. 2021;19(1):46–50.
  • Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126(10):1456–1464.
  • Saponaro F, Rutigliano G, Sestito S, et al. ACE2 in the era of SARS-CoV-2: controversies and novel perspectives. Front Mol Biosci. 2020;7:588618.
  • Vaduganathan M, Vardeny O, Michel T, et al. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–1659.
  • Zheng YY, Ma YT, Zhang JY, et al. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259–260.
  • Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1–E9.
  • Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383(Pt 1):45–51.
  • Kuba K, Imai Y, Penninger JM. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases. Circ J. 2013;77(2):301–308.
  • Rice GI, Jones AL, Grant PJ, et al. Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension. 2006;48(5):914–920.
  • Hattori MA, Del Ben GL, Carmona AK, et al. Angiotensin I-converting enzyme isoforms (high and low molecular weight) in urine of premature and full-term infants. Hypertension. 2000;35(6):1284–1290.
  • Wysocki J, Schulze A, Batlle D. Novel variants of Angiotensin Converting Enzyme-2 of shorter molecular size to target the kidney renin angiotensin system. Biomolecules. 2019;9(12):886.
  • Guy JL, Lambert DW, Warner FJ, et al. Membrane-associated zinc peptidase families: comparing ACE and ACE2. Biochim Biophys Acta. 2005;1751(1):2–8.
  • Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1-7)-Mas receptor axis. Hypertens Res. 2009;32(7):533–536.
  • Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;251(3):228–248.
  • Yugandhar VG, Clark MA. Angiotensin III: a physiological relevant peptide of the renin angiotensin system. Peptides. 2013;46:26–32.
  • Mustafa T, Lee JH, Chai SY, et al. Bioactive angiotensin peptides: focus on angiotensin IV. J Renin Angiotensin Aldosterone Syst. 2001;2(4):205–210.
  • Stragier B, De Bundel D, Sarre S, et al. Involvement of insulin-regulated aminopeptidase in the effects of the renin-angiotensin fragment angiotensin IV: a review. Heart Fail Rev. 2008;13(3):321–337.
  • Cao G, Della Penna S, Kouyoumdzian NM, et al. Immunohistochemical expression of intrarenal renin angiotensin system components in response to tempol in rats fed a high salt diet. World J Nephrol. 2017;6(1):29–40.
  • He FJ, MacGregor GA. Salt, blood pressure and the renin-angiotensin system. J Renin Angiotensin Aldosterone Syst. 2003;4(1):11–16.
  • Hall JE, Guyton AC, Mizelle HL. Role of the renin-angiotensin system in control of sodium excretion and arterial pressure. Acta Physiol Scand Suppl. 1990;591:48–62.
  • Ando K, Fujita T. Pathophysiology of salt sensitivity hypertension. Ann Med. 2012;44(sup1):S119–S126.
  • Coelho MS, Lopes KL, de Aquino Freitas K, et al. High sucrose intake in rats is associated with increased ACE2 and angiotensin-(1-7) levels in the adipose tissue. Regul Pept. 2010;162(1–3):61–67.
  • Mellor KM, Ritchie RH, Davidoff AJ, et al. Elevated dietary sugar and the heart: experimental models and myocardial remodeling. Can J Physiol Pharmacol. 2010;88(5):525–540.
  • Wu L, Shi A, Zhu D, et al. High sucrose intake during gestation increases angiotensin II type 1 receptor-mediated vascular contractility associated with epigenetic alterations in aged offspring rats. Peptides. 2016;86:133–144.
  • Favre GA, Esnault VLM, Van Obberghen E. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab. 2015;308(6):E435–E449.
  • Xu CM, Yang TX. New advances in renal mechanisms of high fructose-induced salt-sensitive hypertension. Sheng Li Xue Bao. 2018;70:581–590.
  • Hernández-Díazcouder A, Romero-Nava R, Carbó R, et al. High fructose intake and adipogenesis. IJMS. 2019;20(11):2787.
  • Than A, Leow MKS, Chen P. Control of adipogenesis by the autocrine interplays between angiotensin 1-7/Mas receptor and angiotensin II/AT1 receptor signaling pathways. J Biol Chem. 2013;288(22):15520–15531.
  • Bernstein KE, Ong FS, Blackwell WL, et al. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev. 2013;65(1):1–46.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8.
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263.
  • Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cel. 2020;181(4):894–904.e9.
  • Lei C, Qian K, Li T, et al. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat Commun. 2020;11(1):2070.
  • Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448.
  • Rawat K, Kumari P, Saha L. COVID-19 vaccine: a recent update in pipeline vaccines, their design and development strategies. Eur J Pharmacol. 2021;892:173571.
  • Rahman N, Basharat Z, Yousuf M, et al. Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of Coronavirus 2 (SARS-CoV-2). Molecules. 2020;25(10):2271.
  • Pirola CJ, Sookoian S. Estimation of Renin-Angiotensin-Aldosterone-System (RAAS)-inhibitor effect on COVID-19 outcome: a meta-analysis. J Infect. 2020;81(2):276–281.
  • Guo X, Zhu Y, Hong Y. Decreased mortality of COVID-19 with renin-angiotensin-aldosterone system inhibitors therapy in patients with hypertension: a meta-analysis. Hypertension. 2020;76(2):e13–e14.
  • Baral R, White M, Vassiliou VS. Effect of renin-angiotensin-aldosterone system inhibitors in patients with COVID-19: a systematic review and meta-analysis of 28,872 patients. Curr Athroscler Rep. 2020;22(10):61.
  • Wang Y, Chen B, Li Y, et al. The use of renin-angiotensin-aldosterone system (RAAS) inhibitors is associated with a lower risk of mortality in hypertensive COVID-19 patients: a systematic review and meta-analysis. J Med Virol. 2021;93(3):1370–1377.
  • Hasan SS, Kow CS, Hadi MA, et al. Mortality and disease severity among COVID-19 patients receiving renin-angiotensin system inhibitors: a systematic review and meta-analysis. Am J Cardiovasc Res. 2020;20:571–590.
  • Patoulias D, Katsimardou A, Stavropoulos K, et al. Renin-Angiotensin system inhibitors and COVID-19: a systematic review and meta-analysis. Evidence for significant geographical disparities. Curr Hypert Rep. 2020;22(11):90.
  • Koshy AN, Murphy AC, Farouque O, et al. Renin-Angiotensin system inhibition and risk of infection and mortality in COVID-19: a systematic review and meta-analysis. Intern Med J. 2020;50(12):1468–1474.
  • Pranata R, Permana H, Huang I, et al. The use of renin angiotensin system inhibitor on mortality in patients with coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Diabetes Metab Syndr. 2020;14(5):983–990.
  • Ssentongo AE, Ssentongo P, Heilbrunn ES, et al. Renin-angiotensin-aldosterone system inhibitors and the risk of mortality in patients with hypertension hospitalised for COVID-19: systematic review and meta-analysis. Open Heart. 2020;7(2):e001353.
  • Yokoyama Y, Aikawa T, Takagi H, et al. Association of renin-angiotensin-aldosterone system inhibitors with mortality and testing positive of COVID-19: meta-analysis. J Med Virol. 2021;93(4):2084–2089.
  • Barochiner J, Martínez R. Use of inhibitors of the renin-angiotensin system in hypertensive patients and COVID-19 severity: a systematic review and meta-analysis. J Clin Pharm Ther. 2020;45(6):1244–1252.
  • Usman MS, Siddiqi TJ, Khan MS, et al. A meta-analysis of the relationship between renin-angiotensin-aldosterone system inhibitors and COVID-19. Am J Cardiol. 2020;130:159–161.
  • Zhang G, Wu Y, Xu R, et al. Effects of renin-angiotensin-aldosterone system inhibitors on disease severity and mortality in patients with COVID-19: a meta-analysis. J Med Virol. 2021;93(4):2287–2300.
  • Chan CK, Huang YS, Liao HW, et al. Renin-angiotensin-aldosterone system inhibitors and risks of severe acute respiratory syndrome coronavirus 2 infection: a systematic review and meta-analysis. Hypertension. 2020;76(5):1563–1571.
  • Bavishi C, Whelton PK, Mancia G, et al. Renin-angiotensin-system inhibitors and all-cause mortality in patients with COVID-19: a systematic review and meta-analysis of observational studies. J Hypertens. 2021;39(4):784–794.
  • Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L17–L31.
  • Hrenak J, Simko F. Renin–angiotensin system: an important player in the pathogenesis of acute respiratory distress syndrome. IJMS. 2020;21(21):8038.
  • Xu Y, Liu S, Zhang Y, et al. Does hereditary angioedema make COVID-19 worse? World Allergy Organ J. 2020;13(9):100454.
  • Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477–481.
  • Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(7):667–678.
  • Sultan S, Altayar O, Siddique SM, et al. AGA Institute rapid review of the gastrointestinal and liver manifestations of COVID-19, meta-analysis of international data, and recommendations for the consultative management of patients with COVID-19. Gastroenterology. 2020;159(1):320.e27–334.e27.
  • Paz Ocaranza M, Riquelme JA, García L, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17(2):116–129.
  • Juillerat-Jeanneret L. The other angiotensin II receptor: AT2R as a therapeutic target. J Med Chem. 2020;63(5):1978–1995.
  • Patel SN, Fatima N, Ali R, et al. Emerging role of angiotensin AT2 receptor in anti-inflammation: an update. Curr Pharm Des. 2020;26(4):492–500.
  • Clerico A, Giannoni A, Vittorini S, et al. Thirty years of the heart as an endocrine organ: physiological role and clinical utility of cardiac natriuretic hormones. Am J Physiol Heart Circ Physiol. 2011;301(1):H12–H20.
  • Cuthbert JJ, Pellicori P, Clark AL. Cardiovascular outcomes with Sacubitril-Valsartan in heart failure: emerging clinical data. Ther Clin Risk Manag. 2020;16:715–726.
  • Wang J, Li N, Gao F, et al. Balance between angiotensin converting enzyme and angiotensin converting enzyme 2 in patients with chronic heart failure. J Renin Angiotensin Aldosterone Syst. 2015;16(3):553–558.
  • Wang K, Basu R, Poglitsch M, et al. Elevated Angiotensin 1-7/Angiotensin II ratio predicts favorable outcomes in patients with heart failure. Circ Heart Fail. 2020;13:e006939.
  • Clerico A, Passino C, Franzini M, et al. Cardiac biomarker testing in the clinical laboratory: where do we stand? General overview of the methodology with special emphasis on natriuretic peptides. Clin Chim Acta. 2015;443:17–24.
  • Okolicany J, McEnroe GA, Koh GY, et al. Clearance receptor and neutral endopeptidase-mediated metabolism of atrial natriuretic factor. Am J Physiol. 1992;263(3 Pt 2):F546–F553.
  • Charles CJ, Espiner EA, Nicholls MG, et al. Clearance receptors and endopeptidase 24.11: equal role in natriuretic peptide metabolism in conscious sheep. Am J Physiol. 1996;271(2 Pt 2):R373–R380.
  • Campbell DJ. Long-term neprilysin inhibition - implications for ARNIs. Nat Rev Cardiol. 2017;14(3):171–186.
  • Solomon SD, Zile M, Pieske B, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380:387–395.
  • McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.
  • Bayés-Genis A. Neprilysin in heart failure: from oblivion to center stage. JACC Heart Fail. 2015;3:637–640.
  • Packer M, McMurray JJV, Desai AS, et al. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation. 2015;131(1):54–61.
  • McCormack PL. Sacubitril/Valsartan: a review in chronic heart failure with reduced ejection fraction. Drugs. 2016;76(3):387–396.
  • Mogensen UM, Gong J, Jhund PS, et al. Effect of sacubitril/valsartan on recurrent events in the prospective comparison of ARNI with ACEI to determine impact on gobal mortality and morbidity in heart failure trial (PARADIGM-HF). Eur J Heart Fail. 2018;20(4):760–768.
  • Clerico A, Zaninotto M, Passino C, et al. New issues on measurement of B-type natriuretic peptides. Clin Chem Lab Med. 2017;56(1):32–39.
  • Yandrapalli S, Khan MH, Rochlani Y, et al. Sacubitril/valsartan in cardiovascular disease: evidence to date and place in therapy. Ther Adv Cardiovasc Dis. 2018;12(8):217–231.
  • Morrow DA, Velazquez EJ, DeVore AD, et al. Cardiovascular biomarkers in patients with acute decompensated heart failure randomized to sacubitril-valsartan or enalapril in the PIONEER-HF trial. Eur Heart J. 2019;40(40):3345–3352.
  • Velazquez EJ, Morrow DA, DeVore AD, et al. PIONEER-HF Investigators. Angiotensin–neprilysin inhibition in acute decompensated heart failure. N Engl J Med. 2019;380(6):539–548.
  • Clerico A, Del Ry S, Giannessi D. Measurement of cardiac natriuretic hormones (Atrial Natriuretic Peptide, Brain Natriuretic Peptide, and related peptides) in clinical practice: the need for a new generation of immunoassay methods. Clin Chem. 2000;46(10):1529–1534.
  • Vasan S. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation. 2006;113(19):2335–2362.
  • Richards AM. Future biomarkers in cardiology: my favourites. Eur Heart J Suppl. 2018;20(suppl_G):G37–G44.
  • Clerico A, Zaninotto M, Padoan A, et al. Evaluation of analytical performance of immunoassay methods for cardiac troponin I and T: from theory to practice. Adv Clin Chem. 2019;93:239–262.
  • Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310(2):H137–H152.
  • Brosnihan KB, Chappell MC. Measurement of angiotensin peptides: HPLC-RIA. Methods Mol Biol. 2017;1527:81–99.
  • Chappel MC, Pirro NT, South AM, et al. Concerns on the specificity of commercial ELISAs for the measurement of Angiotensin (1-7) and Angiotensin II in human plasma. Hypertension. 2021;77(3):e29–e31.
  • De Mello WC, Gerena Y. Measurement of cardiac angiotensin II by immunoassays, HPLC-chip/mass spectrometry, and functional assays. Methods Mol Biol. 2017;1527:127–137.
  • Mason DR, Reid JD, Camenzind AG, et al. Duplexed iMALDI for the detection of angiotensin I and angiotensin II. Methods. 2012;56(2):213–222.
  • Reddy R, Asante I, Liu S, et al. Circulating angiotensin peptides levels in acute respiratory distress syndrome correlate with clinical outcomes: a pilot study. PLoS One. 2019;14(3):e0213096.
  • Bellomo R, Wunderink RG, Szerlip H, et al. Angiotensin I and angiotensin II concentrations and their ratio in catecholamine-resistant vasodilatory shock. Crit Care. 2020;24(1):43.
  • Guo Z, Poglitsch M, McWhinney BC, et al. Measurement of equilibrium Angiotensin II in the diagnosis of primary aldosteronism. Clin Chem. 2020;66(3):483–492.
  • Magness RR, Cox K, Rosenfeld CR, et al. Angiotensin II metabolic clearance rate and pressor responses in nonpregnant and pregnant women. Am J Obstet Gynecol. 1994;171(3):668–679.
  • Dai SH, Li JF, Feng JB, et al. Association of serum levels of AngII, KLK1, and ACE/KLK1 polymorphisms with acute myocardial infarction induced by coronary artery stenosis. J Renin Angiotensin Aldosterone Syst. 2016;17(2):1470320316655037.
  • Magalhães DM, Nunes-Silva A, Rocha GC, et al. Two protocols of aerobic exercise modulate the counter-regulatory axis of the renin-angiotensin system. Helyion. 2020;6(1):e03208.
  • Sykes SD, Pringle KG, Zhou A, et al. The balance between human maternal plasma angiotensin II and angiotensin 1-7 levels in early gestation pregnancy is influenced by fetal sex. J Renin Angiotensin Aldosterone Syst. 2014;15(4):523–531.
  • Yang CW, Lu LC, Chang CC, et al. Imbalanced plasma ACE and ACE2 level in the uremic patients with cardiovascular diseases and its change during a single hemodialysis session. Ren Fail. 2017;39(1):719–728.
  • Le Goff C, Farre-Segura J, Stoikovic V, et al. The pathway through LC-MS method development: in-house or ready-to-use kit-based methods? Clin Chem Lab Med. 2020;58(6):1002–1009.
  • Grassi J, Créminon C, Frobert Y, et al. Two different approaches for developing immunometric assays of haptens. Clin Chem. 1996;42(9):1532–1536.
  • Santos RAS, Sampaio WO, Alzamora AC, et al. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: focus on Angiotensin-(1-7). Physiol Rev. 2018;98(1):505–553.
  • Santos RAS, Oudit GY, Verano-Braga T, et al. The renin-angiotensin system: going beyond the classical paradigms. Am J Physiol Heart Circ Physiol. 2019;316(5):H958–H970.
  • Allen AM, Zhuo J, Mendelsohn AO. Localization and function of angiotensin AT1 receptors. Am J Hypert. 2000;13:31S–38S.
  • Singh KD, Karnik S. Angiotensin receptors: structure, function, signaling and clinical applications. J Cell Signal. 2016;1:111.
  • Chow BSM, Allen TJ. Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin Sci. 2016;130(15):1307–1326.
  • Kaschina E, Namsolleck P, Unger T. AT2 receptors in cardiovascular and renal diseases. Pharmacol Res. 2017;125(Pt A):39–47.
  • Azushima K, Morisawa N, Tamura K, et al. Recent research advances in renin-angiotensin-aldosterone system receptors. Curr Hypert Rep. 2020;22:22.
  • Padia SH, Carey RM. AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function. Pflugers Arch. 2013;465(1):99–110.
  • Sampaio WO, Souza dos Santos RA, Faria-Silva R, et al. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007;49(1):185–192.
  • Dias-Peixoto MF, Santos RA, Gomes ER, et al. Molecular mechanisms involved in the angiotensin-(1-7)/Mas signaling pathway in cardiomyocytes. Hypertension. 2008;52(3):542–548.
  • Karnik SS, Singh KD, Tirupula K, et al. Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22. Br J Pharmacol. 2017;174(9):737–753.
  • Li M, Liu K, Michalicek J, et al. Involvement of chymase-mediated angiotensin II generation in blood pressure regulation. J Clin Invest. 2004;114(1):112–120.
  • Wei CC, Hase N, Inoue Y, et al. Mast cell chymase limits the cardiac efficacy of ang I-converting enzyme inhibitor therapy in rodents. J Clin Invest. 2010;120(4):1229–1239.
  • Reilly CF, Tewksbury DA, Schechter NM, et al. Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases. J Biol Chem. 1982;257(15):8619–8622.
  • Jorde UP, Ennezat PV, Lisker J, et al. Maximally recommended doses of angiotensin-converting enzyme (ACE) inhibitors do not completely prevent ace-mediated formation of angiotensin ii in chronic heart failure. Circulation. 2000;101(8):844–846.
  • Petrie MC, Padmanabhan N, McDonald JE, et al. Angiotensin converting enzyme (ace) and non-ace dependent angiotensin ii generation in resistance arteries from patients with heart failure and coronary heart disease. J Am Coll Cardiol. 2001;37(4):1056–1061.
  • Thygesen K, Alpert JS, Jaffe AS, et al. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardal Infarction. J Am Coll Cardiol. 2018;72:2231–2264.
  • Aimo A, Januzzi JL, Jr, Vergaro G, et al. High-sensitivity troponin T, NT-proBNP and glomerular filtration rate: a multimarker strategy for risk stratification in chronic heart failure. Int J Cardiol. 2019;277:166–172.
  • Aimo A, Januzzi JL, Jr, Mueller C, et al. Admission high-sensitivity troponin T and NT-proBNP for outcome prediction in acute heart failure. Int J Cardiol. 2019;293:137–142.
  • Rørth R, Jhund PS, Kristensen SL, et al. The prognostic value of troponin T and N-terminal pro B-type natriuretic peptide, alone and in combination, in heart failure patients with and without diabetes. Eur J Heart Fail. 2019;21(1):40–49.
  • Bayés-Genis A. Neprelysin in heart failure. From obvious to center stage. J Am Coll Cardiol Heart Fail. 2015;3:637–640.
  • Vodovar N, Séronde M-F, Laribi S, et al. Elevated plasma B-type natriuretic peptide concentrations directly inhibit circulating neprilysin activity in heart failure. J Am Coll Cardiol Heart Fail. 2015;3(8):629–636.
  • Bayes-Genis A, Barallat J, Galan A, et al. Soluble neprilysin is predictive of cardiovascular death and heart failure hospitalization in heart failure patients. J Am Coll Cardiol. 2015;65(7):657–665.
  • Bayes-Genis A, Barallat J, Pascual D, et al. Prognostic value and kinetics of soluble neprilysin in acute heart failure: a pilot study. J Am Coll Cardiol HF. 2015;3:641–644.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.