292
Views
0
CrossRef citations to date
0
Altmetric
Invited Reviews

The urocortin peptides: biological relevance and laboratory aspects of UCN3 and its receptor

, &
Pages 573-585 | Received 24 Aug 2021, Accepted 17 May 2022, Published online: 23 Jun 2022

References

  • Lewis K, Li C, Perrin MH, et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci USA. 2001;98(13):7570–7575.
  • McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873–904.
  • Muglia L, Jacobson L, Dikkes P, et al. Regulation of gonadotropins by corticotropin-releasing factor and urocortin. Front Endocrinol. 2013;4:12.
  • Neufeld-Cohen A, Evans AK, Getselter D, et al. Urocortin-1 and -2 double-deficient mice show robust anxiolytic phenotype and modified serotonergic activity in anxiety circuits. Mol Psychiatry. 2010;15(4):426–441.
  • Hsu SY, Hsueh AJ. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med. 2001;7(5):605–611.
  • Squillacioti C, Pelagalli A, Liguori G, et al. Urocortins in the mammalian endocrine system. Acta Vet Scand. 2019;61(1):46.
  • Kuperman Y, Issler O, Regev L, et al. Perifornical urocortin-3 mediates the link between stress-induced anxiety and energy homeostasis. Proc Natl Acad Sci USA. 2010;107(18):8393–8398. 4
  • Rademaker MT, Richards AM. Urocortins: actions in health and heart failure. Clin Chim Acta. 2017;474:76–87.
  • Grammatopoulos DK. Insights into mechanisms of corticotropin-releasing hormone receptor signal transduction. Br J Pharmacol. 2012;166(1):85–97.
  • Grace CR, Perrin MH, Cantle JP, et al. Common and divergent structural features of a series of corticotropin releasing factor-related peptides. J Am Chem Soc. 2007;129(51):16102–16114.
  • Slominski A, Wortsman J, Pisarchik A, et al. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J. 2001;15(10):1678–1693.
  • Grammatopoulos DK, Chrousos P. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab. 2002;13(10):436–444.
  • Pisarchik A, Slominski AT. Alternative splicing of CRH-R1 receptors in human and mouse skin: identification of new variants and their differential expression. FASEB J. 2001;15(14):2754–2756.
  • Sakai K, Yamada M, Horiba N, et al. The genomic organization of the human corticotropin-releasing factor type-1 receptor. Gene. 1998;219(1–2):125–130.
  • Catalano RD, Kyriakou T, Chen J, et al. Regulation of corticotropin-releasing hormone type 2 receptors by multiple promoters and alternative splicing: identification of multiple splice variants. Mol Endocrinol. 2003;17(3):395–410.
  • Valdenaire O, Giller T, Breu V, et al. A new functional isoform of the human CRF2 receptor for corticotropin-releasing factor. Biochim Biophys Acta. 1997;1352(2):129–132.
  • Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA. 2001;98(5):2843–2848.
  • Vaughan J, Donaldson C, Bittencourt J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature. 1995;378(6554):287–292.
  • Li C, Vaughan J, Sawchenko PE, et al. Urocortin III-immunoreactive projections in rat brain: partial overlap with sites of type 2 corticotrophin-releasing factor receptor expression. J Neurosci. 2002;22(3):991–1001.
  • Pan W, Kastin AJ. Urocortin and the brain. Prog Neurobiol. 2008;84(2):148–156.
  • Wittmann G, Füzesi T, Liposits Z, et al. Distribution and axonal projections of neurons coexpressing thyrotropin-releasing hormone and urocortin 3 in the rat brain. J Comp Neurol. 2009;517(6):825–840.
  • Deussing JM, Breu J, Kühne C, et al. Urocortin 3 modulates social discrimination abilities via corticotropin-releasing hormone receptor type 2. J Neurosci. 2010;30(27):9103–9116.
  • Venihaki M, Sakihara S, Subramanian S, et al. Urocortin III, a brain neuropeptide of the corticotropin-releasing hormone family: modulation by stress and attenuation of some anxiety-like behaviours. J Neuroendocrinol. 2004;16(5):411–422.
  • Chen P, Lin D, Giesler J, et al. Identification of urocortin 3 afferent projection to the ventromedial nucleus of the hypothalamus in rat brain. J Comp Neurol. 2011;519(10):2023–2042.
  • Koob GF, Heinrichs SC. A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res. 1999;848(1–2):141–152.
  • De Fanti BA, Martínez JA. Central urocortin activation of sympathetic-regulated energy metabolism in Wistar rats. Brain Res. 2002;930(1-2):37–41.
  • Chalmers DT, Lovenberg TW, De Souza EB. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci. 1995;15(10):6340–6350.
  • Van Pett K, Viau V, Bittencourt JC, et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol. 2000;428(2):191–212.
  • McEwen BS. Protective and damaging effects of stress mediators. N Engl J Med. 1998;338(3):171–179.
  • Neufeld-Cohen A, Kelly PA, Paul ED, et al. Chronic activation of corticotropin-releasing factor type 2 receptors reveals a key role for 5-HT1A receptor responsiveness in mediating behavioral and serotonergic responses to stressful challenge. Biol Psychiatry. 2012;72(6):437–447.
  • Dhabhar FS, McEwen BS. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun. 1997;11(4):286–306.
  • Selye H. Stress without distress. In: Serban G, editor. Psychopathology of human adaptation. Boston (MA): Springer; 1976. p. 137–146.
  • Henckens MJAG, Deussing JM, Chen A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci. 2016;17(10):636–651.
  • Saffran M, Schally AV, Benfey BG. Stimulation of the release of corticotropin from the adenohypophysis by a neurohypophysial factor. Endocrinology. 1955;57(4):439–444.
  • Van Den Eede F, Van Broeckhoven C, Claes SJ. Corticotropin-releasing factor-binding protein, stress and major depression. Ageing Res Rev. 2005;4(2):213–239.
  • Shemesh Y, Forkosh O, Mahn M, et al. Ucn3 and CRF-R2 in the medial amygdala regulate complex social dynamics. Nat Neurosci. 2016;19(11):1489–1496.
  • Ohata H, Shibasaki T. Effects of urocortin 2 and 3 on motor activity and food intake in rats. Peptide. 2004;25(10):1703–1709.
  • Pelleymounter MA, Joppa M, Ling N, et al. Behavioral and neuroendocrine effects of the selective CRF2 receptor agonists urocortin II and urocortin III. Peptides. 2004;25(4):659–666.
  • Tanaka M, Telegdy G. Antidepressant-like effects of the CRF family peptides, urocortin 1, urocortin 2 and urocortin 3 in a modified forced swimming test in mice. Brain Res Bull. 2008;75(5):509–512.
  • Todorovic C, Sherrin T, Pitts M, et al. Suppression of the MEK/ERK signaling pathway reverses depression-like behaviors of CRF2-deficient mice. Neuropsychopharmacology. 2009;34(6):1416–1426.
  • Bale TL, Giordano FJ, Vale WW. A new role for corticotropin-releasing factor receptor-2: suppression of vascularization. Trends Cardiovasc Med. 2003;13(2):68–71.
  • Bosch OJ, Dabrowska J, Modi ME, et al. Oxytocin in the nucleus accumbens shell reverses CRFR2-evoked passive stress-coping after partner loss in monogamous male prairie voles. Psychoneuroendocrinology. 2016;64:66–78.
  • Kang HJ, Adams DH, Simen A, et al. Gene expression profiling in postmortem prefrontal cortex of major depressive disorder. J Neurosci. 2007;27(48):13329–13340.
  • Bagosi Z, Palotai M, Simon B, et al. Selective CRF2 receptor agonists ameliorate the anxiety- and depression-like state developed during chronic nicotine treatment and consequent acute withdrawal in mice. Brain Res. 2016;1652:21–29.
  • Bisson JI, Cosgrove S, Lewis C, et al. Post-traumatic stress disorder. BMJ. 2015;351:h6161. doi 1136/bmj.h6161.
  • Richardson LK, Frueh BC, Acierno R. Prevalence estimates of combat-related post-traumatic stress disorder: critical review. Aust N Z J Psychiatry. 2010;44(1):4–19.
  • Ishitobi Y, Nakayama S, Yamaguchi K, et al. Association of CRHR1 and CRHR2 with major depressive disorder and panic disorder in a Japanese population. Am J Med Genet. 2013;162(1):78–78.
  • De Luca V, Tharmalingam S, Kennedy JL. Association study between the corticotropin-releasing hormone receptor 2 gene and suicidality in bipolar disorder. Eur Psychiatry. 2007;22(5):282–287.
  • Papiol S, Arias B, Gastó C, et al. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord. 2007;104(1–3):83–90.
  • Wong ML, Dong C, Maestre-Mesa J, et al. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry. 2008;13(8):800–812.
  • Wolf EJ, Mitchell KS, Logue MW, et al. Corticotropin releasing hormone receptor 2 (CRHR-2) gene is associated with decreased risk and severity of posttraumatic stress disorder in women. Depress Anxiety. 2013;30(12):1161–1169.
  • Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687–698.
  • Kritikou I, Basta M, Vgontzas AN, et al. Sleep apnoea and the hypothalamic-pituitary-adrenal axis in men and women: effects of continuous positive airway pressure. Eur Respir J. 2016;47(2):531–540.
  • Ma S, Mifflin SW, Cunningham JT, et al. Chronic intermittent hypoxia sensitizes acute hypothalamic-pituitary-adrenal stress reactivity and fos induction in the rat locus coeruleus in response to subsequent immobilization stress. Neuroscience. 2008;154(4):1639–1647.
  • Endeshaw Y, Rice TB, Schwartz AV, et al. Snoring, daytime sleepiness, and incident cardiovascular disease in the health, aging, and body composition study. Sleep. 2013;36(11):1737–1745.
  • Tasali E, Ip MS. Obstructive sleep apnea and metabolic syndrome: alterations in glucose metabolism and inflammation. Proc Am Thorac Soc. 2008;5(2):207–217.
  • Ishman SL, Yang CJ, Cohen AP, et al. Is the OSA-18 predictive of obstructive sleep apnea: comparison to polysomnography. Laryngoscope. 2015;125(6):1491–1495.
  • Kundel V, Shah N. Impact of portable sleep testing. Sleep Med Clin. 2017;12(1):137–147.
  • Ferrarini A, Rupérez FJ, Erazo M, et al. Fingerprinting‐based metabolomic approach with LC‐MS to sleep apnea and hypopnea syndrome: a pilot study. Metabolomics. 2013;34(19):2873–2881.
  • Ząbek A, Stanimirova I, Deja S, et al. Fusion of the 1H NMR data of serum, urine and exhaled breath condensate in order to discriminate chronic obstructive pulmonary disease and obstructive sleep apnea syndrome. Metabolomics. 2015;11(6):1563–1574.
  • Xu XL, Zhu RZ, Sharma M, et al. The influence of social media on sleep quality: a study of undergraduate students in Chongqing, China. J Nurs Care. 2015;4:253.
  • Xu X, Lin Q, Zhang Y, et al. Influence of WeChat on sleep quality among undergraduates in Chongqing, China: a cross-sectional study. SpringerPlus. 2016;5(1):2066.
  • Gozal D, Jortani S, Snow AB, et al. Two-dimensional differential in-gel electrophoresis proteomic approaches reveal urine candidate biomarkers in pediatric obstructive sleep apnea. Am J Respir Crit Care Med. 2009;180(12):1253–1261.
  • Turner AI, Smyth N, Hall SJ, et al. Psychological stress reactivity and future health and disease outcomes: a systematic review of prospective evidence. Psychoneuroendocrinology. 2020;114:104599.
  • Villa RF, Ferrari F, Moretti A. Post-stroke depression: mechanisms and pharmacological treatment. Pharmacol Ther. 2018;184:131–144.
  • Rosmond R, Björntorp P. The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J Intern Med. 2000;247(2):188–197.
  • Rademaker MT, Charles CJ, Espiner EA, et al. Endogenous urocortins reduce vascular tone and renin-aldosterone/endothelin activity in experimental heart failure. Eur Heart J. 2005;26(19):2046–2054.
  • Patel K, Rademaker MT, Kirkpatrick CM, et al. Comparative pharmacokinetics and pharmacodynamics of urocortins 1, 2 and 3 in healthy sheep. Br J Pharmacol. 2012;166(6):1916–1925.
  • Chanalaris A, Lawrence KM, Stephanou A, et al. Protective effects of the urocortin homologues stresscopin (SCP) and stresscopin-related peptide (SRP) against hypoxia/reoxygenation injury in rat neonatal cardiomyocytes. J Mol Cell Cardiol. 2003;35(10):1295–1305.
  • Takahashi K, Totsune K, Murakami O, et al. Expression of urocortin III/stresscopin in human heart and kidney. J Clin Endocrinol Metab. 2004;89(4):1897–1903.
  • Brar BK, Railson J, Stephanou A, et al. Urocortin increases the expression of heat shock protein 90 in rat cardiac myocytes in a MEK1/2-dependent manner. J Endocrinol. 2002;172(2):283–293.
  • Brar BK, Jonassen AK, Egorina EM, et al. Urocortin-II and urocortin-III are cardioprotective against ischemia reperfusion injury: an essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology. 2004;145(1):24–35.
  • Chanalaris A, Lawrence KM, Townsend PA, et al. Hypertrophic effects of urocortin homologous peptides are mediated via activation of the Akt pathway. Biochem Biophys Res Commun. 2005;328(2):442–448.
  • Onorati F, Chen-Scarabelli C, Knight R, et al. Targeting urocortin signaling pathways to enhance cardioprotection: is it time to move from bench to bedside? Cardiovasc Drugs Ther. 2013;27(5):451–463.
  • Nakamura T, Kawabe K, Sapru HN. Cardiovascular responses to microinjections of urocortin 3 into the nucleus tractus solitarius of the rat. Am J Physiol Heart Circ Physiol. 2009;296(2):H325–H332.
  • Venkatasubramanian S, Griffiths ME, McLean SG, et al. Vascular effects of urocortins 2 and 3 in healthy volunteers. JAHA. 2013;2(1):e004267.
  • Stirrat CG, Venkatasubramanian S, Pawade T, et al. Cardiovascular effects of urocortin 2 and urocortin 3 in patients with chronic heart failure. Br J Clin Pharmacol. 2016;82(4):974–982.
  • Gheorghiade M, Greene SJ, Ponikowski P, et al. Haemodynamic effects, safety, and pharmacokinetics of human stresscopin in heart failure with reduced ejection fraction. Eur J Heart Fail. 2013;15(6):679–689.
  • Giamouridis D, Gao MH, Lai NC, et al. Urocortin 3 gene transfer increases function of the failing murine heart. Hum Gene Ther. 2019;30(1):10–20.
  • Giamouridis D, Gao MH, Lai NC, et al. Effects of urocortin 2 versus urocortin 3 gene transfer on left ventricular function and glucose disposal. JACC Basic Transl Sci. 2018;3(2):249–264.
  • Novembri R, Carrarelli P, Toti P, et al. Urocortin 2 and urocortin 3 in endometriosis: evidence for a possible role in inflammatory response. Mol Hum Reprod. 2011;17(9):587–593.
  • Novembri R, Torricelli M, Bloise E, et al. Effects of urocortin 2 and urocortin 3 on IL-10 and TNF-α expression and secretion from human trophoblast explants. Placenta. 2011;32(12):969–974.
  • You X, Chen Z, Sun Q, et al. Urocortins exhibit differential effects on PGE2 and PGF2α output via CRHR2 in human myometrium. Reproduction. 2021;162(1):11–20.
  • Kavalakatt S, Khadir A, Madhu D, et al. Urocortin 3 overexpression reduces ER stress and heat shock response in 3T3-L1 adipocytes. Sci Rep. 2021;11(1):15666.
  • Keleş E, Gebeşçe A, Turan F, et al. Utility of the pediatric sleep questionnaire and urocortin level in urine as screening tools in pediatric patients with suspected obstructive sleep apnea syndrome. Iran J Public Health. 2016;45(6):828–829.
  • Xu H, Zheng X, Qian Y, et al. Metabolomics profiling for obstructive sleep apnea and simple snorers. Sci Rep. 2016;6:30958.
  • Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry. 2010;15(6):574–588.
  • Ushikai M, Asakawa A, Sakoguchi T, et al. Centrally administered urocortin 3 inhibits food intake and gastric emptying in mice. Endocrine. 2011;39(2):113–117.
  • Terashi M, Asakawa A, Cheng KC, et al. Effects of peripherally administered urocortin 3 on feeding behavior and gastric emptying in mice. Exp Ther Med. 2011;2(2):333–335.
  • Sharpe AL, Phillips TJ. Central urocortin 3 administration decreases limited-access ethanol intake in nondependent mice. Behav Pharmacol. 2009;20(4):346–351.
  • Li C, Chen P, Vaughan J, et al. Urocortin 3 regulates glucose-stimulated insulin secretion and energy homeostasis. Proc Natl Acad Sci USA. 2007;104(10):4206–4211.
  • Rademaker MT, Cameron VA, Charles CJ, et al. Urocortin 3: haemodynamic, hormonal, and renal effects in experimental heart failure. Eur Heart J. 2006;17:2088–2098.
  • Faraj Tabrizi P, Mohebbi Tafrechi A, Peters I, et al. Cancer-specific loss of urocortin 3 in human renal cancer. Adv Ther. 2020;37(1):288–299.
  • Kavalakatt S, Khadir A, Madhu D, et al. Urocortin 3 levels are impaired in overweight humans with and without type 2 diabetes and modulated by exercise. Front Endocrinol. 2019;10:762.
  • Dermitzaki E, Liapakis G, Androulidaki A, et al. Corticotrophin-releasing factor (CRF) and the urocortins are potent regulators of the inflammatory phenotype of human and mouse white adipocytes and the differentiation of mouse 3T3L1 pre-adipocytes. PLOS One. 2014;9(5):e97060.
  • Rhee SH, Ma EL, Lee Y, et al. Corticotropin releasing hormone and urocortin 3 stimulate vascular endothelial growth factor expression through the cAMP/CREB pathway. J Biol Chem. 2015;290(43):26194–26203.
  • CLIA compliant analytical method validation plan and template. Association of Public Health Laboratories; 2013. p. 1–14. Available from: https://www.aphl.org/aboutAPHL/publications/Documents/EH_2013Dec_CLIA-Compliant-LRN-C-Method-Validation-Template.pdf
  • Sun Q, Welsh KJ, Bruns DE, et al. Inadequate reporting of analytical characteristics of biomarkers used in clinical research: a threat to interpretation and replication of study findings. Clin Chem. 2019;65(12):1554–1562.
  • Ioannidis JP. Contradicted and initially stronger effects in highly cited clinical research. JAMA. 2005;294(2):218–228.
  • Groenwold RH, Van Deursen AM, Hoes AW, et al. Poor quality of reporting confounding bias in observational intervention studies: a systematic review. Ann Epidemiol. 2008;18(10):746–751.
  • Casals M, Girabent-Farrés M, Carrasco JL. Methodological quality and reporting of generalized linear mixed models in clinical medicine (2000–2012): a systematic review. PLOS One. 2014;9(11):e112653.
  • Li C, Chen P, Vaughan J, et al. Urocortin III is expressed in pancreatic beta-cells and stimulates insulin and glucagon secretion. Endocrinology. 2003;144(7):3216–3224.
  • Takahashi K, Totsune K, Saruta M, et al. Expression of urocortin 3/stresscopin in human adrenal glands and adrenal tumors. Peptides. 2006;27(1):178–182.
  • Pepels PP, Spaanderman ME, Bulten J, et al. Placental urocortins and CRF in late gestation. Placenta. 2009;30(6):483–490.
  • Pepels PP, Spaanderman ME, Hermus AR, et al. Placental urocortin-2 and -3: endocrine or paracrine functioning during healthy pregnancy? Placenta. 2010;31(6):475–481.
  • Temur M, Yilmaz Ö, Aksun S, et al. Increased circulating urocortin-3 levels is associated with polycystic ovary syndrome. Gynecol Endocrinol. 2016;32(3):218–222.
  • Liew OW, Yandle TG, Chong JP, et al. High-Sensitivity sandwich ELISA for plasma NT-proUcn2: plasma concentrations and relationship to mortality in heart failure. Clin Chem. 2016;62(6):856–865.
  • Alarslan P, Unal Kocabas G, Demir I, et al. Increased urocortin 3 levels are associated with the risk of having type 2 diabetes mellitus. J Diabetes. 2020;12(6):474–482.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.