509
Views
1
CrossRef citations to date
0
Altmetric
Invited Reviews

Design, optimization, and application of multiplex rRT-PCR in the detection of respiratory viruses

, , , &
Pages 555-572 | Received 14 Dec 2021, Accepted 27 Apr 2022, Published online: 13 May 2022

References

  • Loens K, Van Heirstraeten L, Malhotra-Kumar S, et al. Optimal sampling sites and methods for detection of pathogens possibly causing community-acquired lower respiratory tract infections. J Clin Microbiol. 2009;47(1):21–31.
  • Mahony JB. Detection of respiratory viruses by molecular methods. Clin Microbiol Rev. 2008;21(4):716–747.
  • WHO. The top 10 causes of death. World Health Organization. 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  • Pavia AT. Viral infections of the lower respiratory tract: old viruses, new viruses, and the role of diagnosis. Clin Infect Dis. 2011;52 Suppl 4:S284–S289.
  • Lyons DM, Lauring AS. Mutation and epistasis in influenza virus evolution. Viruses. 2018;10(8):407.
  • Ma X, Conrad T, Alchikh M, et al. Can we distinguish respiratory viral infections based on clinical features? A prospective pediatric cohort compared to systematic literature review. Rev Med Virol. 2018;28(5):e1997.
  • Zhang S, Zhang W, Tang YW. Molecular diagnosis of viral respiratory infections. Curr Infect Dis Rep. 2011;13(2):149–158.
  • Huang HS, Tsai CL, Chang J, et al. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta-analysis. Clin Microbiol Infect. 2018;24(10):1055–1063.
  • Krause JC, Panning M, Hengel H, et al. The role of multiplex PCR in respiratory tract infections in children. Dtsch Arztebl Int. 2014;111(38):639–645.
  • Gardinassi LG, Marques Simas PV, Salomao JB, et al. Seasonality of viral respiratory infections in southeast of Brazil: the influence of temperature and air humidity. Braz J Microbiol. 2012;43(1):98–108.
  • Rodrigues CMC, Groves H. Community-acquired pneumonia in children: the challenges of microbiological diagnosis. J Clin Microbiol. 2018;56(3):e01318.
  • Somerville LK, Ratnamohan VM, Dwyer DE, et al. Molecular diagnosis of respiratory viruses. Pathology. 2015;47(3):243–249.
  • Li D, Zhang J, Li J. Primer design for quantitative real-time PCR for the emerging coronavirus SARS-CoV-2. Theranostics. 2020;10(16):7150–7162.
  • Brodin J, Krishnamoorthy M, Athreya G, et al. A multiple-alignment based primer design algorithm for genetically highly variable DNA targets. BMC Bioinformatics. 2013;14:255.
  • Haubold B, Klotzl F, Hellberg L, et al. Fur: Find unique genomic regions for diagnostic PCR. Bioinformatics. 2021;37(15):2081–2087.
  • Black EM, Lowings JP, Smith J, et al. A rapid RT-PCR method to differentiate six established genotypes of rabies and rabies-related viruses using TaqMan technology. J Virol Methods. 2002;105(1):25–35.
  • Nalla AK, Casto AM, Huang MW, et al. Comparative performance of SARS-CoV-2 detection assays using seven different primer-probe sets and one assay kit. J Clin Microbiol. 2020;58(6):e00557.
  • Vogels CBF, Brito AF, Wyllie AL, et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe sets. Nat Microbiol. 2020;5(10):1299–1305.
  • Jung Y, Park GS, Moon JH, et al. Comparative analysis of primer-probe sets for RT-qPCR of COVID-19 causative virus (SARS-CoV-2). ACS Infect Dis. 2020;6(9):2513–2523.
  • Elnifro EM, Ashshi AM, Cooper RJ, et al. Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev. 2000;13(4):559–570.
  • Wang K, Li H, Xu Y, et al. MFEprimer-3.0: quality control for PCR primers. Nucleic Acids Res. 2019;47(W1):W610–W613.
  • Rachlin J, Ding C, Cantor C, et al. MuPlex: multi-objective multiplex PCR assay design. Nucleic Acids Res. 2005;33(Web Server issue):W544–W547.
  • Chen SH, Lin CY, Cho CS, et al. Primer design assistant (PDA): a web-based primer design tool. Nucleic Acids Res. 2003;31(13):3751–3754.
  • Guo J, Starr D, Guo H. Classification and review of free PCR primer design software. Bioinformatics. 2021;36(22–23):5263–5268.
  • Shen Z, Qu W, Wang W, et al. MPprimer: a program for reliable multiplex PCR primer design. BMC Bioinformatics. 2010;11:143.
  • Markoulatos P, Siafakas N, Moncany M. Multiplex polymerase chain reaction: a practical approach. J Clin Lab Anal. 2002;16(1):47–51.
  • Allawi HT, SantaLucia J. Jr. Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry. 1997;36(34):10581–10594.
  • Stellrecht KA, Cimino JL, Wilson LI, et al. Panther Fusion® Respiratory Virus Assays for the detection of influenza and other respiratory viruses. J Clin Virol. 2019;121:104204.
  • Artesi M, Bontems S, Gobbels P, et al. A recurrent mutation at position 26340 of SARS-CoV-2 is associated with failure of the E gene quantitative reverse transcription-PCR utilized in a commercial dual-target diagnostic assay. J Clin Microbiol. 2020;58(10):e01598.
  • Gand M, Vanneste K, Thomas I, et al. Use of whole genome sequencing data for a first in silico specificity evaluation of the RT-qPCR assays used for SARS-CoV-2 detection. IJMS. 2020;21(15):5585.
  • Liu Q, Thorland EC, Sommer SS. Inhibition of PCR amplification by a point mutation downstream of a primer. Biotechniques. 1997;22(2):292–294, 296, 298, passim.
  • Ye J, Coulouris G, Zaretskaya I, et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134.
  • Lefever S, Pattyn F, Hellemans J, et al. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin Chem. 2013;59(10):1470–1480.
  • Rejali NA, Moric E, Wittwer CT. The effect of single mismatches on primer extension. Clin Chem. 2018;64(5):801–809.
  • Vanneste K, Garlant L, Broeders S, et al. Application of whole genome data for in silico evaluation of primers and probes routinely employed for the detection of viral species by RT-qPCR using dengue virus as a case study. BMC Bioinformatics. 2018;19(1):312.
  • Zhou HY, Ji CY, Fan H, et al. Convergent evolution of SARS-CoV-2 in human and animals. Protein Cell. 2021;12(11):832–835.
  • Lima WF, Monia BP, Ecker DJ, et al. Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry. 1992;31(48):12055–12061.
  • Koehler RT, Peyret N. Effects of DNA secondary structure on oligonucleotide probe binding efficiency. Comput Biol Chem. 2005;29(6):393–397.
  • Fan H, Wang J, Komiyama M, et al. Effects of secondary structures of DNA templates on the quantification of qPCR. J Biomol Struct Dyn. 2019;37(11):2867–2874.
  • SantaLucia J. Jr. Physical principles and visual-OMP software for optimal PCR design. Methods Mol Biol. 2007;402:3–34.
  • Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–622.
  • Emig M, Saußele S, Wittor H, et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia. 1999;13(11):1825–1832.
  • Nazarenko I, Pires R, Lowe B, et al. Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res. 2002;30(9):2089–2195.
  • Proudnikov D, Yuferov V, Zhou Y, et al. Optimizing primer–probe design for fluorescent PCR. J Neurosci Methods. 2003;123(1):31–45.
  • Marras SA, Kramer FR, Tyagi S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 2002;30(21):e122.
  • Crisalli P, Kool ET. Multi-path quenchers: efficient quenching of common fluorophores. Bioconjug Chem. 2011;22(11):2345–2354.
  • Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res. 1996;6(10):995–1001.
  • Piccoli C, D'Aprile A, Ripoli M, et al. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species. Biochem Biophys Res Commun. 2007;353(4):965–972.
  • Yang GP, Erdman DD, Tondella ML, et al. Evaluation of tetramethylrhodamine and black hole quencher 1 labeled probes and five commercial amplification mixes in TaqMan real-time RT-PCR assays for respiratory pathogens. J Virol Methods. 2009;162(1–2):288–290.
  • Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol. 2002;29(1):23–39.
  • Nazarenko IA, Bhatnagar SK, Hohman RJ. A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Res. 1997;25(12):2516–2521.
  • Markoulatos P, Samara V, Siafakas N, et al. Development of a quadriplex polymerase chain reaction for human cytomegalovirus detection. J Clin Lab Anal. 1999;13(3):99–105.
  • Henegariu O, Heerema NA, Dlouhy SR, et al. Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques. 1997;23(3):504–511.
  • Mikeska T, Dobrovic A. Validation of a primer optimisation matrix to improve the performance of reverse transcription - quantitative real-time PCR assays. BMC Res Notes. 2009;2:112.
  • von Ahsen N, Wittwer CT, Schütz E. Oligonucleotide melting temperatures under PCR conditions: nearest-neighbor corrections for Mg(2+), deoxynucleotide triphosphate, and dimethyl sulfoxide concentrations with comparison to alternative empirical formulas. Clin Chem. 2001;47(11):1956–1961.
  • von Ahsen N, Wittwer CT, Schütz E. Monovalent and divalent salt correction algorithms for Tm prediction-recommendations for Primer3 usage. Brief Bioinform. 2011;12(5):514–517.
  • Exner MM. Multiplex molecular reactions: design and troubleshooting. Clin Microbiol Newsl. 2012;34(8):59–65.
  • Sint D, Raso L, Traugott M. Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Methods Ecol Evol. 2012;3(5):898–905.
  • Park M, Won J, Choi BY, et al. Optimization of primer sets and detection protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real-time PCR. Exp Mol Med. 2020;52(6):963–977.
  • Stahlberg A, Kubista M, Pfaffl M. Comparison of reverse transcriptases in gene expression analysis. Clin Chem. 2004;50(9):1678–1680.
  • Bustin S, Dhillon HS, Kirvell S, et al. Variability of the reverse transcription step: practical implications. Clin Chem. 2015;61(1):202–212.
  • Montgomery JL, Rejali N, Wittwer CT. The influence of nucleotide sequence and temperature on the activity of thermostable DNA polymerases. J Mol Diagn. 2014;16(3):305–313.
  • Longo MC, Berninger MS, Hartley JL. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990;93(1):125–128.
  • Udaykumar Epstein JS, Hewlett IK. A novel method employing UNG to avoid carry-over contamination in RNA-PCR. Nucleic Acids Res. 1993;21(16):3917–3918.
  • Andersson D, Svec D, Pedersen C, et al. Preamplification with dUTP and cod UNG enables elimination of contaminating amplicons. IJMS. 2018;19(10):3185.
  • Kleiboeker SB. Quantitative assessment of the effect of uracil-DNA glycosylase on amplicon DNA degradation and RNA amplification in reverse transcription-PCR. Virol J. 2005;2:29.
  • Koukhareva I, Lebedev A. 3'-Protected 2'-deoxynucleoside 5'-triphosphates as a tool for heat-triggered activation of polymerase chain reaction. Anal Chem. 2009;81(12):4955–4962.
  • Le T, Paul N. Improved PCR flexibility with hot start dNTPs. BioTechniques. 2009;47(4):881–882.
  • Le T, Ashrafi EH, Paul N. Enhancing multiplex PCR efficiency using hot start dNTPs. BioTechniques. 2009;47(5):972–973.
  • Montgomery JL, Wittwer CT. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments. Clin Chem. 2014;60(2):334–340.
  • Schrader C, Schielke A, Ellerbroek L, et al. PCR inhibitors - occurrence, properties and removal. J Appl Microbiol. 2012;113(5):1014–1026.
  • Sidstedt M, Radstrom P, Hedman J. PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal Bioanal Chem. 2020;412(9):2009–2023.
  • Taylor SC, Nadeau K, Abbasi M, et al. The ultimate qPCR experiment: Producing publication quality, reproducible data the first time. Trends Biotechnol. 2019;37(7):761–774. Jul
  • Rahbari R, Moradi N, Abdi M. rRT-PCR for SARS-CoV-2: analytical considerations. Clin Chim Acta. 2021;516:1–7.
  • Lippi G, Simundic AM, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med. 2020;58(7):1070–1076.
  • Moore C, Valappil M, Corden S, et al. Enhanced clinical utility of the NucliSens EasyQ RSV a + B assay for rapid detection of RSV in clinical samples. Eur J Clin Microbiol Infect Dis. 2006;25(3):167–174.
  • Bezold G, Volkenandt M, Gottlober P, et al. Detection of herpes simplex virus and varicella-zoster virus in clinical swabs: frequent inhibition of PCR as determined by internal controls. Mol Diagn. 2000;5(4):279–284.
  • Borst A, Box AT, Fluit AC. False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy. Eur J Clin Microbiol Infect Dis. 2004;23(4):289–299.
  • Bensch S, Inumaru M, Sato Y, et al. Contaminations contaminate common databases. Mol Ecol Resour. 2021;21(2):355–362.
  • Roux KH. Optimization and troubleshooting in PCR. Cold Spring Harb Protoc. 2009;2009(4):pdb ip66.
  • Huber I, Block A, Sebah D, et al. Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed. J Agric Food Chem. 2013;61(43):10293–10301.
  • Broeders S, Huber I, Grohmann L, et al. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol. 2014;37(2):115–126.
  • Burd EM. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev. 2010;23(3):550–576.
  • Mordente A, Meucci E, Martorana GE, et al. Cancer biomarkers discovery and validation: State of the art, problems and future perspectives. Adv Exp Med Biol. 2015;867:9–26.
  • Prodesse®ProFlu®+Assay Instructions for Use. HOLOGIC. [cited 2022. Feb 13]. Available from: https://www.hologic.com/sites/default/files/2018-07/504364EN-IFU-PI_004_01.pdf
  • Burke W. Genetic tests: clinical validity and clinical utility. Curr Protoc Hum Genet. 2014;81:9–15.
  • Morris TC, Bird PW, Horvath-Papp E, et al. Xpert xpress flu/RSV: validation and impact evaluation at a large UK hospital trust. J Med Virol. 2021;93(8):5146–5151.
  • Zou X, Chang K, Wang Y, et al. Comparison of the cepheid xpert xpress flu/RSV assay and commercial real-time PCR for the detection of influenza a and influenza B in a prospective cohort from China. Int J Infect Dis. 2019;80:92–97.
  • Gosert R, Naegele K, Hirsch HH. Comparing the cobas liat influenza a/B and respiratory syncytial virus assay with multiplex nucleic acid testing. J Med Virol. 2019;91(4):582–587.
  • Youngs J, Iqbal Y, Glass S, et al. Implementation of the cobas liat influenza point-of-care test into an emergency department during a high-incidence season: a retrospective evaluation following real-world implementation. J Hosp Infect. 2019;101(3):285–288. Mar
  • Folgueira L, Moral N, Pascual C, et al. Comparison of the panther fusion and allplex assays for the detection of respiratory viruses in clinical samples. PLoS One. 2019;14(12):e0226403.
  • Bossuyt PM, Reitsma JB, Linnet K, et al. Beyond diagnostic accuracy: the clinical utility of diagnostic tests. Clin Chem. 2012;58(12):1636–1643.
  • Poritz MA, Lingenfelter B. Multiplex PCR for detection and identification of microbial pathogens. In: Tang Y-W, Stratton CW, editors. Advanced techniques in diagnostic microbiology. Volume 2: applications. Cham: Springer International Publishing; 2018; p. 475–493.
  • Nelson PP, Rath BA, Fragkou PC, et al. Current and future point-of-care tests for emerging and new respiratory viruses and future perspectives. Front Cell Infect Microbiol. 2020;10:181.
  • Young S, Phillips J, Griego-Fullbright C, et al. Molecular point-of-care testing for influenza a/B and respiratory syncytial virus: comparison of workflow parameters for the ID now and cobas liat systems. J Clin Pathol. 2020;73(6):328–334.
  • Lee CC, Chang JC, Mao XW, et al. Combining procalcitonin and rapid multiplex respiratory virus testing for antibiotic stewardship in older adult patients with severe acute respiratory infection. J Am Med Dir Assoc. 2020;21(1):62–67.
  • Hogan CA, Caya C, Papenburg J. Rapid and simple molecular tests for the detection of respiratory syncytial virus: a review. Expert Rev Mol Diagn. 2018;18(7):617–629.
  • Schneider UV, Holm MKA, Bang D, et al. Point-of-care tests for influenza a and B viruses and RSV in emergency departments - indications, impact on patient management and possible gains by syndromic respiratory testing, Capital region, Denmark. Euro Surveill. 2018;25(44):1900430.
  • Allen AJ, Gonzalez-Ciscar A, Lendrem C, et al. Diagnostic and economic evaluation of a point-of-care test for respiratory syncytial virus. ERJ Open Res. 2020;6(3):00018-2020.
  • Saarela E, Tapiainen T, Kauppila J, et al. Impact of multiplex respiratory virus testing on antimicrobial consumption in adults in acute care: a randomized clinical trial. Clin Microbiol Infect. 2020;26(4):506–511.
  • Hernes SS, Hagen E, Quarsten H, et al. No impact of early real-time PCR screening for respiratory viruses on length of stay and use of antibiotics in elderly patients hospitalized with symptoms of a respiratory tract infection in a single center in Norway. Eur J Clin Microbiol Infect Dis. 2014;33(3):359–364.
  • Beltran Ale G, Benscoter D, Hossain MM, et al. Impact of respiratory viral polymerase chain reaction testing on de-escalation of antibiotic therapy in children who require chronic positive pressure ventilation. Pediatr Pulmonol. 2020;55(8):2150–2155.
  • Esposito S, Mencacci A, Cenci E, et al. Multiplex platforms for the identification of respiratory pathogens: Are they useful in pediatric clinical practice? Front Cell Infect Microbiol. 2019;9:196.
  • Liu J, Wang M, Zhao Z, et al. Viral and bacterial coinfection among hospitalized children with respiratory tract infections. Am J Infect Control. 2020;48(10):1231–1236.
  • Pinky L, Dobrovolny HM. Coinfections of the respiratory tract: viral competition for resources. PLoS One. 2016;11(5):e0155589.
  • Esposito S, Principi N. The role of the NxTAG® respiratory pathogen panel assay and other multiplex platforms in clinical practice. Expert Rev Mol Diagn. 2017;17(1):9–17.
  • Heinonen S, Jartti T, Garcia C, et al. Rhinovirus detection in symptomatic and asymptomatic children: Value of host transcriptome analysis. Am J Respir Crit Care Med. 2016;193(7):772–782.
  • Lee SH, Ruan SY, Pan SC, et al. Performance of a multiplex PCR pneumonia panel for the identification of respiratory pathogens and the main determinants of resistance from the lower respiratory tract specimens of adult patients in intensive care units. J Microbiol Immunol Infect. 2019;52(6):920–928.
  • Lessler J, Reich NG, Brookmeyer R, et al. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis. 2009;9(5):291–300.
  • Zautner AE, Groß U, Emele MF, et al. More pathogenicity or just more pathogens?-On the interpretation problem of multiple pathogen detections with diagnostic multiplex assays. Front Microbiol. 2017;8:1210.
  • Gazeau P, Vallet S, Ansart S, et al. Rapid multiplex PCR assays in patients with respiratory viral infections: is semi-quantitative data useful? A pilot study. Braz J Microbiol. 2021;52(3):1173–1179.
  • Garcia-Maurino C, Moore-Clingenpeel M, Thomas J, et al. Viral load dynamics and clinical disease severity in infants with respiratory syncytial virus infection. J Infect Dis. 2019;219(8):1207–1215.
  • Memish ZA, Al-Tawfiq JA, Makhdoom HQ, et al. Respiratory tract samples, viral load, and genome fraction yield in patients with Middle east respiratory syndrome. J Infect Dis. 2014;210(10):1590–1594.
  • Cheng PK, Wong KK, Mak GC, et al. Performance of laboratory diagnostics for the detection of influenza A(H1N1)v virus as correlated with the time after symptom onset and viral load. J Clin Virol. 2010;47(2):182–185.
  • El Saleeby CM, Bush AJ, Harrison LM, et al. Respiratory syncytial virus load, viral dynamics, and disease severity in previously healthy naturally infected children. J Infect Dis. 2011;204(7):996–1002.
  • Zhang Y, Wang C, Han M, et al. Discrimination of false negative results in RT-PCR detection of SARS-CoV-2 RNAs in clinical specimens by using an internal reference. Virol Sin. 2020;35(6):758–767.
  • Afzal A. Molecular diagnostic technologies for COVID-19: Limitations and challenges. J Adv Res. 2020;26:149–159.
  • Deng J, Ma Z, Huang W, et al. Respiratory virus multiplex RT-PCR assay sensitivities and influence factors in hospitalized children with lower respiratory tract infections. Virol Sin. 2013;28(2):97–102.
  • Li X, Chen B, Zhang S, et al. Rapid detection of respiratory pathogens for community-acquired pneumonia by capillary electrophoresis-based multiplex PCR. SLAS Technol. 2019;24(1):105–116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.