853
Views
7
CrossRef citations to date
0
Altmetric
Invited Reviews

Quantifying RNA modifications by mass spectrometry: a novel source of biomarkers in oncology

, , , , , , & show all
Pages 1-18 | Received 24 Mar 2021, Accepted 19 Jul 2021, Published online: 02 Sep 2021

References

  • National Cancer Institute website [cited 2021 Feb 4]. Available from: https://www.cancer.gov
  • Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol. 2007;1(1):26–41.
  • Modomics, A Database of RNA Modifications [cited 2021 Feb 4]. Available from: http://iimcb.genesilico.pl/modomics
  • Hoernes TP, Erlacher MD. Translating the epitranscriptome. Wiley Interdiscip Rev RNA. 2017; 8(1):e1375.
  • Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187–1200.
  • Uddin MB, Wang Z, Yang C. Dysregulations of functional RNA modifications in cancer, cancer stemness and cancer therapeutics. Theranostics. 2020;10(7):3164–3189.
  • Haruehanroengra P, Zheng YY, Zhou Y, et al. RNA modifications and cancer. RNA Biol. 2020;17(11):1560–1575.
  • Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020;20(6):303–322.
  • Hamma T, Ferré-D’Amaré AR. Pseudouridine synthases. Chem Biol. 2006;13(11):1125–1135.
  • Stockert JA, Gupta A, Herzog B, et al. Predictive value of pseudouridine in prostate cancer. Am J Clin Exp Urol. 2019;7(4):262–272.
  • Relier S, Ripoll J, Guillorit H, et al. FTO-mediated cytoplasmic m6Am demethylation adjusts stem-like properties in colorectal cancer cell. Nat Commun. 2021;12(1):1716.
  • Delaunay S, Frye M. RNA modifications regulating cell fate in cancer. Nat Cell Biol. 2019;21(5):552–559.
  • Adaway JE, Keevil BG, Owen LJ. Liquid chromatography tandem mass spectrometry in the clinical laboratory. Ann Clin Biochem. 2015;52(Pt 1):18–38.
  • Liang X, Liu Q, Fournier MJ. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA. 2009;15(9):1716–1728.
  • Nguyen HA, Hoffer ED, Dunham CM. Importance of a tRNA anticodon loop modification and a conserved, noncanonical anticodon stem pairing in tRNACGGProfor decoding. J Biol Chem. 2019;294(14):5281–5291.
  • Dedon PC, Begley TJ. A system of RNA modifications and biased codon use controls cellular stress response at the level of translation. Chem Res Toxicol. 2014;27(3):330–337.
  • Engel M, Eggert C, Kaplick PM, et al. The role of m6A/m-RNA methylation in stress response regulation. Neuron. 2018;99(2):389–403.
  • Chen B, Li Y, Song R, et al. Functions of RNA N6-methyladenosine modification in cancer progression. Mol Biol Rep. 2019;46(1):1383–1391.
  • N6-Methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochem Pharmacol. 2020;182:114258.
  • Mader S, Pantel K. Liquid biopsy: current status and future perspectives. Oncol Res Treat. 2017;40(7–8):404–408.
  • An Y, Cai H, Yang Y, et al. Identification of ENTPD8 and Cytidine in pancreatic cancer by metabolomic and transcriptomic conjoint analysis. Cancer Sci. 2018;109(9):2811–2821.
  • Zheng H, Dong B, Ning J, et al. NMR-based metabolomics analysis identifies discriminatory metabolic disturbances in tissue and biofluid samples for progressive prostate cancer. Clin Chim Acta. 2020;501:241–251.
  • Idaghdour Y, Hodgkinson A. Integrated genomic analysis of mitochondrial RNA processing in human cancers. Genome Med. 2017;9(1):36.
  • You X-J, Liu T, Ma C-J, et al. Determination of RNA hydroxylmethylation in mammals by mass spectrometry analysis. Anal Chem. 2019;91(16):10477–10483.
  • Ohtake S, Kawahara T, Ishiguro Y, et al. Oxidative stress marker 8-hydroxyguanosine is more highly expressed in prostate cancer than in benign prostatic hyperplasia. Mol Clin Oncol. 2018;9(3):302–304.
  • Nygaard P, Saxild HH. Nucleotide metabolism. In: Schaechter M, editor. Encyclopedia of Microbiology. 3rd ed. Oxford: Academic Press; 2009. p. 296–307.
  • Cooper GM. RNA processing and turnover. Chapter 7. The cell: a molecular approach. 2nd ed. Sunderland MA: Sinauer Associates; 2000. p. 240–295. /
  • Kohnken R, Kodigepalli KM, Wu L. Regulation of deoxynucleotide metabolism in cancer: Novel mechanisms and therapeutic implications. Mol Cancer. 2015; 14:176.
  • Zhu J, Djukovic D, Deng L, et al. Colorectal cancer detection using targeted serum metabolic profiling. J Proteome Res. 2014;13(9):4120–4130.
  • Djukovic D, Baniasadi HR, Kc R, et al. Targeted serum metabolite profiling of nucleosides in esophageal adenocarcinoma. Rapid Commun Mass Spectrom. 2010;24(20):3057–3062.
  • Chen F, Xue J, Zhou L, et al. Identification of serum biomarkers of hepatocarcinoma through liquid chromatography/mass spectrometry-based metabonomic method. Anal Bioanal Chem. 2011;401(6):1899–1904.
  • Chen J, Hu Q, Hou H, et al. Metabolite analysis-aided diagnosis of papillary thyroid cancer. Endocr Relat Cancer. 2019;26(12):829–841.
  • Li J-Z, Lai Y-Y, Sun J-Y, et al. Metabolic profiles of serum samples from ground glass opacity represent potential diagnostic biomarkers for lung cancer. Transl Lung Cancer Res. 2019;8(4):489–499.
  • Kumar N, Shahjaman M, Mollah MNH, et al. Serum and plasma metabolomic biomarkers for lung cancer. Bioinformation. 2017;13(06):202–208.
  • Buzatto AZ, de Oliveira Silva M, Poppi RJ, et al. Assessment of nucleosides as putative tumor biomarkers in prostate cancer screening by CE-UV. Anal Bioanal Chem. 2017;409(13):3289–3297.
  • Sridharan G, Ramani P, Patankar S. Serum metabolomics in oral leukoplakia and oral squamous cell carcinoma. J Can Res Ther. 2017;13(3):556–561.
  • Hsu W-Y, Chen C-J, Huang Y-C, et al. Urinary nucleosides as biomarkers of breast, colon, lung, and gastric cancer in Taiwanese. PLoS One. 2013;8(12):e81701..
  • Feng B, Zheng M-H, Zheng Y-F, et al. Normal and modified urinary nucleosides represent novel biomarkers for colorectal cancer diagnosis and surgery monitoring. J Gastroenterol Hepatol. 2005;20(12):1913–1919.
  • Jiang Y, Ma Y. A Fast capillary electrophoresis method for separation and quantification of modified nucleosides in urinary samples. Anal Chem. 2009;81(15):6474–6480.
  • Lo W-Y, Jeng L-B, Lai C-C, et al. Urinary cytidine as an adjunct biomarker to improve the diagnostic ratio for gastric cancer in Taiwanese patients. Clin Chim Acta. 2014;428:57–62.
  • Seidel P, Seidel A, Herbarth O. Multilayer perceptron tumour diagnosis based on chromatography analysis of urinary nucleosides. Neural Netw. 2007;20(5):646–651.
  • Szymańska E, Markuszewski MJ, Markuszewski M, et al. Altered levels of nucleoside metabolite profiles in urogenital tract cancer measured by capillary electrophoresis. J Pharm Biomed Anal. 2010;53(5):1305–1312.
  • Struck W, Siluk D, Yumba-Mpanga A, et al. Liquid chromatography tandem mass spectrometry study of urinary nucleosides as potential cancer markers. J Chromatogr A. 2013;1283:122–131.
  • Daghir-Wojtkowiak E, Struck-Lewicka W, Waszczuk-Jankowska M, et al. Statistical-based approach in potential diagnostic application of urinary nucleosides in urogenital tract cancer. Biomarkers Med. 2015;9(6):577–595.
  • Zhang Y-, Shi R, Wu LH, et al. Urinary modified nucleosides as novel biomarkers for diagnosis and prognostic monitoring of urothelial bladder cancer. Tumori. 2014;100:660–666.
  • Opitz P, Herbarth O, Seidel A, et al. Modified nucleosides – molecular markers suitable for small-volume cancer? Anticancer Res. 2018;38(11):6113–6119.
  • Zhang Y-F, Qi C-B, Yuan B-F, et al. Determination of cytidine modifications in human urine by liquid chromatography – mass spectrometry analysis. Anal Chim Acta. 2019;1081:103–111.
  • Guo C, Xie C, Chen Q, et al. A novel malic acid-enhanced method for the analysis of 5-methyl-2'-deoxycytidine, 5-hydroxymethyl-2'-deoxycytidine, 5-methylcytidine and 5-hydroxymethylcytidine in human urine using hydrophilic interaction liquid chromatography-tandem mass spectrometry . Anal Chim Acta. 2018;1034:110–118.
  • Zhang T, Wu X, Ke C, et al. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. J Proteome Res. 2013;12(1):505–512.
  • Woo HM, Kim KM, Choi MH, et al. Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clin Chim Acta 2009;400(1–2):63–69.
  • Omran MM, Rashed RE, Darwish H, et al. Development of a gas chromatography–mass spectrometry method for breast cancer diagnosis based on nucleoside metabolomes 1-methyl adenosine, 1-methylguanosine and 8-hydroxy-2′-deoxyguanosine. Biomed Chromatogr. 2020;34(1):e4713.
  • Cho S-H, Choi MH, Lee W-Y, et al. Evaluation of urinary nucleosides in breast cancer patients before and after tumor removal. Clin Biochem. 2009;42(6):540–543.
  • Guo C, Chen Q, Chen J, et al. 8-Hydroxyguanosine as a possible RNA oxidative modification marker in urine from colorectal cancer patients: evaluation by ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1136:121931.
  • Shen L, Liang Z, Yu H. Dot blot analysis of n6-methyladenosine RNA modification levels. BIO-Protoc. 2017;7(1). DOI:https://doi.org/10.21769/BioProtoc.2095.
  • Magaki S, Hojat SA, Wei B, et al. An introduction to the performance of immunohistochemistry. Methods Mol Biol Clifton NJ. 2019;1897:289–298.
  • Rossner P, Jr, Orhan H, Koppen G, et al. Urinary 8-oxo-7,8-dihydro-2’-deoxyguanosine analysis by an improved ELISA: an inter-laboratory comparison study. Free Radic Biol Med. 2016;95:169–179.
  • Li X, Xiong X, Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods. 2016;14(1):23–31.
  • Schwartz S, Motorin Y. Next-generation sequencing technologies for detection of modified nucleotides in RNAs. RNA Biol. 2017;14(9):1124–1137.
  • Hage DS, Rockwood AL, Kushnir MM, et al. Mass spectrometry. Chapter 2. In: Rifai N, Horvath AR, Wittwer CT, editors. Principles and applications of clinical mass spectrometry: small molecules, peptides, and pathogens. Amsterdam: Elsevier Science; 2018. p. 1–32.
  • Mlynárik V. Introduction to nuclear magnetic resonance. Anal Biochem. 2017;529:4–9.
  • Nagarajan A, Janostiak R, Wajapeyee N. Dot blot analysis for measuring global N6-methyladenosine modification of RNA. Methods Mol Biol. 2019;1870:263–271.
  • Emwas AHM. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol. 2015;1277:161–193.
  • Want EJ, Cravatt BF, Siuzdak G. The expanding role of mass spectrometry in metabolite profiling and characterization. Chembiochem. 2005;6(11):1941–1951.
  • Aretz I, Meierhofer D. Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. IJMS. 2016;17(5):632.
  • N’cho JS, Fofana I, Hadjadj Y, et al. Review of physicochemical-based diagnostic techniques for assessing insulation condition in aged transformers. Energies. 2016;9(5):367.
  • Lauman R, Garcia BA. Unraveling the RNA modification code with mass spectrometry. Mol Omics. 2020;16(4):305–315.
  • Gaston KW, Limbach PA. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry. RNA Biol. 2014;11(12):1568–1585.
  • Ciocan-Cartita CA, Jurj A, Buse M, et al. The relevance of mass spectrometry analysis for personalized medicine through its successful application in cancer “omics. IJMS. 2019;20(10):2576.
  • Metz TO, Zhang Q, Page JS, et al. The future of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discovery. Biomark Med. 2007;1(1):159–185.
  • Asadi-Atoi P, Barraud P, Tisne C, et al. Benefits of stable isotope labeling in RNA analysis. Biol Chem. 2019;400(7):847–865.
  • Jora M, Lobue PA, Ross RL, et al. Detection of ribonucleoside modifications by liquid chromatography coupled with mass spectrometry. Biochim Biophys Acta Gene Regul Mech. 2019;1862(3):280–290.
  • Thüring K, Schmid K, Keller P, et al. Analysis of RNA modifications by liquid chromatography-tandem mass spectrometry. Methods. 2016;107:48–56.
  • Godoy AT, Eberlin MN, Simionato AVC. Targeted metabolomics: liquid chromatography coupled to mass spectrometry method development and validation for the identification and quantitation of modified nucleosides as putative cancer biomarkers. Talanta. 2020;210:120640.
  • Raćkowska E, Bobrowska-Korczak B, Giebułtowicz J. Development and Validation of a Rapid LC-MS/MS method for determination of methylated nucleosides and nucleobases in urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1128:121775.
  • Fung AWS, Sugumar V, Ren AH, et al. Emerging role of clinical mass spectrometry in pathology. J Clin Pathol. 2020;73(2):61–69.
  • Hirtz C, Bros P, Brede C, et al. Regulatory context and validation of assays for clinical mass spectrometry proteomics (cMSP) methods. Crit Rev Clin Lab Sci. 2018;55(5):346–358.
  • Shi L, Feng M, Du S, et al. Adenosine generated by regulatory T cells induces CD8+ T cell exhaustion in gastric cancer through A2aR pathway. Biomed Res Int. 2019;2019:4093214.
  • Sidders B, Zhang P, Goodwin K, et al. Adenosine signalling is prognostic for cancer outcome and has predictive utility for immunotherapeutic response. Clin Cancer Res. 2020; 126(9):2176–2187.
  • Ciaglia E, Pisanti S, Picardi P, et al. N6-Isopentenyladenosine, an endogenous isoprenoid end product, directly affects cytotoxic and regulatory functions of human NK cells through FDPS modulation. J Leukoc Biol. 2013;94(6):1207–1219.
  • Spinola M, Colombo F, Falvella FS, et al. N6-Isopentenyladenosine: a potential therapeutic agent for a variety of epithelial cancers. Int J Cancer. 2007;120(12):2744–2748.
  • Laezza C, Caruso MG, Gentile T, et al. N6-Isopentenyladenosine inhibits cell proliferation and induces apoptosis in a human colon cancer cell line DLD1. Int J Cancer. 2009;124(6):1322–1329.
  • Rajabi M, Mehrzad J, Gorincioi E, et al. Antiproliferative activity of N(6)-isopentenyladenosine on HCT-15 colon carcinoma cell line . Nucleic Acid Ther. 2011;21(5):355–358.
  • Pisanti S, Picardi P, Ciaglia E, et al. Antiangiogenic effects of N6-isopentenyladenosine, an endogenous isoprenoid end product, mediated by AMPK activation. FASEB J. 2014;28(3):1132–1144.
  • Ranieri R, Ciaglia E, Amodio G, et al. N6-Isopentenyladenosine dual targeting of AMPK and Rab7 prenylation inhibits melanoma growth through the impairment of autophagic flux. Cell Death Differ. 2018;25(2):353–367.
  • Castiglioni S, Romeo V, Casati S, et al. N6-Isopentenyladenosine a new potential anti-angiogenic compound that targets human microvascular endothelial cells in vitro. Nucleosides Nucleotides Nucleic Acids. 2018;37(10):533–545.
  • Ciaglia E, Laezza C, Abate M, et al. Recognition by natural killer cells of N6-isopentenyladenosine-treated human glioma cell lines. Int J Cancer. 2018;142(1):176–190.
  • Fiore D, Piscopo C, Proto MC, et al. N6-Isopentenyladenosine inhibits colorectal cancer and improves sensitivity to 5-fluorouracil targeting FBXW7 tumor suppressor. Cancers. 2019;11(10):1456.
  • Ogawa A, Nagiri C, Shihoya W, et al. N6-Methyladenosine (m6A) is an endogenous A3 adenosine receptor ligand. Mol Cell. 2021;81(4):659–674.
  • Pereira M, Francisco S, Varanda AS, et al. Impact of tRNA modifications and tRNA-modifying enzymes on proteostasis and human disease. Int J Mol Sci. 2018;19(12):DOI: https://doi.org/10.3390/ijms19123738.
  • Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA Modifications. Nat Rev Mol Cell Biol. 2017;18(1):31–42.
  • van der Kwast RVCT, Quax PHA, Nossent AY. An emerging role for isomiRs and the microRNA epitranscriptome in neovascularization. Cells. 2019;9(1)DOI: https://doi.org/10.3390/ijms19123738.
  • Sloan KE, Warda AS, Sharma S, et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 2016;14(9):1138–1152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.