19,928
Views
12
CrossRef citations to date
0
Altmetric
Invited Reviews

Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites

ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 517-554 | Received 18 Nov 2021, Accepted 22 Apr 2022, Published online: 16 May 2022

References

  • Owen I. Geographical distribution of rickets, acute and subacute rheumatism, chorea, cancer and urinary calculus in the British islands. Br Med J. 1889;1:113–116.
  • Palm TA. The geographical distribution and aetiology of rickets. Practitioner. 1890;45(4):270–342.
  • Trousseau A. Clinique médicale de l'Hôtel-Dieu de Paris v. 3. Vol. 3. JB Baillière1865.
  • McCollum EV, Simmonds N, Becker JE, et al. Studies on experimental rickets XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem. 1922;53(2):293–312.
  • Chick H, Dalyell E, Hume M, et al. The aetiology of rickets in infants: prophylactic and curative observations at the Vienna University Kinderklinik. Lancet. 1922;200(5157):7–11.
  • Huldschinsky K. Die behandlung der rachitis durch ultraviolettbestrahlung. Z Orthop Chir. 1920;39:426.
  • Carpenter KJ, Zhao L. Forgotten mysteries in the early history of vitamin D. J Nutr. 1999;129(5):923–927.
  • Armas LA, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004;89(11):5387–5391.
  • Tjellesen L, Christiansen C, Rodbro P, et al. Different metabolism of vitamin D2 and vitamin D3 in epileptic patients on carbamazepine. Acta Neurol Scand. 1985;71(5):385–389.
  • Tjellesen L, Gotfredsen A, Christiansen C. Different actions of vitamin D2 and D3 on bone metabolism in patients treated with phenobarbitone/phenytoin. Calcif Tissue Int. 1985;37(3):218–222.
  • Tjellesen L, Hummer L, Christiansen C, et al. Serum concentration of vitamin D metabolites during treatment with vitamin D2 and D3 in normal premenopausal women. Bone Miner. 1986;1(5):407–413.
  • Borel P, Caillaud D, Cano N. Vitamin D bioavailability: state of the art. Crit Rev Food Sci Nutr. 2015;55(9):1193–1205.
  • Krause R, Bühring M, Hopfenmüller W, et al. Ultraviolet B and blood pressure. Lancet. 1998;352(9129):709–710.
  • Stamp T, Haddad J, Twigg C. Comparison of oral 25-hydroxycholecalciferol, vitamin D, and ultraviolet light as determinants of circulating 25-hydroxyvitamin D. Lancet. 1977;1(8026):1341–1343.
  • Wimalawansa SJ. Vitamin D in the new millennium. Curr Osteoporos Rep. 2012;10(1):4–15.
  • Phillips KM, Horst RL, Koszewski NJ, et al. Vitamin D4 in mushrooms. PLoS One. 2012;7(8):e40702–e40702.
  • Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523(1):123–133.
  • Christakos S, DeLuca HF. Minireview: vitamin D: is there a role in extraskeletal health? Endocrinology. 2011;152(8):2930–2936.
  • Judd S, Tangpricha V. Vitamin D deficiency and risk for cardiovascular disease. Circulation. 2008;117(4):503.
  • von Hurst PR, Stonehouse W, Coad J. Vitamin D supplementation reduces insulin resistance in South asian women living in New Zealand who are insulin resistant and vitamin D deficient–a randomised, placebo-controlled trial. Br J Nutr. 2010;103(4):549–555.
  • Mathieu C, Gysemans C, Giulietti A, et al. Vitamin D and diabetes. Diabetologia. 2005;48(7):1247–1257.
  • Garland CF, Garland FC, Gorham ED, et al. The role of vitamin D in cancer prevention. Am J Public Health. 2006;96(2):252–261.
  • Jorde R, Sneve M, Figenschau Y, et al. Effects of vitamin D supplementation on symptoms of depression in overweight and obese subjects: randomized double blind trial. J Intern Med. 2008;264(6):599–609.
  • Oudshoorn C, Mattace-Raso F, van der Velde N, et al. Higher serum vitamin D3 levels are associated with better cognitive test performance in patients with Alzheimer's disease. Dement Geriatr Cogn Disord. 2008;25(6):539–543.
  • Burton J, Kimball S, Vieth R, et al. A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology. 2010;74(23):1852–1859.
  • Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, et al. Effect of vitamin D on falls: a meta-analysis. JAMA. 2004;291(16):1999–2006.
  • Urashima M, Segawa T, Okazaki M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza a in schoolchildren. Am J Clin Nutr. 2010;91(5):1255–1260.
  • Vieth R. The pharmacology of vitamin D. In: Vitamin D. 3rd ed. Boston (MA): Elsevier Academic Press; 2011. p. 1041–1066.
  • Utiger RD. The need for more vitamin D. Mass Medical Soc. 1998;338(12):828–829.
  • Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008;87(4):1080S–1086S.
  • Holick MF, Chen TC, Lu Z, et al. Vitamin D and skin physiology: AD‐lightful story. J Bone Miner Res. 2007;22(S2):V28–V33.
  • Holick MF. Environmental factors that influence the cutaneous production of vitamin D. Am J Clin Nutr. 1995;61(3 Suppl):638S–645S.
  • Holick MF, MacLaughlin J, Clark M, et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science. 1980;210(4466):203–205.
  • Holick MF, Tian XQ, Allen M. Evolutionary importance for the membrane enhancement of the production of vitamin D3 in the skin of poikilothermic animals. Proc Natl Acad Sci USA. 1995;92(8):3124–3126.
  • Whyte MP, Haddad JJ, Walters DD, et al. Vitamin D bioavailability: serum 25-hydroxyvitamin D levels in man after oral, subcutaneous, intramuscular, and intravenous vitamin D administration. J Clin Endocrinol Metab. 1979;48(6):906–911.
  • Kowalówka M, Główka AK, Karaźniewicz-Łada M, et al. Clinical significance of analysis of vitamin D status in various diseases. Nutrients. 2020;12(9):2788.
  • Wang T, Bengtsson G, Kärnefelt I, et al. Provitamins and vitamins D2and D3in Cladina spp. over a latitudinal gradient: possible correlation with UV levels. J Photochem Photobiol B. 2001;62(1–2):118–122.
  • Jäpelt RB, Jakobsen J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front Plant Sci. 2013;4:136–136.
  • Göring H. Vitamin D in nature: a product of synthesis and/or degradation of cell membrane components. Biochemistry Moscow. 2018;83(11):1350–1357.
  • Nakamura K, Nashimoto M, Okuda Y, et al. Fish as a major source of vitamin D in the Japanese Diet. Nutrition. 2002;18(5):415–416.
  • Spiro A, Buttriss JL. Vitamin D: an overview of vitamin D status and intake in Europe. Nutr Bull. 2014;39(4):322–350.
  • Bischofova S, Dofkova M, Blahova J, et al. Dietary intake of vitamin D in the Czech population: a comparison with dietary reference values, main food sources identified by a total diet study. Nutrients. 2018;10(10):1452.
  • Takeuchi A, Okano T, Ayame M, et al. High-performance liquid chromatographic determination of vitamin D3 in fish liver oils and eel body oils. J Nutr Sci Vitaminol. 1984;30(5):421–430.
  • Schmid A, Walther B. Natural vitamin D content in animal products. Adv Nutr. 2013;4(4):453–462.
  • Byrdwell WC, Horst RL, Phillips KM, et al. Vitamin D levels in fish and shellfish determined by liquid chromatography with ultraviolet detection and mass spectrometry. J Food Compost Anal. 2013;30(2):109–119.
  • Polzonetti V, Pucciarelli S, Vincenzetti S, et al. Dietary intake of vitamin D from dairy products reduces the risk of osteoporosis. Nutrients. 2020;12(6):1743.
  • Lu Z, Chen TC, Zhang A, et al. An evaluation of the vitamin D3 content in fish: is the vitamin D content adequate to satisfy the dietary requirement for vitamin D? J Steroid Biochem Mol Biol. 2007;103(3–5):642–644.
  • Mattila P, Piironen V, Uusi-Rauva E, et al. Cholecalciferol and 25-Hydroxycholecalciferol contents in fish and fish products. J Food Compost Anal. 1995;8(3):232–243.
  • Kjerstad M, Larssen WE, Midtbø LK. Belly flap from Norwegian spring-spawning herring (Clupea harengus L.): a potentially new product with high content of vitamin D, EPA and DHA. Heliyon. 2020;6(10):e05239.
  • Stancheva M, Dobreva DA. Bulgarian marine and freshwater fishes as a source of Fat-Soluble vitamins for a healthy human diet. Foods. 2013;2(3):332–337.
  • Kühn J, Schutkowski A, Hirche F, et al. Non-linear increase of vitamin D content in eggs from chicks treated with increasing exposure times of ultraviolet light. J Steroid Biochem Mol Biol. 2015;148:7–13.
  • Mattila P, Lehikoinen K, Kiiskinen T, et al. Cholecalciferol and 25-hydroxycholecalciferol content of chicken egg yolk as affected by the cholecalciferol content of feed. J Agric Food Chem. 1999;47(10):4089–4092.
  • Thompson JN, Plouffe L. Determination of cholecalciferol in meat and fat from livestock fed normal and excessive quantities of vitamin D. Food Chem. 1993;46(3):313–318.
  • Strobel N, Buddhadasa S, Adorno P, et al. Vitamin D and 25-hydroxyvitamin D determination in meats by LC-IT-MS. Food Chem. 2013;138(2–3):1042–1047.
  • Mattila PH, Piironen VI, Uusi-Rauva EJ, et al. Contents of cholecalciferol, ergocalciferol, and their 25-Hydroxylated metabolites in milk products and raw meat and liver as determined by HPLC. J Agric Food Chem. 1995;43(9):2394–2399.
  • Roseland JM, Patterson KY, Andrews KW, et al. Interlaboratory trial for measurement of vitamin D and 25-Hydroxyvitamin D [25(OH)D] in foods and a dietary supplement using liquid chromatography-mass spectrometry. J Agric Food Chem. 2016;64(16):3167–3175.
  • EFSA Panel on Dietetic Products N, Allergies. Scientific opinion on the safety of vitamin D-enriched UV-treated baker's yeast. Efsa J. 2014;12(1):3520.
  • Huang S-J, Lin C-P, Tsai S-Y. Vitamin D2 content and antioxidant properties of fruit body and mycelia of edible mushrooms by UV-B irradiation. J Food Compost Anal. 2015;42:38–45.
  • Taofiq O, Fernandes Â, Barros L, et al. UV-irradiated mushrooms as a source of vitamin D2: a review. Trends Food Sci Technol. 2017;70:82–94.
  • Cardwell G, Bornman JF, James AP, et al. A review of mushrooms as a potential source of dietary vitamin D. Nutrients. 2018;10(10):1498.
  • Simon RR, Borzelleca JF, DeLuca HF, et al. Safety assessment of the post-harvest treatment of button mushrooms (agaricus bisporus) using ultraviolet light. Food Chem Toxicol. 2013;56:278–289.
  • Rangel-Castro JI, Staffas A, Danell E. The ergocalciferol content of dried pigmented and albino cantharellus cibarius fruit bodies. Mycol Res. 2002;106(1):70–73.
  • Phillips K. A nutritionally meaningful increase in vitamin D in retail mushrooms is attainable by exposure to sunlight prior to consumption. J Nutr Food Sci. 2013;3:236.
  • Hernigou P, Auregan JC, Dubory A. Vitamin D: part II; cod liver oil, ultraviolet radiation, and eradication of rickets. Int Orthop. 2019;43(3):735–749.
  • Réhault-Godbert S, Guyot N, Nys Y. The golden egg: nutritional value, bioactivities, and emerging benefits for human health. Nutrients. 2019;11(3):684.
  • Larson-Meyer DE, Ingold BC, Fensterseifer SR, et al. Sun exposure in pigs increases the vitamin D nutritional quality of pork. PLOS ONE. 2017;12(11):e0187877–e0187877.
  • Calvo MS, Whiting SJ. Survey of current vitamin D food fortification practices in the United States and Canada. J Steroid Biochem Mol Biol. 2013;136:211–213.
  • Wagner D, Rousseau D, Sidhom G, et al. Vitamin D3 fortification, quantification, and long-term stability in cheddar and low-fat cheeses. J Agric Food Chem. 2008;56(17):7964–7969.
  • Banville C, Vuillemard JC, Lacroix C. Comparison of different methods for fortifying cheddar cheese with vitamin D. Int Dairy J. 2000;10(5–6):375–382.
  • Kaushik R, Sachdeva B, Arora S. Vitamin D2 stability in milk during processing, packaging and storage. LWT. 2014;56(2):421–426.
  • Sławińska A, Fornal E, Radzki W, et al. Study on vitamin D2 stability in dried mushrooms during drying and storage. Food Chem. 2016;199:203–209.
  • Ložnjak P, Jakobsen J. Stability of vitamin D3 and vitamin D2 in oil, fish and mushrooms after household cooking. Food Chem. 2018;254:144–149.
  • Jakobsen J, Knuthsen P. Stability of vitamin D in foodstuffs during cooking. Food Chem. 2014;148:170–175.
  • Hrncirik K. Stability of fat-soluble vitamins and PUFA in simulated shallow-frying. Lipid Technol. 2010;22(5):107–109.
  • Rogerson D. Vegan diets: practical advice for athletes and exercisers. J Int Soc Sports Nutr. 2017;14:36.
  • EFSA Panel on Dietetic Products N, Allergies. Scientific opinion on the safety of UV-treated bread as a novel food EFSA panel on dietetic products, nutrition and allergies. Efsa J. 2015;13(7):4148.
  • Hayes A, Cashman KD. Food-based solutions for vitamin D deficiency: putting policy into practice and the key role for research. Proc Nutr Soc. 2017;76(1):54–63.
  • Mangels AR. Bone nutrients for vegetarians. Am J Clin Nutr. 2014;100(suppl_1):469S–475S.
  • Liu J. Vitamin D content of food and its contribution to vitamin D status: a brief overview and Australian focus. Photochem Photobiol Sci. 2012;11(12):1802–1807.
  • Tso P, Fujimoto K. The absorption and transport of lipids by the small intestine. Brain Res Bull. 1991;27(3–4):477–482.
  • Mulligan GB, Licata A. Taking vitamin D with the largest meal improves absorption and results in higher serum levels of 25‐hydroxyvitamin D. J Bone Miner Res. 2010;25(4):928–930.
  • Rautureau M, Rambaud J. Aqueous solubilisation of vitamin D3 in normal man. Gut. 1981;22(5):393–397.
  • Compston JE, Merrett AL, Hammett F, et al. Comparison of the appearance of radiolabelled vitamin D3 and 25-hydroxy-vitamin D3 in the chylomicron fraction of plasma after oral administration in man. Clin Sci. 1981;60(2):241–243.
  • Sitrin MD, Bengoa JM. Intestinal absorption of cholecalciferol and 25-hydroxycholecalciferol in chronic cholestatic liver disease. Am J Clin Nutr. 1987;46(6):1011–1015.
  • Maislos M, Shany S. Bile salt deficiency and the absorption of vitamin D metabolites. In vivo study in the rat. Isr J Med Sci. 1987;23(11):1114–1117.
  • Leichtmann GA, Bengoa JM, Bolt M, et al. Intestinal absorption of cholecalciferol and 25-hydroxycholecalciferol in patients with both Crohn's Disease and intestinal resection. Am J Clin Nutr. 1991;54(3):548–552.
  • Heubi JE, Hollis BW, Specker B, et al. Bone disease in chronic childhood cholestasis. I. Vitamin D absorption and metabolism. Hepatology. 1989;9(2):258–264.
  • Farraye F, Nimitphong H, Stucchi A, et al. Use of a novel vitamin D bioavailability test demonstrates that vitamin D absorption is decreased in patients with quiescent Crohn's Disease. Inflamm Bowel Dis. 2011;17(10):2116–2121.
  • Reboul E, Goncalves A, Comera C, et al. Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Mol Nutr Food Res. 2011;55(5):691–702.
  • Margier M, Collet X, Le May C, et al. ABCB1 (P-glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux. Faseb J. 2019;33(2):2084–2094.
  • Holick MF, Biancuzzo RM, Chen TC, et al. Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J Clin Endocrinol Metab. 2008;93(3):677–681.
  • McDuffie JR, Calis KA, Booth SL, et al. Effects of orlistat on fat‐soluble vitamins in obese adolescents. Pharmacotherapy. 2002;22(7):814–822.
  • Goncalves A, Gleize B, Bott R, et al. Phytosterols can impair vitamin D intestinal absorption in vitro and in mice. Mol Nutr Food Res. 2011;55(S2):S303–S311.
  • Hernández-Romano J, Martínez-Barnetche J, Valverde-Garduño V. Polymorphisms in gene regulatory regions and their role in the physiopathology of complex disease in the post-genomic era. Salud Pública Méx. 2009;51:S455–S62.
  • Lindqvist A, Sharvill J, Sharvill DE, et al. Loss-of-function mutation in carotenoid 15,15'-monooxygenase identified in a patient with hypercarotenemia and hypovitaminosis A. J Nutr. 2007;137(11):2346–2350.
  • Shephard RM, Deluca HF. Plasma concentrations of vitamin D3 and its metabolites in the rat as influenced by vitamin D3 or 25-hydroxyvitamin D3 intakes. Arch Biochem Biophys. 1980;202(1):43–53.
  • Lawson D, Sedrani S, Douglas J. Interrelationships in rats of tissue pools of cholecalciferol and 25-hydroxycholecalciferol formed in UV light. Biochem J. 1986;233(2):535–540.
  • Dlugos D, Perrotta P, Horn W. Effects of the submarine environment on renal-stone risk factors and vitamin D metabolism. Undersea Hyperb Med. 1995;22(2):145–152.
  • Vicchio D, Yergey A, O'Brien K, et al. Quantification and kinetics of 25-hydroxyvitamin D3 by isotope dilution liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrom. 1993;22(1):53–58.
  • Daiger SP, Schanfield MS, Cavalli-Sforza L. Group-specific component (Gc) proteins bind vitamin D and 25-hydroxyvitamin D. Proc Natl Acad Sci USA. 1975;72(6):2076–2080.
  • Hirschfeld J. Immune-electrophoretic demonstration of qualitative differences in human sera and their relation to the haptoglobins. Acta Pathol Microbiol Scand. 1959;47(2):160–168.
  • Bouillon R, Schuit F, Antonio L, et al. Vitamin D binding protein: a historic overview. Front Endocrinol. 2019;10:910.
  • Safadi FF, Thornton P, Magiera H, et al. Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J Clin Invest. 1999;103(2):239–251.
  • Haddad JG, Matsuoka LY, Hollis BW, et al. Human plasma transport of vitamin D after its endogenous synthesis. J Clin Invest. 1993;91(6):2552–2555.
  • Vieth R. Simple method for determining specific binding capacity of vitamin D-binding protein and its use to calculate the concentration of" free" 1, 25-dihydroxyvitamin D. Clin Chem. 1994;40(3):435–441.
  • Haddad J, Fraser D, Lawson D. Vitamin D plasma binding protein. Turnover and fate in the rabbit. J Clin Invest. 1981;67(5):1550–1560.
  • Bikle DD, Schwartz J. Vitamin D binding protein, total and free vitamin D levels in different physiological and pathophysiological conditions. Front Endocrinol. 2019;10:317.
  • Moestrup SK, Verroust PJ. Megalin- and cubilin-mediated endocytosis of protein-bound vitamins, lipids, and hormones in polarized epithelia. Annu Rev Nutr. 2001;21(1):407–428.
  • Willnow TE, Nykjaer A. Pathways for kidney-specific uptake of the steroid hormone 25-hydroxyvitamin D3. Curr Opin Lipidol. 2002;13(3):255–260.
  • Willnow TE, Nykjaer A. Cellular uptake of steroid carrier proteins-mechanisms and implications. Mol Cell Endocrinol. 2010;316(1):93–102.
  • Mawer EB, Backhouse J, Holman CA, et al. The distribution and storage of vitamin D and its metabolites in human tissues. Clin Sci. 1972;43(3):413–431.
  • Rosenstreich SJ, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50(3):679–687.
  • Drincic AT, Armas LA, Van Diest EE, et al. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity. 2012;20(7):1444–1448.
  • Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–693.
  • Bouillon R, van Baelen H, de Moor P. 25-Hydroxyvitamin D and its binding protein in maternal and cord serum. J Clin Endocrinol Metab. 1977;45(4):679–684.
  • Madden K, Feldman HA, Chun RF, et al. Critically ill children have low vitamin D–binding protein, influencing bioavailability of vitamin D. Ann Am Thorac Soc. 2015;12(11):1654–1661.
  • Ghafouri B, Carlsson A, Holmberg S, et al. Biomarkers of systemic inflammation in farmers with musculoskeletal disorders; a plasma proteomic study. BMC Musculoskelet Disord. 2016;17(1):1–11.
  • Smolders J, van den Ouweland J, Geven C, et al. Letter to the editor: Vitamin D deficiency in COVID-19: mixing up cause and consequence. Metab Clin Exp. 2021;115:154434.
  • Cheng JB, Motola DL, Mangelsdorf DJ, et al. De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase. J Biol Chem. 2003;278(39):38084–38093.
  • Cheng JB, Levine MA, Bell NH, et al. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci USA. 2004;101(20):7711–7715.
  • Thacher TD, Fischer PR, Singh RJ, et al. CYP2R1 mutations impair generation of 25-hydroxyvitamin D and cause an atypical form of vitamin D deficiency. J Clin Endocrinol Metab. 2015;100(7):E1005–E1013.
  • Jensen MB. Vitamin D metabolism, sex hormones, and male reproductive function. Reproduction. 2012;144(2):135–152.
  • Horst RL, Koszewski NJ, Reinhardt TA. 1. Alpha.-hydroxylation of 24-hydroxyvitamin D2 represents a minor physiological pathway for the activation of vitamin D2 in mammals. Biochemistry. 1990;29(2):578–582.
  • Bailie GR, Johnson CA. Comparative review of the pharmacokinetics of vitamin D analogues. Semin Dial. 2002;15(5):352–357.
  • Yu OB, Arnold LA. Calcitroic acid-A review. ACS Chem Biol. 2016;11(10):2665–2672.
  • Kamao M, Tatematsu S, Hatakeyama S, et al. C-3 epimerization of vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1alpha or C-24 hydroxylation. J Biol Chem. 2004;279(16):15897–15907.
  • Rehan VK, Torday JS, Peleg S, et al. 1Alpha,25-dihydroxy-3-epi-vitamin D3, a natural metabolite of 1alpha,25-dihydroxy vitamin D3: production and biological activity studies in pulmonary alveolar type II cells. Mol Genet Metab. 2002;76(1):46–56.
  • Shah I, James R, Barker J, et al. Misleading measures in vitamin D analysis: a novel LC-MS/MS assay to account for epimers and isobars. Nutr J. 2011;10(1):1–9.
  • Brown A, Ritter C, Slatopolsky E, et al. 25‐Dihydroxy‐3‐epi‐vitamin D3, a natural metabolite of 1α, 25‐dihydroxyvitamin D3, is a potent suppressor of parathyroid hormone secretion. J Cell Biochem. 1999;73(1):106–113.
  • Astecker N, Reddy GS, Herzig G, et al. 1α, 25-Dihydroxy-3-epi-vitamin D3 a physiological metabolite of 1α, 25-dihydroxyvitamin D3: its production and metabolism in primary human keratinocytes. Mol Cell Endocrinol. 2000;170(1–2):91–101.
  • Singh RJ, Taylor RL, Reddy GS, et al. C-3 epimers can account for a significant proportion of total circulating 25-Hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J Clin Endocrinol Metab. 2006;91(8):3055–3061.
  • van den Ouweland JM, Beijers AM, van Daal H. Overestimation of 25-hydroxyvitamin D3 by increased ionisation efficiency of 3-epi-25-hydroxyvitamin D3 in LC-MS/MS methods not separating both metabolites as determined by an LC-MS/MS method for separate quantification of 25-hydroxyvitamin D3, 3-epi-25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;967:195–202.
  • Aghajafari F, Field CJ, Rabi D, et al. Plasma 3-Epi-25-Hydroxycholecalciferol can alter the assessment of vitamin D status using the current reference ranges for pregnant women and their newborns. J Nutr. 2016;146(1):70–75.
  • Zbytek B, Janjetovic Z, Tuckey RC, et al. 20-Hydroxyvitamin D3, a product of vitamin D3 hydroxylation by cytochrome P450scc, stimulates keratinocyte differentiation. J Invest Dermatol. 2008;128(9):2271–2280.
  • Jones G, Prosser DE, Kaufmann M. Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res. 2014;55(1):13–31.
  • Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–329.
  • Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408.
  • Pike JW, Christakos S. Biology and mechanisms of action of the vitamin D hormone. Endocrinol Metab Clin North Am. 2017;46(4):815–843.
  • Canaff L, Hendy GN. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem. 2002;277(33):30337–30350.
  • Demay MB, Kiernan MS, DeLuca HF, et al. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 1992;89(17):8097–8101.
  • Quarles LD. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol. 2012;8(5):276–286.
  • Hu MC, Shiizaki K, Kuro-o M, et al. Fibroblast growth factor 23 and klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75:503–533.
  • Henry HL. Regulation of vitamin D metabolism. Best Pract Res Clin Endocrinol Metab. 2011;25(4):531–541.
  • Tang W, Norlin M, Wikvall K. Regulation of human CYP27A1 by estrogens and androgens in HepG2 and prostate cells. Arch Biochem Biophys. 2007;462(1):13–20.
  • Riggs BL, Khosla S, Melton IL. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23(3):279–302.
  • Shao A, Wood R, Fleet J. Increased vitamin D receptor level enhances 1,25-dihydroxyvitamin D3-mediated gene expression and calcium transport in Caco-2 cells. J Bone Miner Res. 2001;16(4):615–624.
  • van Abel M, Hoenderop JG, van der Kemp AW, et al. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol Gastrointest Liver Physiol. 2003;285(1):G78–G85.
  • Rosanoff A, Dai Q, Shapses SA. Essential nutrient interactions: does low or suboptimal magnesium status interact with vitamin D and/or calcium status? Adv Nutr. 2016;7(1):25–43.
  • Glendenning P, Inderjeeth CA. Controversy and consensus regarding vitamin D: recent methodological changes and the risks and benefits of vitamin D supplementation. Crit Rev Clin Lab Sci. 2016;53(1):13–28.
  • Bikle DD, Patzek S, Wang Y. Physiologic and pathophysiologic roles of extra renal CYP27b1: case report and review. Bone Rep. 2018;8:255–267.
  • Chen TC, Schwartz GG, Burnstein KL, et al. The in vitro evaluation of 25-hydroxyvitamin D3 and 19-nor-1α, 25-dihydroxyvitamin D2 as therapeutic agents for prostate cancer. Clin Cancer Res. 2000;6(3):901–908.
  • Reichel H, Koeffler HP, Norman AW. 25-Hydroxyvitamin D3 metabolism by human T-lymphotropic virus-transformed lymphocytes. J Clin Endocrinol Metab. 1987;65(3):519–526.
  • Reichel H, Bishop JE, Koeffler HP, et al. Evidence for 1, 25-dihydroxyvitamin D3 production by cultured porcine alveolar macrophages. Mol Cell Endocrinol. 1991;75(2):163–167.
  • Vieth R, McCarten K, Norwich KH. Role of 25-hydroxyvitamin D3 dose in determining rat 1,25-dihydroxyvitamin D3 production. Am J Physiol. 1990;258(5 Pt 1):E780–E789.
  • Jones G, Kottler ML, Schlingmann KP. Genetic diseases of vitamin D metabolizing enzymes. Endocrinol Metab Clin North Am. 2017;46(4):1095–1117.
  • Tsai K-S, Heath H, Kumar R, et al. Impaired vitamin D metabolism with aging in women. Possible role in pathogenesis of senile osteoporosis. J Clin Invest. 1984;73(6):1668–1672.
  • Armbrecht H, Zenser T, Davis B. Effect of age on the conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 by kidney of rat. J Clin Invest. 1980;66(5):1118–1123.
  • Johnson JA, Beckman MJ, Pansini-Porta A, et al. Age and gender effects on 1, 25-dihydroxyvitamin D3-regulated gene expression. Exp Gerontol. 1995;30(6):631–643.
  • Kim CJ, Kaplan LE, Perwad F, et al. Vitamin D 1alpha-hydroxylase gene mutations in patients with 1alpha-hydroxylase deficiency. J Clin Endocrinol Metab. 2007;92(8):3177–3182.
  • Molin A, Wiedemann A, Demers N, et al. Vitamin D-dependent rickets type 1B (25-Hydroxylase Deficiency): a rare condition or a misdiagnosed condition? J Bone Miner Res. 2017;32(9):1893–1899.
  • Roizen JD, Li D, O'Lear L, et al. CYP3A4 mutation causes vitamin D-dependent rickets type 3. J Clin Invest. 2018;128(5):1913–1918.
  • Christakos S, Li S, De La Cruz J, et al. New developments in our understanding of vitamin metabolism, action and treatment. Metabolism. 2019;98:112–120.
  • Pike JW, Meyer MB, Benkusky NA, et al. Genomic determinants of vitamin D-regulated gene expression. Vitamins & hormones. Vol. 100. Boston (MA): Elsevier; 2016. p. 21–44.
  • Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80(6 Suppl):1678S–1688S.
  • Holick MF. Vitamin D: the underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diabetes Obes. 2002;9(1):87–98.
  • Christakos S, Lieben L, Masuyama R, et al. Vitamin D endocrine system and the intestine. BoneKEy Rep. 2014;3:496.
  • Benn BS, Ajibade D, Porta A, et al. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology. 2008;149(6):3196–3205.
  • Wasserman R. Vitamin D and the dual processes of intestinal calcium absorption. J Nutr. 2004;134(11):3137–3139.
  • Xue Y, Fleet JC. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology. 2009;136(4):1317–1327.
  • Lee SM, Riley EM, Meyer MB, et al. 1,25-Dihydroxyvitamin D3 controls a cohort of Vitamin D receptor target genes in the proximal intestine that is enriched for calcium-regulating components. J Biol Chem. 2015;290(29):18199–18215.
  • Ryan ZC, Craig TA, Filoteo AG, et al. Deletion of the intestinal plasma membrane calcium pump, isoform 1, Atp2b1, in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25-dihydroxyvitamin D3. Biochem Biophys Res Commun. 2015;467(1):152–156.
  • Glendenning P, Ratajczak T, Dick IM, et al. Calcitriol upregulates expression and activity of the 1b isoform of the plasma membrane calcium pump in immortalized distal kidney tubular cells. Arch Biochem Biophys. 2000;380(1):126–132.
  • Ajibade D, Benn BS, Christakos S. Mechanism of action of 1, 25-Dihydroxyvitamin D 3 on intestinal calcium absorption and renal calcium transport. Vitamin D. New York (NY): Springer; 2010. p. 175–187.
  • Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998;95(7):3597–3602.
  • Clairmont A, Tessman D, Stock A, et al. Induction of gap junctional intercellular communication by vitamin D in human skin fibroblasts is dependent on the nuclear Induction of gap junctional intercellular communication by vitamin D in human skin fibroblasts is dependent on the nuclear vitamin D receptor. Carcinogenesis. 1996;17(6):1389–1391.
  • Gniadecki R. Vitamin D–a modulator of cell proliferation. Retinoids. 1997;13:55–59.
  • Pálmer HG, González-Sancho JM, Espada J, et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol. 2001;154(2):369–388.
  • Schwalfenberg GK. A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Mol Nutr Food Res. 2011;55(1):96–108.
  • Wei R, Christakos S. Mechanisms underlying the regulation of innate and adaptive immunity by vitamin D. Nutrients. 2015;7(10):8251–8260.
  • Vandamme D, Landuyt B, Luyten W, et al. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012;280(1):22–35.
  • Cohen MS, Mesler DE, Snipes RG, et al. 1, 25-Dihydroxyvitamin D3 activates secretion of hydrogen peroxide by human monocytes. J Immunol. 1986;136(3):1049–1053.
  • Vanherwegen A-S, Gysemans C, Mathieu C. Regulation of immune function by vitamin D and its use in diseases of immunity. Endocrinol Metab Clin North Am. 2017;46(4):1061–1094.
  • Toelzer C, Gupta K, Yadav SK, et al. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science. 2020;370(6517):725–730.
  • Shoemark DK, Colenso CK, Toelzer C, et al. Molecular simulations suggest vitamins, retinoids and steroids as ligands of the free fatty acid pocket of the SARS‐CoV‐2 spike protein. Angew Chem. 2021;133(13):7174–7186.
  • Welsh J. Cellular and molecular effects of vitamin D on carcinogenesis. Arch Biochem Biophys. 2012;523(1):107–114.
  • Schön MP, Boehncke W-H. Psoriasis. N Engl J Med. 2005;352(18):1899–1912.
  • Soleymani T, Hung T, Soung J. The role of vitamin D in psoriasis: a review. Int J Dermatol. 2015;54(4):383–392.
  • Trémezaygues L, Reichrath J. Vitamin D analogs in the treatment of psoriasis: where are we standing and where will we be going? Dermatoendocrinol. 2011;3(3):180–186.
  • Savoia P, Novelli M, De Matteis A, et al. Effects of topical calcipotriol on the expression of adhesion molecules in psoriasis. J Cutan Pathol. 1998;25(2):89–94.
  • Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988;67(2):373–378.
  • Clemens T, Henderson S, Adams J, et al. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982;1(8263):74–76.
  • Sahay M, Sahay R. Rickets-vitamin D deficiency and dependency. Indian J Endocrinol Metab. 2012;16(2):164–176.
  • Matsuoka LY, Ide L, Wortsman J, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64(6):1165–1168.
  • Klein GL, Chen TC, Holick MF, et al. Synthesis of vitamin D in skin after burns. Lancet. 2004;363(9405):291–292.
  • MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–1538.
  • Dibble J, Sheridan P, Losowsky M. A survey of vitamin D deficiency in gastrointestinal and liver disorders. Q J Med. 1984;53(209):119–134.
  • American gastroenterological association medical position statement: guidelines on osteoporosis in gastrointestinal diseases. Gastroenterology. 2003;124(3):791–794.
  • Elder GJ, Mackun K. 25‐Hydroxyvitamin D deficiency and diabetes predict reduced BMD in patients with chronic kidney disease. J Bone Miner Res. 2006;21(11):1778–1784.
  • Vaziri N. Endocrinological consequences of the nephrotic syndrome. Am J Nephrol. 1993;13(5):360–364.
  • Goldstein DA, Haldimann B, Sherman D, et al. Vitamin D metabolites and calcium metabolism in patients with nephrotic syndrome and normal renal function. J Clin Endocrinol Metab. 1981;52(1):116–121.
  • Takeda E, Yamamoto H, Taketani Y, et al. Vitamin D-dependent rickets type I and type II. Acta Paediatr Jpn. 1997;39(4):508–513.
  • Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA. 2001;98(11):6500–6505.
  • Perwad F, Azam N, Zhang MY, et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1, 25-dihydroxyvitamin D metabolism in mice. Endocrinology. 2005;146(12):5358–5364.
  • Cleve H, Constans J. The mutants of the vitamin-D-binding protein: more than 120 variants of the GC/DBP system. Vox Sang. 1988;54(4):215–225.
  • Arnaud J, Constans J. Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet. 1993;92(2):183–188.
  • Schwartz JB, Gallagher JC, Jorde R, et al. Determination of free 25 (OH) D concentrations and their relationships to total 25 (OH) D in multiple clinical populations. J Clin Endocrinol Metab. 2018;103(9):3278–3288.
  • Thongthai P, Chailurkit L-o, Chanprasertyothin S, et al. Vitamin D binding protein gene polymorphism as a risk factor for vitamin D deficiency in Thais. Endocr Pract. 2015;21(3):221–225.
  • Econs MJ. Disorders of phosphate metabolism: autosomal dominant hypophosphatemic rickets, tumor induced osteomalacia, fibrous dysplasia, and the pathophysiological relevance of FGF23. Vitamin D. 2nd ed. Boston (MA): Elsevier Academic Press; 2005. p. 1189–1195.
  • Silverberg SJ. Vitamin D deficiency and primary hyperparathyroidism. J Bone Miner Res. 2007;22(S2):V100–V104.
  • Xu M-Y, Cao B, Yin J, et al. Vitamin D and graves’ disease: a meta-analysis update. Nutrients. 2015;7(5):3813–3827.
  • Planck T, Shahida B, Malm J, et al. Vitamin D in graves disease: levels, correlation with laboratory and clinical parameters, and genetics. Eur Thyroid J. 2018;7(1):27–33.
  • Hollis BW, Wagner CL. Vitamin D requirements during lactation: high-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. Am J Clin Nutr. 2004;80(6 Suppl):1752S–1758S.
  • Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062–2072.
  • Sotaniemi EA, Hakkarainen HK, Puranen JA, et al. Radiologic bone changes and hypocalcemia with anticonvulsant therapy in epilepsy. Ann Intern Med. 1972;77(3):389–394.
  • Hahn TJ. 6 Drug-induced disorders of vitamin D and mineral metabolism. Clin Endocrinol Metab. 1980;9(1):107–129.
  • Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006;81(3):353–373.
  • Dawson-Hughes B, Heaney RP, Holick MF, et al. Estimates of optimal vitamin D status. Osteoporos Int. 2005;16(7):713–716.
  • Hollis BW. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. J Nutr. 2005;135(2):317–322.
  • Chapuy M-C, Preziosi P, Maamer M, et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int. 1997;7(5):439–443.
  • Heaney RP, Dowell MS, Hale CA, et al. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr. 2003;22(2):142–146.
  • Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281.
  • Robinson PD, Högler W, Craig ME, et al. The re-emerging burden of rickets: a decade of experience from sydney. Arch Dis Child. 2005;91(7):564–568.
  • Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med. 1992;327(23):1637–1642.
  • Gloth FM, Lindsay JM, Zelesnick LB, et al. Can vitamin D deficiency produce an unusual pain syndrome? Arch Intern Med. 1991;151(8):1662–1664.
  • Malabanan AO, Turner AK, Holick MF. Severe generalized bone pain and osteoporosis in a premenopausal black female: effect of vitamin D replacement. J Clin Densitom. 1998;1(2):201–204.
  • Najada AS, Habashneh MS, Khader M. The frequency of nutritional rickets among hospitalized infants and its relation to respiratory diseases. J Trop Pediatr. 2004;50(6):364–368.
  • Zasloff M. Fighting infections with vitamin D. Nat Med. 2006;12(4):388–390.
  • Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004;75(1):39–48.
  • Oda Y, Tu C-L, Menendez A, et al. Vitamin D and calcium regulation of epidermal wound healing. J Steroid Biochem Mol Biol. 2016;164:379–385.
  • Ceglia L, Harris SS. Vitamin D and its role in skeletal muscle. Calcif Tissue Int. 2013;92(2):151–162.
  • Dawson-Hughes B. Vitamin D and muscle function. J Steroid Biochem Mol Biol. 2017;173:313–316.
  • Aksu Cerman A, Sarikaya Solak S, Kivanc Altunay I. Vitamin D deficiency in alopecia areata. Br J Dermatol. 2014;170(6):1299–1304.
  • Föcker M, Antel J, Ring S, et al. Vitamin D and mental health in children and adolescents. Eur Child Adolesc Psychiatry. 2017;26(9):1043–1066.
  • Mazess RB, Bischoff‐Ferrari HA, Dawson‐Hughes B. Vitamin D: bolus is bogus-A narrative review. JBMR Plus. 2021;5(12):e10567.
  • Vieth R. How to optimize vitamin D supplementation to prevent cancer, based on cellular adaptation and hydroxylase enzymology. Anticancer Res. 2009;29(9):3675–3684.
  • Martindale SS. The Complete Drug Reference.: London: Pharmaceutical Press. (electronic version), IBM Watson Health (Healthcare), Greenwood Village, Colorado, USA; [cited 2021 Mar 15]. Available from: https://www.micromedexsolutions.com/
  • Pazirandeh S, Burns DL. Overview of vitamin D. 2019 [cited 2021 Mar 30]. Available from: https://www.uptodate.com/contents/overview-of-vitamin-d
  • Amrein K, Scherkl M, Hoffmann M, et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020;74(11):1498–1513.
  • Tan ML, Abrams SA, Osborn DA. Vitamin D supplementation for term breastfed infants to prevent vitamin D deficiency and improve bone health. Cochrane Database Syst Rev. 2020;(12):CD013046.
  • Shoback D. Clinical practice. Hypoparathyroidism. N Engl J Med. 2008;359(4):391–403.
  • Vaitsi KD, Anagnostis P, Veneti S, et al. Preoperative vitamin D deficiency is a risk factor for postthyroidectomy hypoparathyroidism: a systematic review and meta-analysis of observational studies. J Clin Endocrinol Metab. 2021;106(4):1209–1224.
  • Brown AJ, Coyne DW. Vitamin D analogs: new therapeutic agents for secondary hyperparathyroidism. Treat Endocrinol. 2002;1(5):313–327.
  • Cunningham J. New vitamin D analogues for osteodystrophy in chronic kidney disease. Pediatr Nephrol. 2004;19(7):705–708.
  • Kanis J, Burlet N, Cooper C, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2008;19(4):399–428.
  • Avenell A, Mak JC, O'Connell D. Vitamin D and vitamin D analogues for preventing fractures in post‐menopausal women and older men. Cochrane Database Syst Rev. 2014;(4):CD000227.
  • Aspray TJ, Bowring C, Fraser W, et al. National osteoporosis society vitamin D guideline summary. Age Ageing. 2014;43(5):592–595.
  • Kahwati LC, Weber RP, Pan H, et al. Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: evidence report and systematic review for the US preventive services task force. JAMA. 2018;319(15):1600–1612.
  • Cianferotti L, Cricelli C, Kanis JA, et al. The clinical use of vitamin D metabolites and their potential developments: a position statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the International Osteoporosis Foundation (IOF). Endocrine. 2015;50(1):12–26.
  • Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet. 2014;383(9912):146–155.
  • Deng J, Silver Z, Huang E, et al. The effect of calcium and vitamin D compounds on bone mineral density in patients undergoing glucocorticoid therapies: a network meta-analysis. Clin Rheumatol. 2021;40(2):725–734.
  • IBM Watson Health GV, Colorado, USA. Micromedex® (electronic version) [cited 2021 Mar 15]. Available from: https://www.micromedexsolutions.com/
  • Mithal A, Bonjour J-P, Boonen S, et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos Int. 2013;24(5):1555–1566.
  • Smith LM, Gallagher JC, Suiter C. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: a randomized clinical trial. J Steroid Biochem Mol Biol. 2017;173:317–322.
  • Group KDIGOC-MW. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2009;76(113):S1–S130.
  • Wheeler DC, Winkelmayer WC. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) foreword. Kidney Int Suppl. 2017;7(1):1–59.
  • Christodoulou M, Aspray TJ, Schoenmakers I. Vitamin D supplementation for patients with chronic kidney disease: a systematic review and meta-analyses of trials investigating the response to supplementation and an overview of guidelines. Calcif Tissue Int. 2021;109(2):157–178.
  • Uhlig K, Berns JS, Kestenbaum B, et al. KDOQI US commentary on the 2009 KDIGO clinical practice guideline for the diagnosis, evaluation, and treatment of CKD-Mineral and Bone Disorder (CKD-MBD). Am J Kidney Dis. 2010;55(5):773–799.
  • Health NIF, Excellence C. Psoriasis: assessment and management. National Institute for Health and Care Excellence (NICE); 2017.
  • McCullough PJ, McCullough WP, Lehrer D, et al. Oral and topical vitamin D, sunshine, and UVB phototherapy safely control psoriasis in patients with normal pretreatment serum 25-Hydroxyvitamin D concentrations: a literature review and discussion of health implications. Nutrients. 2021;13(5):1511.
  • Banerjee A, Ganguly U, Saha S, et al. Vitamin D and immuno-pathology of COVID-19: many interactions but uncertain therapeutic benefits. Expert Rev anti Infect Ther. 2021;19(10):1245–1258.
  • Nonnecke B, McGill J, Ridpath J, et al. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J Dairy Sci. 2014;97(9):5566–5579.
  • Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583.
  • Lee C. Controversial effects of vitamin D and related genes on viral infections, pathogenesis, and treatment outcomes. Nutrients. 2020;12(4):962.
  • Pilz S, Gaksch M, Kienreich K, et al. Effects of vitamin D on blood pressure and cardiovascular risk factors: a randomized controlled trial. Hypertension. 2015;65(6):1195–1201.
  • Nudy M, Krakowski G, Ghahramani M, et al. Vitamin D supplementation, cardiac events and stroke: a systematic review and meta-regression analysis. Int J Cardiol Heart Vasc. 2020;28:100537.
  • Barbarawi M, Kheiri B, Zayed Y, et al. Vitamin D supplementation and cardiovascular disease risks in more than 83 000 individuals in 21 randomized clinical trials: a meta-analysis. JAMA Cardiol. 2019;4(8):765–776.
  • Zittermann A, Trummer C, Theiler-Schwetz V, et al. Vitamin D and cardiovascular disease: an updated narrative review. IJMS. 2021;22(6):2896.
  • Naghedi A, Haghaninejad H, Varastehravan H, et al. Effect of vitamin D supplements on left ventricular ejection fraction in patients with heart failure: a systematic review and meta-analysis of randomized controlled trials. Rev Port Cardiol. 2021;40(6):447–455.
  • Wang J, Zhou JJ, Robertson GR, et al. Vitamin D in vascular calcification: a double-edged sword? Nutrients. 2018;10(5):652.
  • Gubatan J, Chou ND, Nielsen OH, et al. Systematic review with meta-analysis: association of vitamin D status with clinical outcomes in adult patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2019;50(11–12):1146–1158.
  • Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015;12(12):720–727.
  • Pappa HM, Grand RJ, Gordon CM. Report on the vitamin D status of adult and pediatric patients with inflammatory bowel disease and its significance for bone health and disease. Inflamm Bowel Dis. 2006;12(12):1162–1174.
  • Guzman-Prado Y, Samson O, Segal JP, et al. Vitamin D therapy in adults with inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2020;26(12):1819–1830.
  • Lamb CA, Kennedy NA, Raine T, et al. British society of gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut. 2019;68(Suppl 3):s1–s106.
  • Nguyen Y, Sigaux J, Letarouilly J-G, et al. Efficacy of oral vitamin supplementation in inflammatory rheumatic disorders: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2020;13(1):107.
  • Autier P, Boniol M, Pizot C, et al. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol. 2014;2(1):76–89.
  • Zgaga L, Theodoratou E, Farrington SM, et al. Plasma vitamin D concentration influences survival outcome after a diagnosis of colorectal cancer. J Clin Oncol. 2014;32(23):2430–2439.
  • Ma Y, Zhang P, Wang F, et al. Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies. J Clin Oncol. 2011;29(28):3775–3782.
  • Zgaga L, Agakov F, Theodoratou E, et al. Model selection approach suggests causal association between 25-hydroxyvitamin D and colorectal cancer. PLoS One. 2013;8(5):e63475.
  • Maalmi H, Walter V, Jansen L, et al. Association between blood 25-hydroxyvitamin D levels and survival in colorectal cancer patients: an updated systematic review and meta-analysis. Nutrients. 2018;10(7):896.
  • Yuan C, Ng K. Vitamin D supplementation: a potential therapeutic agent for metastatic colorectal cancer. Br J Cancer. 2020;123(8):1205–1206.
  • Vaughan-Shaw PG, Buijs LF, Blackmur JP, et al. The effect of vitamin D supplementation on survival in patients with colorectal cancer: systematic review and meta-analysis of randomised controlled trials. Br J Cancer. 2020;123(11):1705–1712.
  • Xu Y, Qian M, Hong J, et al. The effect of vitamin D on the occurrence and development of colorectal cancer: a systematic review and meta-analysis. Int J Colorectal Dis. 2021;36(7):1329–1344.
  • Manson JE, Cook NR, Lee I-M, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44.
  • Shahvazi S, Soltani S, Ahmadi SM, et al. The effect of vitamin D supplementation on prostate cancer: a systematic review and meta-analysis of clinical trials. Horm Metab Res. 2019;51(1):11–21.
  • Nair-Shalliker V, Bang A, Egger S, et al. Post-treatment levels of plasma 25-and 1, 25-dihydroxy vitamin D and mortality in men with aggressive prostate cancer. Sci Rep. 2020;10(1):1–11.
  • Datta M, Schwartz GG. Calcium and vitamin D supplementation during androgen deprivation therapy for prostate cancer: a critical review. Oncologist. 2012;17(9):1171–1179.
  • Kim TJ, Koo KC. Pathophysiology of bone loss in patients with prostate cancer receiving androgen-deprivation therapy and lifestyle modifications for the management of bone health: a comprehensive review. Cancers. 2020;12(6):1529.
  • Galior K, Grebe S, Singh R. Development of vitamin D toxicity from overcorrection of vitamin D deficiency: a review of case reports. Nutrients. 2018;10(8):953.
  • Marcinowska-Suchowierska E, Kupisz-Urbańska M, Łukaszkiewicz J, et al. Vitamin D toxicity–a clinical perspective. Front Endocrinol. 2018;9:550.
  • Kennel KA, Drake MT, Hurley DL. Vitamin D deficiency in adults: when to test and how to treat. Mayo Clin Proc. 2010;85(8):752–757.
  • Lee JP, Tansey M, Jetton JG, et al. Vitamin D toxicity: a 16-year retrospective study at an academic medical center. Lab Med. 2018;49(2):123–129.
  • Bouillon R. Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol. 2017;13(8):466–479.
  • Dudenkov DV, Yawn BP, Oberhelman SS, et al. Changing incidence of serum 25-hydroxyvitamin D values above 50 ng/mL: a 10-year population-based study. Mayo Clin Proc. 2015;90(5):877–886.
  • Taylor PN, Davies JS. A review of the growing risk of vitamin D toxicity from inappropriate practice. Br J Clin Pharmacol. 2018;84(6):1121–1127.
  • Lim K, Thadhani R. Vitamin D toxicity. J Bras Nefrol. 2020;42(2):238–244.
  • Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–1930.
  • Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–58.
  • Vieth R. The mechanisms of vitamin D toxicity. Bone Miner. 1990;11(3):267–272.
  • Ketha H, Wadams H, Lteif A, et al. Iatrogenic vitamin D toxicity in an infant–a case report and review of literature. J Steroid Biochem Mol Biol. 2015;148:14–18.
  • Misgar RA, Sahu D, Bhat MH, et al. Vitamin D toxicity: a prospective study from a Tertiary Care Centre in Kashmir Valley. Indian J Endocrinol Metab. 2019;23(3):363–366.
  • Sarma N, Giancaspro G, Venema J. Dietary supplements quality analysis tools from the United States pharmacopeia. Drug Test Analysis. 2016;8(3–4):418–423.
  • Vitamin D assay. The United States Pharmacopeia – the national formulary. Rockville: United States Pharmacopeial Convention, Inc.; 2021.
  • Foodstuffs-Determination of vitamin D by high performance liquid Chromatography—Measurement of cholecalciferol (D3) or ergocalciferol (D2). Brussels: Comité Européen de Normalisation; 2009. Standard No.: CEN 12821.
  • Temova Rakuša Ž, Roškar R. Vitamin D in supplements and medicines. In Yaseen Sofi N, Mandal A, Amiri W, editors. Vitamin D deficiency: causes & treatment. Las Vegas, NV, USA: OPEN ACCESS EBOOKS; 2018. p. 1–19.
  • Deb S, Reeves AA, Lafortune S. Simulation of physicochemical and pharmacokinetic properties of vitamin D3 and its natural derivatives. Pharmaceuticals. 2020;13(8):160.
  • Alshahrani F, Aljohani N. Vitamin D: deficiency, sufficiency and toxicity. Nutrients. 2013;5(9):3605–3616.
  • Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88(2):582S–586S.
  • Pettifor JM, Bikle DD, Cavaleros M, et al. Serum levels of free 1,25-dihydroxyvitamin D in vitamin D toxicity. Ann Intern Med. 1995;122(7):511–513.
  • DeLuca HF, Prahl JM, Plum LA. 1,25-Dihydroxyvitamin D is not responsible for toxicity caused by vitamin D or 25-hydroxyvitamin D. Arch Biochem Biophys. 2011;505(2):226–230.
  • Acar S, Demir K, Shi Y. Genetic causes of rickets. J Clin Res Pediatr Endocrinol. 2017;9(Suppl 2):88–105.
  • Levine MA. Diagnosis and management of vitamin D dependent rickets. Front Pediatr. 2020;8:315.
  • Waterbury S. Implications of vitamin D toxicity & deficiency. Nurse Pract. 2018;43(5):22–30.
  • Vogiatzi MG, Jacobson-Dickman E, DeBoer M. Vitamin D supplementation and risk of toxicity in pediatrics: a review of current literature. J Clin Endocrinol Metab. 2014;99(4):1132–1141.
  • Tebben PJ, Singh RJ, Kumar R. Vitamin D-mediated hypercalcemia: mechanisms, diagnosis, and treatment. Endocr Rev. 2016;37(5):521–547.
  • Spiller HA, Good TF, Spiller NE, et al. Vitamin D exposures reported to US poison centers 2000-2014: temporal trends and outcomes. Hum Exp Toxicol. 2016;35(5):457–461.
  • Allen SH, Shah JH. Calcinosis and metastatic calcification due to vitamin D intoxication. A case report and review. Horm Res. 1992;37(1–2):68–77.
  • Alonso Canal L, Ruiz Herrero J, Villalobos Reales J, et al. [Vitamin D intoxication in infants born from Latin-American immigrants. Series of 3 cases]. An Pediatr. 2011;74(6):409–412.
  • Atabek ME, Pirgon O, Sert A. Oral alendronate therapy for severe vitamin D intoxication of the infant with nephrocalcinosis. J Pediatr Endocrinol Metab. 2006;19(2):169–172.
  • Barrueto F, Wang-Flores HH, Howland MA, et al. Acute vitamin D intoxication in a child. Pediatrics. 2005;116(3):e453–e456.
  • Bereket A, Erdogan T. Oral bisphosphonate therapy for vitamin D intoxication of the infant. Pediatrics. 2003;111(4 Pt 1):899–901.
  • Çağlar A, Çağlar HT. Vitamin D intoxication due to misuse: 5-year experience. Arch Pediatr. 2021;28(3):222–225.
  • Chambellan-Tison C, Horen B, Plat-Wilson G, et al. [Severe hypercalcemia due to vitamin D intoxication]. Arch Pediatr. 2007;14(11):1328–1332.
  • Chatterjee M, Speiser PW. Pamidronate treatment of hypercalcemia caused by vitamin D toxicity. J Pediatr Endocrinol Metab. 2007;20(11):1241–1248.
  • Conti G, Chirico V, Lacquaniti A, et al. Vitamin D intoxication in two brothers: be careful with dietary supplements. J Pediatr Endocrinol Metab. 2014;27(7–8):763–767.
  • Davies M, Adams P. The continuing risk of vitamin-D intoxication. Lancet. 1978;2(8090):621–623.
  • Ezgu FS, Buyan N, Gündüz M, et al. Vitamin D intoxication and hypercalcaemia in an infant treated with pamidronate infusions. Eur J Pediatr. 2004;163(3):163–165.
  • Feige J, Salmhofer H, Hecker C, et al. Life-threatening vitamin D intoxication due to intake of ultra-high doses in multiple sclerosis: a note of caution. Mult Scler. 2019;25(9):1326–1328.
  • Gurkan F, Davutoglu M, Bosnak M, et al. Pamidronate treatment in acute vitamin D intoxication. J Endocrinol Invest. 2004;27(7):680–682.
  • Joshi R. Hypercalcemia due to hypervitaminosis D: report of seven patients. J Trop Pediatr. 2009;55(6):396–398.
  • Kara C, Gunindi F, Ustyol A, et al. Vitamin D intoxication due to an erroneously manufactured dietary supplement in seven children. Pediatrics. 2014;133(1):e240–e244.
  • Marins TA, Galvão TdFG, Korkes F, et al. Vitamin D intoxication: case report. Einstein. 2014;12(2):242–244.
  • Mawer EB, Hann J, Berry JL, et al. Vitamin D metabolism in patients intoxicated with ergocalciferol. Clin Sci. 1985;68(2):135–141.
  • Orbak Z, Doneray H, Keskin F, et al. Vitamin D intoxication and therapy with alendronate (case report and review of literature). Eur J Pediatr. 2006;165(8):583–584.
  • Rajakumar K, Reis EC, Holick MF. Dosing error with over-the-counter vitamin D supplement: a risk for vitamin D toxicity in infants. Clin Pediatr. 2013;52(1):82–85.
  • Rizzoli R, Stoermann C, Ammann P, et al. Hypercalcemia and hyperosteolysis in vitamin D intoxication: effects of clodronate therapy. Bone. 1994;15(2):193–198.
  • Sezer RG, Guran T, Paketçi C, et al. Comparison of oral alendronate versus prednisolone in treatment of infants with vitamin D intoxication. Acta Paediatr. 2012;101(3):e122–e125.
  • Talarico V, Barreca M, Galiano R, et al. Vitamin D and risk for vitamin a intoxication in an 18-month-old boy. Case Rep Pediatr. 2016;2016:1395718.
  • Zhou L, Taylor-Miller T, Zacharin M, et al. Extreme hypercalcaemia due to accidental vitamin D intoxication. J Paediatr Child Health. 2019;55(1):104–106.
  • Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69(5):842–856.
  • Al-Kandari A, Sadeq H, Alfattal R, et al. Vitamin D intoxication and nephrocalcinosis in a young breastfed infant. Case Rep Endocrinol. 2021;2021:3286274.
  • Muller MJ, Volmer DA. Mass spectrometric profiling of vitamin D metabolites beyond 25-hydroxyvitamin D. Clin Chem. 2015;61(8):1033–1048.
  • Saponaro F, Saba A, Zucchi R. An update on vitamin D metabolism. Int J Mol Sci. 2020;21(18):6573–6589.
  • Stokes CS, Lammert F, Volmer DA. Analytical methods for quantification of vitamin D and implications for research and clinical practice. Anticancer Res. 2018;38(2):1137–1144.
  • Zhang Y, Bala V, Mao Z, et al. Quantification of fat-soluble vitamins and their metabolites in biological matrices: an updated review. Bioanalysis. 2020;12(9):625–640.
  • Fraser WD, Tang JCY, Dutton JJ, et al. Vitamin D measurement, the debates continue, new analytes have emerged, developments have variable outcomes. Calcif Tissue Int. 2020;106(1):3–13.
  • Turck D, Bresson JL, Burlingame B, et al. Dietary reference values for vitamin K. Efsa J. 2017;15(5):e04780.
  • Dirks NF, Ackermans MT, Lips P, et al. The when, what & how of measuring vitamin D metabolism in clinical medicine. Nutrients. 2018;10(4):482.
  • Shahangian S, Alspach TD, Astles JR, et al. Trends in laboratory test volumes for Medicare part B reimbursements, 2000–2010. Arch Pathol Lab Med. 2014;138(2):189–203.
  • Ofenloch-Haehnle B. Approaches to measurement of vitamin D concentrations – immunoassays. Scand J Clin Lab Invest Suppl. 2012;243:50–53.
  • European Medicine Agency, Guideline on bioanalytical method validation; 2011.
  • van den Ouweland JMW, Vogeser M, Bächer S. Vitamin D and metabolites measurement by tandem mass spectrometry. Rev Endocr Metab Disord. 2013;14(2):159–184.
  • Altieri B, Cavalier E, Bhattoa HP, et al. Vitamin D testing: advantages and limits of the current assays. Eur J Clin Nutr. 2020;74(2):231–247.
  • Wagner D, Hanwell HE, Schnabl K, et al. The ratio of serum 24, 25-dihydroxyvitamin D3 to 25-hydroxyvitamin D3 is predictive of 25-hydroxyvitamin D3 response to vitamin D3 supplementation. J Steroid Biochem Mol Biol. 2011;126(3–5):72–77.
  • Farrell CJ, Herrmann M. Determination of vitamin D and its metabolites. Best Pract Res Clin Endocrinol Metab. 2013;27(5):675–688.
  • Yin S, Yang Y, Wu L, et al. Recent advances in sample preparation and analysis methods for vitamin D and its analogues in different matrices. Trends Analyt Chem. 2019;110:204–220.
  • Rezayi M, Ghayour-Mobarhan M, Tavakoly Sany SB, et al. A comparison of analytical methods for measuring concentrations of 25-hydroxy vitamin D in biological samples. Anal Methods. 2018;10(47):5599–5612.
  • Hollis BW, Kamerud JQ, Selvaag SR, et al. Determination of vitamin D status by radioimmunoassay with an 125I-labeled tracer. Clin Chem. 1993;39/(3):529–533.
  • Haddad JG, Chyu KJ. Competitive protein-binding radioassay for 25-hydroxycholecalciferol. J Clin Endocrinol Metab. 1971;33(6):992–995.
  • Arneson WL, Arneson DL. Current methods for routine clinical laboratory testing of vitamin D levels. Lab Med. 2013;44(1):e38–e42.
  • Eisman JA, Shepard RM, DeLuca HF. Determination of 25-Hydroxyvitamin D2 and 25-Hydroxyvitamin D3 in human plasma using High-Pressure liquid chromatography. Anal Biochem. 1977;80(1):298–305.
  • Jones G. Assay of vitamins D2 and D3, and 25-hydroxyvitamins D2 and D3 in human plasma by high-performance liquid chromatography. Clin Chem. 1978;24(2):287–298.
  • Gilbertson TJ, Stryd RP. High-performance liquid chromatographic assay for 25-hydroxyvitamin D3 in serum. Clin Chem. 1977;23(9):1700–1704.
  • Mata-Granados JM, Quesada Gómez JM, Luque de Castro MD. Fully automatic method for the determination of fat soluble vitamins and vitamin D metabolites in serum. Clin Chim Acta. 2009;403(1–2):126–130.
  • Keyfi F, Nahid S, Mokhtariye A, et al. Evaluation of 25-OH vitamin D by high performance liquid chromatography: validation and comparison with electrochemiluminescence. J Anal Sci Technol. 2018;9(1):25–30.
  • Abu el Maaty MA, Hanafi RS, Aboul-Enein HY, et al. Design-of-experiment approach for HPLC analysis of 25-hydroxyvitamin D: a comparative assay with ELISA. J Chromatogr Sci. 2015;53(1):66–72.
  • Gathungu RM, Flarakos CC, Reddy GS, et al. The role of mass spectrometry in the analysis of vitamin D compounds. Mass Spectrom Rev. 2013;32(1):72–86.
  • Couchman L, Moniz CF. Analytical considerations for the biochemical assessment of vitamin D status. Ther Adv Musculoskelet Dis. 2017;9(4):97–104.
  • Abu Kassim NS, Gomes FP, Shaw PN, et al. Simultaneous quantitative analysis of nine vitamin D compounds in human blood using LC-MS/MS. Bioanalysis. 2016;8(5):397–411.
  • Duan X, Weinstock-Guttman B, Wang H, et al. Ultrasensitive quantification of serum vitamin D metabolites using selective solid-phase extraction coupled to microflow liquid chromatography and isotope-dilution mass spectrometry. Anal Chem. 2010;82(6):2488–2497.
  • Best CM, Riley DV, Laha TJ, et al. Vitamin D in human serum and adipose tissue after supplementation. Am J Clin Nutr. 2021;113(1):83–91.
  • Lipkie TE, Janasch A, Cooper BR, et al. Quantification of vitamin D and 25-hydroxyvitamin D in soft tissues by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;932:6–11.
  • Oberson JM, Benet S, Redeuil K, et al. Quantitative analysis of vitamin D and its main metabolites in human milk by supercritical fluid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem. 2020;412(2):365–375.
  • Aronov PA, Hall LM, Dettmer K, et al. Metabolic profiling of major vitamin D metabolites using Diels-Alder derivatization and ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2008;391(5):1917–1930.
  • Rola R, Kowalski K, Bieńkowski T, et al. Development of a method for multiple vitamin D metabolite measurements by liquid chromatography coupled with tandem mass spectrometry in dried blood spots. Analyst. 2018;144(1):299–309.
  • Volmer DA, Mendes LR, Stokes CS. Analysis of vitamin D metabolic markers by mass spectrometry: current techniques, limitations of the "gold standard" method, and anticipated future directions. Mass Spectrom Rev. 2015;34(1):2–23.
  • Adamec J, Jannasch A, Huang J, et al. Development and optimization of an LC-MS/MS-based method for simultaneous quantification of vitamin D2, vitamin D3, 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3. J Sep Sci. 2011;34(1):11–20.
  • Al-Zohily B, Al-Menhali A, Gariballa S, et al. Epimers of vitamin D: a review. Int J Mol Sci. 2020;21(2):470–485.
  • Bailey D, Veljkovic K, Yazdanpanah M, et al. Analytical measurement and clinical relevance of vitamin D(3) C3-epimer. Clin Biochem. 2013;46(3):190–196.
  • Abouzid M, Karaźniewicz-Łada M, Pawlak K, et al. Measurement of plasma 25-hydroxyvitamin D2, 25-hydroxyvitamin D3 and 3-epi-25-hydroxyvitamin D3 in population of patients with cardiovascular disease by UPLC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1159:122350.
  • Albarhani AA, Collier F, Greaves RF, et al. Vitamins D and a can be successfully measured by LC-MS/MS in cord blood diluted plasma. Clin Biochem. 2015;48(16–17):1105–1112.
  • Clarke MW, Tuckey RC, Gorman S, et al. Optimized 25-hydroxyvitamin D analysis using liquid–liquid extraction with 2D separation with LC/MS/MS detection, provides superior precision compared to conventional assays. Metabolomics. 2013;9(5):1031–1040.
  • Geib T, Meier F, Schorr P, et al. A simple micro-extraction plate assay for automated LC-MS/MS analysis of human serum 25-hydroxyvitamin D levels. J Mass Spectrom. 2015;50(1):275–279.
  • Bruce SJ, Rochat B, Beguin A, et al. Analysis and quantification of vitamin D metabolites in serum by ultra-performance liquid chromatography coupled to tandem mass spectrometry and high-resolution mass spectrometry-a method comparison and validation. Rapid Commun Mass Spectrom. 2013;27(1):200–206.
  • Mena-Bravo A, Priego-Capote F, Luque de Castro MD. Study of blood collection and sample preparation for analysis of vitamin D and its metabolites by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2015;879:69–76.
  • Midttun O, Ueland PM. Determination of vitamins A, D and E in a small volume of human plasma by a high-throughput method based on liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2011;25(14):1942–1948.
  • Tiwari A, Dawkhar B, Bagul M, et al. Development and validation of liquid chromatohraphy-electro-spray ionization-mass spectrometry method for the quantitation of ergocalciferol in human plasma. Int J Pharm Sci Res. 2018;9(9):3863–3869.
  • Yang MY, Huang CY, Chiu THT, et al. Using gas chromatography and mass spectrometry to determine 25-hydroxyvitamin D levels for clinical assessment of vitamin D deficiency. J Food Drug Anal. 2019;27(2):494–501.
  • Kobold U. Approaches to measurement of vitamin D concentrations – mass spectrometry. Scand J Clin Lab Invest Suppl. 2012;243:54–59.
  • Hojskov CS, Heickendorff L, Moller HJ. High-throughput liquid-liquid extraction and LCMSMS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine clinical laboratory. Clin Chim Acta. 2010;411(1–2):114–116.
  • Knox S, Harris J, Calton L, et al. A simple automated solid-phase extraction procedure for measurement of 25-hydroxyvitamin D3 and D2 by liquid chromatography-tandem mass spectrometry. Ann Clin Biochem. 2009;46(Pt 3):226–230.
  • Jumaah F, Larsson S, Essen S, et al. A rapid method for the separation of vitamin D and its metabolites by ultra-high performance supercritical fluid chromatography-mass spectrometry. J Chromatogr A. 2016;1440:191–200.
  • Liu TT, Cheong LZ, Man QQ, et al. Simultaneous profiling of vitamin D metabolites in serum by supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1120:16–23.
  • Pilařová V, Plachká K, Khalikova MA, et al. Recent developments in supercritical fluid chromatography – mass spectrometry: is it a viable option for analysis of complex samples? Trends Analyt Chem. 2019;112:212–225.
  • Musteata ML, Musteata FM. Overview of extraction methods for analysis of vitamin D and its metabolites in biological samples. Bioanalysis. 2011;3(17):1987–2002.
  • Kasalova E, Aufartova J, Krcmova LK, et al. Recent trends in the analysis of vitamin D and its metabolites in milk–a review. Food Chem. 2015;171:177–190.
  • Saleh L, Mueller D, von Eckardstein A. Analytical and clinical performance of the new Fujirebio 25-OH vitamin D assay, a comparison with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and three other automated assays. Clin Chem Lab Med. 2016;54(4):617–625.
  • Roth HJ, Schmidt-Gayk H, Weber H, et al. Accuracy and clinical implications of seven 25-hydroxyvitamin D methods compared with liquid chromatography-tandem mass spectrometry as a reference. Ann Clin Biochem. 2008;45(Pt 2):153–159.
  • Spanaus K, von Eckardstein A. Evaluation of two fully automated immunoassay based tests for the measurement of 1α,25-dihydroxyvitamin D in human serum and comparison with LC-MS/MS. Clin Chem Lab Med. 2017;55(9):1305–1314.
  • Shin SY, Kwon MJ, Song J, et al. Measurement of serum total vitamin D (25-OH) using automated immunoassay in comparison [corrected] with liquid chromatography tandem-mass spectrometry. J Clin Lab Anal. 2013;27(4):284–289.
  • Jafri L, Khan AH, Siddiqui AA, et al. Comparison of high performance liquid chromatography, radio immunoassay and electrochemiluminescence immunoassay for quantification of serum 25 hydroxy vitamin D. Clin Biochem. 2011;44(10–11):864–868.
  • Denimal D, Ducros V, Dupre T, et al. Agreement of seven 25-hydroxy vitamin D(3) immunoassays and three high performance liquid chromatography methods with liquid chromatography tandem mass spectrometry. Clin Chem Lab Med. 2014;52(4):511–520.
  • Sempos CT, Betz JM, Camara JE, et al. General steps to standardize the laboratory measurement of serum total 25-Hydroxyvitamin D. J AOAC Int. 2017;100(5):1230–1233.