640
Views
7
CrossRef citations to date
0
Altmetric
Invited Reviews

Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: advances, challenges, and opportunities

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 156-177 | Received 07 May 2021, Accepted 21 Oct 2021, Published online: 01 Dec 2021

References

  • Menon S, Mathew MR, Sam S, et al. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. J Electroanal Chem. 2020;878:114596.
  • World Health Organization. Managing epidemics: key facts about major deadly diseases. WHO; 2018. Available from: https://apps.who.int/iris/handle/10665/272442
  • Medical Technology. The Importance of Diagnostic Tests in Fighting Infectious Diseases: Medical Technology 2021 [cited 2021 Jan 29]. Life Changing Innovation. Available from: https://www.lifechanginginnovation.org
  • Wurcel V, Cicchetti A, Garrison L, et al. The value of diagnostic information in personalised healthcare: a comprehensive concept to facilitate bringing this technology into healthcare systems. Public Health Genomics. 2019;22(1–2):8–15.
  • Muniandy S, Teh SJ, Thong KL, et al. Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection. Crit Rev Anal Chem. 2019;49(6):510–533.
  • Whitaker K. Earlier diagnosis: the importance of cancer symptoms. Lancet Oncol. 2020;21(1):6–8.
  • Cancer Research UK. Why is early diagnosis important?; 2021 [cited 2021 Jan 29]. Available from: https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/why-is-early-diagnosis-important
  • World Health Organization. Promoting Cancer Early Diagnosis. WHO; 2021 [cited 2021 Jan 29]. Available from: https://www.who.int/activities/promoting-cancer-early-diagnosis
  • National Research Council. BioWatch and public health surveillance: Evaluating systems for the early detection of biological threats. Abbreviated Version. Washington (US): National Academies Press; 2011.
  • Centers for Disease Control and Prevention (CDC). COVID-19: How to Protect Yourself & Others; 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.htmL
  • Institute of Medicine and National Research Council. BioWatch and public health surveillance: Evaluating systems for the early detection of biological threats: Abbreviated version. Washington (DC): The National Academies Press; 2011.
  • World Health Organization. Coronavirus disease 2019 (COVID-19): Situation report, 49. WHO; 2020. Available from: https://apps.who.int/iris/handle/10665/331449
  • CISION PR newswire [Internet]. Point of Care Testing Essential for Preventing Spread of Coronavirus in U.S; 2020. Available from: https://www.prnewswire.com/news-releases/point-of-care-testing-essential-for-preventing-spread-of-coronavirus-in-us-300995375.htmL
  • Bunn TW, Sikarwar AS. Diagnostics: conventional versus modern methods. J Adv Med Pharm Sci. 2016;8(4):1–7.
  • Amjad M. An overview of the molecular methods in the diagnosis of gastrointestinal infectious diseases. Int J Microbiol. 2020;2020:8135724.
  • Baron EJ. Conventional versus molecular methods for pathogen detection and the role of clinical microbiology in infection control. J Clin Microbiol. 2011;49(9_Supplement):S43.
  • Silva NF, Magalhães JM, Freire C, et al. Electrochemical biosensors for salmonella: state of the art and challenges in food safety assessment. Biosens Bioelectron. 2018;99:667–682.
  • Reta N, Saint CP, Michelmore A, et al. Nanostructured electrochemical biosensors for label-free detection of water- and food-borne pathogens. ACS Appl Mater Interfaces. 2018;10(7):6055–6072.
  • Yu Z, Cai G, Liu X, et al. Pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection. Anal Chem. 2021;93(5):2916–2925.
  • Huang L, Chen J, Yu Z, et al. Self-powered temperature sensor with seebeck effect transduction for photothermal-thermoelectric coupled immunoassay. Anal Chem. 2020;92(3):2809–2814.
  • Pei X, Zhang B, Tang J, et al. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta. 2013;758:1–18.
  • Zhang B, Liu B, Tang D, et al. DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem. 2012;84(12):5392–5399.
  • Arora P, Sindhu A, Dilbaghi N, et al. Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron. 2011;28(1):1–12.
  • Wu Q, Zhang Y, Yang Q, et al. Review of electrochemical DNA biosensors for detecting food borne pathogens. Sensors. 2019;19(22):4916.
  • Wu Q, Li N, Wang Y, et al. Ultrasensitive and selective determination of carcinoembryonic antigen using multifunctional ultrathin amino-functionalized Ti3C2-MXene nanosheets. Anal Chem. 2020;92(4):3354–3360.
  • Lv S, Zhang K, Zhu L, et al. ZIF-8-assisted NaYF4:Yb,Tm@ZnO converter with exonuclease III-Powered DNA walker for near-Infrared light responsive biosensor. Anal Chem. 2020;92(1):1470–1476.
  • Luo Z, Qi Q, Zhang L, et al. Branched polyethylenimine-modified upconversion nanohybrid-mediated photoelectrochemical immunoassay with synergistic effect of dual-purpose copper ions. Anal Chem. 2019;91(6):4149–4156.
  • Touhami A. Biosensors and nanobiosensors: design and applications. Nanomedicine. 2014;15:374–403.
  • Barthelmebs L, Hayat A, Limiadi AW, et al. Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles. Sensor Actuat B-Chem. 2011;156(2):932–937.
  • Xu W. Nucleic acid biosensors for food safety. In: Functional nucleic acids detection in food safety. Switzerland AG: Springer; 2016. p. 275–322.
  • Grieshaber D, MacKenzie R, Vörös J, et al. Electrochemical biosensors – sensor principles and architectures. Sensors. 2008;8(3):1400–1458.
  • Parolo C, de La Escosura-Muñiz A, Merkoçi A. Electrochemical DNA sensors based on nanoparticles. In: Cosnier S, editor. Electrochemical biosensors. Florida (US): CRC Press; 2015. p. 195–216.
  • Filanovsky B. Nanotechnology in electrochemistry. Nanotech Let. 2017;1(1):1.
  • Tam PD, Tuan MA, Van Hieu N, et al. Impact parameters on hybridization process in detecting influenza virus (type A) using conductimetric-based DNA sensor. Physica E. 2009;41(8):1567–1571.
  • Sohrabi N, Valizadeh A, Farkhani SM, et al. Basics of DNA biosensors and cancer diagnosis. Artif Cells Nanomed Biotechnol. 2016;44(2):654–663.
  • Patel S, Nanda R, Sahoo S, et al. Biosensors in health care: the milestones achieved in their development towards lab-on-chip-analysis. Biochem Res Int. 2016;2016:3130469.
  • Anik Ü. Electrochemical medical biosensors for POC applications. Chapter 12. In: Narayan RJ, editor. Medical biosensors for point of care (POC) applications. Woodhead Publishing Series in Biomaterials: Number 118. Sawston (UK): Woodhead Publishing, Elsevier; 2017. p.275–292.
  • Morales MA, Halpern JM. Guide to selecting a biorecognition element for biosensors. Bioconjug Chem. 2018;29(10):3231–3239.
  • Hashem A, Hossain MM, Marlinda AR, et al. Nanomaterials based electrochemical nucleic acid biosensors for environmental monitoring: a review. Appl Surf Sci. 2021;4:100064.
  • Falahi S, Rafiee-Pour HA, Zarejousheghani M, et al. Non-coding RNA-based biosensors for early detection of liver cancer. Biomedicine. 2021;9(8):964.
  • Rashid JIA, Yusof NA. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: a review. Sens Bio-Sens Res. 2017;16:19–31.
  • Arora K, Prabhakar N, Chand S, et al. Immobilization of single stranded DNA probe onto polypyrrole-polyvinyl sulfonate for application to DNA hybridization biosensor. Sensor Actuat B-Chem. 2007;126(2):655–663.
  • Nimse SB, Song K, Sonawane MD, et al. Immobilization techniques for microarray: challenges and applications. Sensors. 2014;14(12):22208–22229.
  • Zhou W, Huang P-JJ, Ding J, et al. Aptamer-based biosensors for biomedical diagnostics. Analyst. 2014;139(11):2627–2640.
  • D'Agata R, Spoto G. Artificial DNA and surface plasmon resonance. Artif DNA PNA Xna. 2012;3(2):45–52.
  • D’Agata R, Giuffrida MC, Spoto G. Peptide nucleic acid-based biosensors for cancer diagnosis. Molecules. 2017;22(11):1951.
  • Sharma C, Awasthi SK. Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery, and origins of life. Chem Biol Drug Des. 2017;89(1):16–37.
  • Wang J, From D. From DNA biosensors to gene chips. Nucleic Acids Res. 2000;28(16):3011–3016.
  • Labuda J. Terminology related to electrochemical DNA-Based biosensors. In: Ozsoz MS, editor. Electrochemical DNA biosensors. Florida (US): CRC Press; 2012. p.1–15.
  • Odenthal KJ, Gooding JJ. An introduction to electrochemical DNA biosensors. Analyst. 2007;132(7):603–610.
  • Liu A, Wang K, Weng S, et al. Development of electrochemical DNA biosensors. TrAC-Trend Anal Chem. 2012;37:101–111.
  • Lucarelli F, Marrazza G, Turner AP, et al. Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens Bioelectron. 2004;19(6):515–530.
  • Lao R, Song S, Wu H, et al. Electrochemical interrogation of DNA monolayers on gold surfaces. Anal Chem. 2005;77(19):6475–6480.
  • Sun X, He P, Liu S, et al. Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications. Talanta. 1998;47(2):487–495.
  • Marrazza G, Chianella I, Mascini M. Disposable DNA electrochemical sensor for hybridization detection. Biosens Bioelectron. 1999;14(1):43–51.
  • Maurer K, Cooper J, Caraballo M, et al. Electrochemically generated acid and its containment to 100 micron reaction areas for the production of DNA microarrays. PLOS One. 2006;1(1):e34.
  • Dzyadevych S, Jaffrezic-Renault N. Conductometric biosensors. Chapter 6. In Schaudies RP, editor. Biological identification. Sawston (UK): Woodhead Publishing, 2014. 153–193.
  • Mello LD, Kubota LT. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem. 2002;77(2):237–256.
  • Soldatkin OO, Stepurska KV, Arkhypova VM, et al. Conductometric enzyme biosensor for patulin determination. Sensor Actuat B-Chem. 2017;239:1010–1015.
  • Sadeghi SJ. Amperometric biosensors. In Roberts GCK, editor. Encyclopedia of biophysics. Berlin (Heidelberg): Springer; 2013. p. 61–67.
  • Arya SK, Singh SP, Malhotra BD, et al.. Electrochemical techniques in biosensors. In: Marks RS, Lowe CR, Cullen DC, editors. Handbook of biosensors and biochips. New Jersey (US): Wiley; 2008. p. 1–37.
  • Fernández H, Arévalo FJ, Granero AM, et al. Electrochemical biosensors for the determination of toxic substances related to food safety developed in South america: Mycotoxins and herbicides. Chemosensors. 2017;5(3):23.
  • Lv S, Lin Z, Zhang K, et al. Polyion oligonucleotide-decorated gold nanoparticles with tunable surface charge density for amplified signal output of potentiometric immunosensor. Anal Chim Acta. 2017;964:67–73.
  • Li Q, Lv S, Lu M, et al. Potentiometric competitive immunoassay for determination of aflatoxin B 1 in food by using antibody-labeled gold nanoparticles. Microchim Acta. 2016;183(10):2815–2822.
  • Zhang B, Liu B, Chen G, et al. Competitive-type displacement reaction for direct potentiometric detection of low-abundance protein. Biosens Bioelectron. 2014;53:465–471.
  • Yunus S, Jonas AM, Lakard B. Potentiometric biosensors. In Roberts GCK, editor. Encyclopedia of biophysics. Berlin (Heidelberg): Springer, 2013. 1941–1946.
  • Hernandez FJ, Ozalp VC. Graphene and other nanomaterial-based electrochemical aptasensors. Biosensors (Basel). 2012;2(1):1–14.
  • Pereira A, Sales M, Rodrigues L. Biosensors for rapid detection of breast cancer biomarkers. Chapter 3. In Inamuddin, Khan R, Mohammad A, Asiri A, editors. Advanced biosensors for health care applications. Amsterdam (Netherlands): Elsevier, 2019. 71–103.
  • Goda T, Singi AB, Maeda Y, et al. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes. Sensors (Basel)). 2013;13(2):2267–2278.
  • Bronder T, Wu CS, Poghossian A, et al. Label-free detection of DNA hybridization with light-addressable potentiometric sensors: Comparison of various DNA- immobilization strategies. Procedia Engineer. 2014;87:755–758.
  • Fracchiolla NS, Artuso S, Cortelezzi A. Biosensors in clinical practice: Focus on oncohematology. Sensors (Basel)). 2013;13(5):6423–6447.
  • Kim M, Iezzi R, Jr Shim BS, et al. Impedimetric biosensors for detecting vascular endothelial growth factor (VEGF) based on poly(3,4-ethylene dioxythiophene) (PEDOT)/gold nanoparticle (Au NP) composites. Front Chem. 2019;7:234.
  • Guan JG, Miao YQ, Zhang QJ. Impedimetric biosensors. J Biosci Bioeng. 2004;97(4):219–226.
  • Bahadir EB, Sezginturk MK. A review on impedimetric biosensors. Artif Cell Nanomed B. 2016;44(1):248–262.
  • Ahmed A, Rushworth JV, Hirst NA, et al. Biosensors for whole-cell bacterial detection. Clin Microbiol Rev. 2014;27(3):631–646.
  • Bonanni A, Loo AH, Pumera M. Graphene for impedimetric biosensing. TrAC-Trend Anal Chem. 2012;37:12–21.
  • Zhang XY, Zhou LY, Luo HQ, et al. A sensitive and label-free impedimetric biosensor based on an adjunct probe. Analyt Chim Acta. 2013;776:11–16.
  • Wu ZS, Guo MM, Zhang SB, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal Chem. 2007;79(7):2933–2939.
  • Du Y, Chen C, Yin J, et al. Solid-state probe based electrochemical aptasensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Anal Chem. 2010;82(4):1556–1563.
  • Wang J. Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta. 2012;177(3–4):245–270.
  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.
  • Zhou Y, Yu G, Chang F, et al. Gold-platinum alloy nanowires as highly sensitive materials for electrochemical detection of hydrogen peroxide. Anal Chim Acta. 2012;757:56–62.
  • Rahman MA, Son JI, Won MS, et al. Gold nanoparticles doped conducting polymer nanorod electrodes: ferrocene catalyzed aptamer-based thrombin immunosensor. Anal Chem. 2009;81(16):6604–6611.
  • Chandra P, Noh HB, Won MS, et al. Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosens Bioelectron. 2011;26(11):4442–4449.
  • Wang X, Zhou J, Yun W, et al. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement. Anal Chim Acta. 2007;598(2):242–248.
  • Li B, Du Y, Wei H, et al. Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules. Chem Commun. 2007;(36):3780–3782.
  • Radi AE, O'Sullivan CK. Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chem Commun. 2006;(32):3432–3434.
  • Le Floch F, Ho HA, Leclerc M. Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. Anal Chem. 2006;78(13):4727–4731.
  • Baker BR, Lai RY, Wood MS, et al. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc. 2006;128(10):3138–3139.
  • Bezryadin A, Lau C, Tinkham M. Quantum suppression of superconductivity in ultrathin nanowires. Nature. 2000;404(6781):971–974.
  • Xia Y, Yang P, Sun Y, et al. One‐dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 2003;15(5):353–389.
  • Wang C, Hu Y, Lieber CM, et al. Ultrathin Au nanowires and their transport properties. J Am Chem Soc. 2008;130(28):8902–8903.
  • Cademartiri L, Ozin GA. Ultrathin nanowires-a materials chemistry perspective. Adv Mater. 2009;21(9):1013–1020.
  • Whitby RLD, Acquah SFA, Ma R, et al. 1D nanomaterials. J Nanomaterials. 2010;2010:597851.
  • Guo S, Dong S, Wang E. Ultralong Pt-on-Pd bimetallic nanowires with nanoporous surface: nanodendritic structure for enhanced electrocatalytic activity. Chem Commun (Camb)). 2010;46(11):1869–1871.
  • Thostenson ET, Ren Z, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol. 2001;61(13):1899–1912.
  • Vairavapandian D, Vichchulada P, Lay MD. Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Anal Chim Acta. 2008;626(2):119–129.
  • Gooding JJ. Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta. 2005;50(15):3049–3060.
  • Yang N, Chen X, Ren T, et al. Carbon nanotube based biosensors. Sensor Actuat B-Chem. 2015;207:690–715.
  • Shalauddin M, Akhter S, Basirun WJ, et al. Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Electrochim Acta. 2019;304:323–333.
  • Jordan BJ, Subramani C, Rotello VM. Functional nanoparticles as catalysts and sensors. Ceroni P, Credi A, Venturi M, editors. Electrochemistry of functional supramolecular systems. Hoboken (NJ): John Wiley & Sons Inc; 2010. p. 301–332.
  • Rubab M, Shahbaz HM, Olaimat AN, et al. Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosens Bioelectron. 2018;105:49–57.
  • Gaudin V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin – a comprehensive review. Biosens Bioelectron. 2017;90:363–377.
  • Nikhil B, Pawan J, Nello F, et al. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8.
  • Peveler WJ, Yazdani M, Rotello VM. Selectivity and specificity: pros and cons in sensing. ACS Sens. 2016;1(11):1282–1285.
  • Hong P, Li W, Li J. Applications of aptasensors in clinical diagnostics. Sensors. 2012;12(2):1181–1193.
  • Ilgu M, Fazlioglu R, Ozturk M, et al. Aptamers for diagnostics with applications for infectious diseases. In: Ince M, editor. Recent advances in analytical chemistry. London (UK): IntechOpen; 2019. p. 1–32.
  • Gong H, Wu Y, Zeng R, et al. CRISPR/Cas12a-mediated liposome-amplified strategy for the photoelectrochemical detection of nucleic acid. Chem Commun. 2021;57(71):8977–8980.
  • Zhang X, Chen J, Wang Q, et al. Amperometric sarcosine biosensors based on electrodeposited conductive films contain indole‐6‐carboxylic acid. Electroanalysis. 2021. DOI:https://doi.org/10.1002/elan.202100225
  • Zhang K, Lv S, Zhou Q, et al. CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction. Sensor Actuat B-Chem. 2020;307:127631.
  • Yu Z, Tang Y, Cai G, et al. Paper electrode-based flexible pressure sensor for point-of-care immunoassay with digital multimeter. Anal Chem. 2019;91(2):1222–1226.
  • Luo Z, Zhang L, Zeng R, et al. Near-infrared light-excited Core-Core-Shell UCNP@Au@CdS upconversion nanospheres for ultrasensitive photoelectrochemical enzyme Immunoassay. Anal Chem. 2018;90(15):9568–9575.
  • Csordas A, Gerdon AE, Adams JD, et al. Detection of proteins in serum by micromagnetic aptamer PCR (MAP) technology. Angew Chem Int Ed Engl. 2010;49(2):355–358.
  • Hanash SM. Why have protein biomarkers not reached the clinic? Genome Med. 2011;3(10):66.
  • Fenzl C, Nayak P, Hirsch T, et al. Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens. 2017;2(5):616–620.
  • Wang Y, Zhang D, Wang J. Ultrasensitive determination of thrombin by using an electrode modified with WSe 2 and gold nanoparticles, aptamer-thrombin-aptamer sandwiching, redox cycling, and signal enhancement by alkaline phosphatase. Microchim Acta. 2018;185(1):1–7.
  • Wang H, Liu Y, Liu C, et al. Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin. Electrochem Commun. 2010;12(2):258–261.
  • Yuan Y, Gou X, Yuan R, et al. Graphene-promoted 3,4,9,10-perylenetetracarboxylic acid nanocomposite as redox probe in label-free electrochemical aptasensor. Biosens Bioelectron. 2011;30(1):123–127.
  • Khan NI, Maddaus AG, Song E. A low-cost inkjet-printed aptamer-based electrochemical biosensor for the selective detection of lysozyme. Biosensors. 2018;8(1):7.
  • Negahdary M, Behjati-Ardakani M, Sattarahmady N, et al. Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-applied to early detection of myocardial infarction. Sensor Actuat B-Chem. 2017;252:62–71.
  • Shen WJ, Zhuo Y, Chai YQ, et al. Cu-based metal-organic frameworks as a catalyst to construct a ratiometric electrochemical aptasensor for sensitive lipopolysaccharide detection. Anal Chem. 2015;87(22):11345–11352.
  • Ravalli A, Rivas L, De La Escosura-Muñiz A, et al. A DNA aptasensor for electrochemical detection of vascular endothelial growth factor. J Nanosci Nanotechnol. 2015;15(5):3411–3416.
  • Ge L, Wang W, Sun X, et al. Affinity-mediated homogeneous electrochemical aptasensor on a graphene platform for ultrasensitive biomolecule detection via exonuclease-assisted target-analog recycling amplification. Anal Chem. 2016;88(4):2212–2219.
  • Zhao CL, Hua M, Yang CY, et al. A novel aptasensor based on 3D-inorganic hybrid composite as immobilized substrate for sensitive detection of platelet-derived growth factor. Chinese Chem Lett. 2017;28(7):1417–1423.
  • Wang S, Zhang L, Wan S, et al. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano. 2017;11(4):3943–3949.
  • Zhou Q, Rahimian A, Son K, et al. Development of an aptasensor for electrochemical detection of exosomes. Methods. 2016;97:88–93.
  • Nawaz M, Rauf S, Catanante G, et al. One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors. 2016;16(10):1651.
  • Meirinho SG, Dias LG, Peres AM, et al. Development of an electrochemical RNA-aptasensor to detect human osteopontin. Biosens Bioelectron. 2015;71:332–341.
  • Meirinho SG, Dias LG, Peres AM, et al. Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Anal Chim Acta. 2017;987:25–37.
  • Cheng W, Ding S, Li Q, et al. A simple electrochemical aptasensor for ultrasensitive protein detection using cyclic target-induced primer extension. Biosens Bioelectron. 2012;36(1):12–17.
  • Liu Y, Zhou Q, Revzin A. An aptasensor for electrochemical detection of tumor necrosis factor in human blood. Analyst. 2013;138(15):4321–4326.
  • Zhao J, He X, Bo B, et al. A “signal-on” electrochemical aptasensor for simultaneous detection of two tumor markers. Biosens Bioelectron. 2012;34(1):249–252.
  • Dai Tran L, Nguyen DT, Nguyen BH, et al. Development of interdigitated arrays coated with functional polyaniline/MWCNT for electrochemical biodetection: application for human papilloma virus. Talanta. 2011;85(3):1560–1565.
  • Hashkavayi AB, Raoof JB, Ojani R, et al. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells. Biosens Bioelectron. 2017;92:630–637.
  • Cai S, Chen M, Liu M, et al. A signal amplification electrochemical aptasensor for the detection of breast cancer cell via free-running DNA walker. Biosens Bioelectron. 2016;85:184–189.
  • Shu H, Wen W, Xiong H, et al. Novel electrochemical aptamer biosensor based on gold nanoparticles signal amplification for the detection of carcinoembryonic antigen. Electrochem Commun. 2013;37:15–19.
  • Hu R, Wen W, Wang Q, et al. Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1. Biosens Bioelectron. 2014;53:384–389.
  • Tabrizi MA, Shamsipur M, Farzin L. A high sensitive electrochemical aptasensor for the determination of VEGF(165) in serum of lung cancer patient. Biosens Bioelectron. 2015;74:764–769.
  • Ilkhani H, Sarparast M, Noori A, et al. Electrochemical aptamer/antibody based sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a signaling probe. Biosens Bioelectron. 2015;74:491–497.
  • Majidi M, Karami P, Johari-Ahar M, et al. Direct detection of tryptophan for rapid diagnosis of cancer cell metastasis competence by an ultra-sensitive and highly selective electrochemical biosensor. Anal Methods. 2016;8(44):7910–7919.
  • Raoof JB, Ojani R, Golabi SM, et al. Preparation of an electrochemical PNA biosensor for detection of target DNA sequence and single nucleotide mutation on p53 tumor suppressor gene corresponding oligonucleotide. Sensor Actuat B-Chem. 2011;157(1):195–201.
  • Hianik T, Ostatná V, Zajacová Z, et al. Detection of aptamer-protein interactions using QCM and electrochemical indicator methods. Bioorg Med Chem Lett. 2005;15(2):291–295.
  • Cheng AK, Ge B, Yu HZ. Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Anal Chem. 2007;79(14):5158–5164.
  • Holzinger M, Goff A, Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem. 2014;2(63):63.
  • Choi YE, Kwak JW, Park JW. Nanotechnology for early cancer detection. Sensors. 2010;10(1):428–455.
  • Bohunicky B, Mousa SA. Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl. 2011;4:1–10.
  • Biosensors for cancer markers diagnosis. Semin Cell Dev Biol. 2009;20(1):55–62.
  • Soper SA, Brown K, Ellington A, et al. Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens Bioelectron. 2006;21(10):1932–1942.
  • Syam R, Davis KJ, Pratheesh M, et al. Biosensors: a novel approach for pathogen detection. Vetscan. 2012;7(1):14–18.
  • Lazcka O, Del Campo FJ, Muñoz FX. Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron. 2007;22(7):1205–1217.
  • Labib M, Berezovski MV. Electrochemical aptasensors for microbial and viral pathogens. In: Gu M, Kim HS, editors. Biosensors based on aptamers and enzymes. Berlin (Heidelberg): Springer; 2013. p. 155–181.
  • van den Kieboom CH, van der Beek SL, Mészáros T, et al. Aptasensors for viral diagnostics. Trends Analyt Chem. 2015;74:58–67.
  • Liu X, Cheng Z, Fan H, et al. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode. Electrochim Acta. 2011;56(18):6266–6270.
  • Kukol A, Li P, Estrela P, et al. Label-free electrical detection of DNA hybridization for the example of influenza virus gene sequences. Anal Biochem. 2008;374(1):143–153.
  • Zhu X, Ai S, Chen Q, et al. Label-free electrochemical detection of avian influenza virus genotype utilizing multi-walled carbon nanotubes–cobalt phthalocyanine–PAMAM nanocomposite modified glassy carbon electrode. Electrochem Commun. 2009;11(7):1543–1546.
  • Fu Y, Callaway Z, Lum J, et al. Exploiting enzyme catalysis in ultra-low ion strength media for impedance biosensing of avian influenza virus using a bare interdigitated electrode. Anal Chem. 2014;86(4):1965–1971.
  • Karash S, Wang R, Kelso L, et al. Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. J Virol Methods. 2016;236:147–156.
  • Chen X, Hong CY, Lin YH, et al. Enzyme-free and label-free ultrasensitive electrochemical detection of human immunodeficiency virus DNA in biological samples based on long-range self-assembled DNA nanostructures. Anal Chem. 2012;84(19):8277–8283.
  • Li B, Li Z, Situ B, et al. Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion–graphene composite film modified screen-printed carbon electrode. Biosens Bioelectron. 2014;52:330–336.
  • Ruslinda AR, Tanabe K, Ibori S, et al. Effects of diamond-FET-based RNA aptamer sensing for detection of real sample of HIV-1 tat protein. Biosens Bioelectron. 2013;40(1):277–282.
  • Ghanbari K, Roushani M, Azadbakht A. Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen. Anal Biochem. 2017;534:64–69.
  • Valipour A, Roushani M. Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: electrochemical oxidation of riboflavin was used as redox probe. Biosens Bioelectron. 2017;89(Pt 2):946–951.
  • Labib M, Zamay AS, Berezovski MV. Multifunctional electrochemical aptasensor for aptamer clones screening, virus quantitation in blood and viability assessment. Analyst. 2013;138(6):1865–1875.
  • Labib M, Zamay AS, Muharemagic D, et al. Electrochemical sensing of aptamer-facilitated virus immunoshielding. Anal Chem. 2012;84(3):1677–1686.
  • Ma X, Jiang Y, Jia F, et al. An aptamer-based electrochemical biosensor for the detection of Salmonella. J Microbiol Methods. 2014;98:94–98.
  • Labib M, Zamay AS, Kolovskaya OS, et al. Aptamer-based impedimetric sensor for bacterial typing. Anal Chem. 2012;84(19):8114–8117.
  • Bagheryan Z, Raoof JB, Golabi M, et al. Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample. Biosens Bioelectron. 2016;80:566–573.
  • Zelada-Guillén GA, Sebastián-Avila JL, Blondeau P, et al. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens Bioelectron. 2012;31(1):226–232.
  • Labib M, Zamay AS, Kolovskaya OS, et al. Aptamer-based viability impedimetric sensor for bacteria. Anal Chem. 2012;84(21):8966–8969.
  • Act4me. A Chance for Therapy. 2020. About Therapy. [cited 2020 March 27]. Available from: https://act4me.org/about-therapy
  • MedlinePlus. Genetic Disorders: NIH. 2020 [cited 2020 Mar 27]. Available from: https://medlineplus.gov/geneticdisorders.htmL#cat_79
  • Regis College. Genetic Disorders. Regis College. What you need to know about 5 most common genetic disorders. 2020 [cited 2020 Mar 27]. Available from: https://online.regiscollege.edu/blog/information-5-common-genetic-disorders
  • Minunni M, Tombelli S, Scielzi R, et al. Detection of β-thalassemia by a DNA piezoelectric biosensor coupled with polymerase chain reaction. Anal Chim Acta. 2003;481(1):55–64.
  • Nasef H, Beni V, Ozalp VC, et al. Cystic fibrosis: a label-free detection approach based on thermally modulated electrochemical impedance spectroscopy. Anal Bioanal Chem. 2010;396(7):2565–2574.
  • Nasef H, Beni V, O’Sullivan CK. Electrochemical molecular beacon DNA biosensor for the detection and discrimination of the DF508 cystic fibrosis mutation. J Electroanal Chem. 2011;662(2):322–327.
  • Brazaca LC, Bramorski CB, Cancino‐Bernardi J, et al. A genosensor for sickle cell anemia trait determination. Electroanal. 2017;29(3):773–777.
  • Monzó J, Insua I, Fernandez-Trillo F, et al. Fundamentals, achievements and challenges in the electrochemical sensing of pathogens. Analyst. 2015;140(21):7116–7128.
  • Fu Z, Lu YC, Lai JJ. Recent advances in biosensors for nucleic acid and exosome detection. Chonnam Med J. 2019;55(2):86–98.
  • Rozenblum GT, Lopez VG, Vitullo AD, et al. Aptamers: current challenges and future prospects. Expert Opin Drug Discov. 2016;11(2):127–135.
  • Tao N, DeRose J, Lindsay S. Self-assembly of molecular superstructures studied by in situ scanning tunneling microscopy: DNA bases on gold (111). J Phys Chem. 1993;97(4):910–919.
  • Steel A, Levicky R, Herne T, et al. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys J. 2000;79(2):975–981.
  • Rozenblum GT, Pollitzer IG, Radrizzani M. Challenges in electrochemical aptasensors and current sensing architectures using flat gold surfaces. Chemosensors. 2019;7(4):57.
  • Green MR, Sambrook J. Isolation and quantification of DNA. Cold Spring Harb Protoc. 2018;2018(6):pdb.top093336.
  • Tan SC, Yiap BC. DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol. 2009;2009:574398.
  • Kalendar R, Boronnikova S, Seppänen M. Isolation and purification of DNA from complicated biological samples. In Besse P, editor. Vol. 2222, Molecular plant taxonomy. Methods in molecular biology. New York (NY): Humana; 2021. p. 57–67.
  • Monošík R, Stred'anský M, Šturdík E. Application of electrochemical biosensors in clinical diagnosis. J Clin Lab Anal. 2012;26(1):22–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.