209
Views
0
CrossRef citations to date
0
Altmetric
Invited Reviews

Methodological and conceptual challenges to the flow cytometric classification of leukemic lymphoproliferative disorders

, ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 83-100 | Received 17 Feb 2022, Accepted 15 Aug 2022, Published online: 06 Sep 2022

References

  • Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edition. Lyon: IARC; 2017.
  • Matutes E, Owusu-Ankomah K, Morilla R, et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia. 1994;8:1640–1645.
  • Moreau EJ, Matutes E, A'Hern RP, et al. Improvement of the chronic lymphocytic leukemia scoring system with the monoclonal antibody SN8 (CD79b). Am J Clin Pathol. 1997;108(4):378–382.
  • Oscier D, Dearden C, Erem E, et al. Guidelines on the diagnosis, investigation and management of chronic lymphocytic leukaemia. Br J Haematol. 2012;159(5):541–564.
  • Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745–2760.
  • D'Arena G, Vitale C, Rossi G, et al. CD200 included in a 4-marker modified Matutes score provides optimal sensitivity and specificity for the diagnosis of chronic lymphocytic leukaemia. Hematol Oncol. 2018;36(3):543–546.
  • Hoffmann J, Rother M, Kaiser U, et al. Determination of CD43 and CD200 surface expression improves accuracy of B‐cell lymphoma immunophenotyping. Cytometry B Clin Cytom. 2020;98(6):476–482.
  • Köhnke T, Wittmann VK, Bücklein VL, et al. Diagnosis of CLL revisited: increased specificity by a modified five-marker scoring system including CD200. Br J Haematol. 2017;179(3):480–487.
  • Mora A, Bosch R, Cuellar C, et al. CD200 is a useful marker in the diagnosis of chronic lymphocytic leukemia. Cytometry. 2019;96(2):143–148.
  • Sorigue M, Raya M, Vergara S, et al. Concordance between flow cytometry CLL scores. Int J Lab Hematol. 2021;43(4):743–751.
  • Jung G, Eisenmann JC, Thiébault S, et al. Cell surface CD43 determination improves diagnostic precision in late B-cell diseases. Br J Haematol. 2003;120(3):496–499.
  • Li Y, Tong X, Huang L, et al. A new score including CD43 and CD180: increased diagnostic value for atypical chronic lymphocytic leukemia. Cancer Med. 2021;10(13):4387–4396.
  • Zhu J, Raimbault A, Sourdeau E, et al. Holding on to the Matutes score while dropping FMC7: new opportunity from standardised approaches in multiparameter flow cytometry. Br J Haematol. 2020;190(4):e255–e258.
  • Güell N, Junca J, Raya M, et al. Overlap between CD23 and CD200 in leukemic lymphoproliferative disorders. Int J Lab Hematol. 2022;44(4):e149–e152.
  • Sorigue M, Junca J, Ferra C, et al. FMOD expression in whole blood aids in distinguishing between chronic lymphocytic leukemia and other leukemic lymphoproliferative disorders. A pilot study. Cytometry B Clin Cytom. 2020;98(5):421–428.
  • Palumbo GA, Parrinello N, Fargione G, et al. CD200 expression may help in differential diagnosis between mantle cell lymphoma and B-cell chronic lymphocytic leukemia. Leuk Res. 2009;33(9):1212–1216.
  • Jalal SD. The contribution of CD200 to the diagnostic accuracy of Matutes score in the diagnosis of chronic lymphocytic leukemia in limited resources laboratories. PLOS One. 2021;16(2):e0247491.
  • Shi Y, Liu L, Yang H, et al. The potential differential diagnosis value and clinical significance of CD35 expression in B-chronic lymphoproliferative disorders. Ann Transl Med. 2021;9(14):1166–1166.
  • Busch EL. Cut points and contexts. Cancer. 2021;127(23):4348–4355.
  • Hudson CA, Burack WR, Leary PC, et al. Clinical utility of classical and nonclassical monocyte percentage in the diagnosis of chronic myelomonocytic leukemia. Am J Clin Pathol. 2018;150(4):293–302.
  • Selimoglu-Buet D, Wagner-Ballon O, Saada V, et al. Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood. 2015;125(23):3618–3626.
  • Calvo X, Garcia-Gisbert N, Parraga I, et al. Oligomonocytic and overt chronic myelomonocytic leukemia show similar clinical, genomic, and immunophenotypic features. Blood Adv. 2020;4(20):5285–5296.
  • Jung J, Concannon C, Shroff R, et al. Simple rules to guide expert classifications. J R Stat Soc A. 2020;183(3):771–800.
  • Pavlou M, Ambler G, Seaman S, et al. Review and evaluation of penalised regression methods for risk prediction in low‐dimensional data with few events. Stat Med. 2016;35(7):1159–1177.
  • Moraes LO, Pedreira CE, Barrena S, et al. A decision-tree approach for the differential diagnosis of chronic lymphoid leukemias and peripheral B-cell lymphomas. Comput Methods Programs Biomed. 2019;178:85–90.
  • Healey R, Naugler C, de Koning L, et al. A classification tree approach for improving the utilization of flow cytometry testing of blood specimens for B-cell non-Hodgkin lymphoproliferative disorders. Leuk Lymphoma. 2015;56(9):2619–2624.
  • Gaidano V, Tenace V, Santoro N, et al. A clinically applicable approach to the classification of B-cell non-Hodgkin lymphomas with flow cytometry and machine learning. Cancers. 2020;12(6):1684.
  • Loh W. Classification and regression trees. WIREs Data Mining Knowl Discov. 2011;1(1):14–23.
  • Miao Y, Cao L, Sun Q, et al. Spectrum and immunophenotyping of 653 patients with B-cell chronic lymphoproliferative disorders in China: a single-centre analysis. Hematol Oncol. 2018;36(1):121–127.
  • Morice WG, Kurtin PJ, Hodnefield JM, et al. Predictive value of blood and bone marrow flow cytometry in B-cell lymphoma classification: comparative analysis of flow cytometry and tissue biopsy in 252 patients. Mayo Clin Proc. 2008;83(7):776–785.
  • Rawstron A, de Tute RM, Shingles J, et al. Improving the differential diagnosis of CD5+ B-lymphoproliferative disorders. EHA Meet; 2016. p. 586.
  • Lesesve J-FF, Tardy S, Frotscher B, et al. Combination of CD160 and CD200 as a useful tool for differential diagnosis between chronic lymphocytic leukemia and other mature B-cell neoplasms. Int J Lab Hematol. 2015;37(4):486–494.
  • Fan L, Miao Y, Wu Y-J, et al. Expression patterns of CD200 and CD148 in leukemic B-cell chronic lymphoproliferative disorders and their potential value in differential diagnosis. Leuk Lymphoma. 2015;56(12):3329–3335.
  • Rawstron AC, Kreuzer K-AA, Soosapilla A, et al. Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: an European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonisation Project. Cytometry B Clin Cytom. 2018;94(1):121–128.
  • Sorigue M, Juncà J, Sarrate E, et al. Expression of CD43 in chronic lymphoproliferative leukemias. Cytometry B Clin Cytom. 2018;94(1):136–142.
  • Falay M, Öztürk BA, Güneş K, et al. The role of CD200 and CD43 expression in differential diagnosis between chronic lymphocytic leukemia and mantle cell lymphoma. Turk J Haematol. 2018;35(2):94–98.
  • Pedersen CB, Olsen LR. Algorithmic clustering of single-cell cytometry data—how unsupervised are these analyses really? Cytometry A. 2020;97(3):219–221.
  • Duetz C, Bachas C, Westers TM, et al. Computational analysis of flow cytometry data in hematological malignancies: future clinical practice? Curr Opin Oncol. 2020;32(2):162–169.
  • Van Gassen S, Callebaut B, Van Helden MJ, et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015;87(7):636–645.
  • Maecker HT, Rinfret A, D'Souza P, et al. Standardization of cytokine flow cytometry assays. BMC Immunol. 2005;6(1):13.
  • Mair F, Hartmann FJ, Mrdjen D, et al. The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur J Immunol. 2016;46(1):34–43.
  • Brooimans RA, van der Velden VHJ, Boeckx N, et al. Immunophenotypic measurable residual disease (MRD) in acute myeloid leukemia: is multicentric MRD assessment feasible? Leuk Res. 2019;76:39–47.
  • Mandruzzato S, Brandau S, Britten CM, et al. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunol Immunother. 2016;65(2):161–169.
  • Johansson U, McIver‐Brown N, Cullen M, et al. The flow cytometry myeloid progenitor count: a reproducible parameter for diagnosis and prognosis of myelodysplastic syndromes. Cytometry B Clin Cytom. 2021.
  • Payne D, Johansson U, Bloxham D, et al. Inter-laboratory validation of a harmonized PNH flow cytometry assay. Cytometry. 2018;94(5):736–743.
  • D'Arena G, Vitale C, Coscia M, et al. External validation of the accuracy of ‘CLLflow score’. J Investig Med. 2018;66(7):e6.
  • Sorigue M, Franch-Sarto M, Sarrate E, et al. Usefulness of the CLLflow score. Cytometry. 2018;94(6):950–952.
  • Gautam A, Sreedharanunni S, Sachdeva MUS, et al. The relative expression levels of CD148 and CD180 on clonal B cells and CD148/CD180 median fluorescence intensity ratios are useful in the characterization of mature B cell lymphoid neoplasms infiltrating blood and bone marrow – results from a single cent. Int J Lab Hematol. 2021;43(5):1123–1131.
  • Starostka D, Kriegova E, Kudelka M, et al. Quantitative assessment of informative immunophenotypic markers increases the diagnostic value of immunophenotyping in mature CD5-positive B-cell neoplasms. Cytometry B Clin Cytom. 2018;94(4):576–587.
  • Challagundla P, Jorgensen JL, Kanagal-Shamanna R, et al. Utility of quantitative flow cytometry immunophenotypic analysis of CD5 expression in small B-cell neoplasms. Arch Pathol Lab Med. 2014;138(7):903–909.
  • Bossuyt X, Fierz W, Meroni PL. Correspondence on “European League Against Rheumatism (EULAR)/American College of Rheumatology (ACR) SLE classification criteria item performance” by Aringer et al. Ann Rheum Dis. 2021.
  • Fierz W, Bossuyt X. Likelihood ratio approach and clinical interpretation of laboratory tests. Front Immunol. 2021;12:655262.
  • Brush JE, Kaul S, Krumholz HM. Troponin testing for clinicians. J Am Coll Cardiol. 2016;68(21):2365–2375.
  • Oyaert M, Vermeersch P, De Hertogh G, et al. Combining antibody tests and taking into account antibody levels improves serologic diagnosis of celiac disease. Clin Chem Lab Med. 2015;53:1537–1546.
  • Fierz W, Bossuyt X. Likelihood ratios as value proposition for diagnostic laboratory tests. J Appl Lab Med. 2020;5(5):1061–1069.
  • Dreyling M, Campo E, Hermine O, et al. Newly diagnosed and relapsed mantle cell lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(Suppl. 4):iv62–iv71.
  • Myles N, Giri P, Chim I, et al. The utility of CD200 expression and modified Matutes score in the diagnostic differentiation of mantle cell lymphoma and chronic lymphocytic leukemia using flow cytometry. Leuk Lymphoma. 2021;62(2):504–506.
  • Sorigue M, Magnano L, Miljkovic MD, et al. Positive predictive value of CD200 positivity in the differential diagnosis of chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2020;98(5):441–448.
  • Sandes AF, de Lourdes Chauffaille M, Oliveira CRMC, et al. CD200 has an important role in the differential diagnosis of mature B-cell neoplasms by multiparameter flow cytometry. Cytometry B Clin Cytom. 2013;86:98–105.
  • Ting YS, Smith SABC, Brown DA, et al. CD200 is a useful diagnostic marker for identifying atypical chronic lymphocytic leukemia by flow cytometry. Int J Lab Hematol. 2018;40(5):533–539.
  • Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332(7549):1080.
  • Gutiérrez G, Merino A, Domingo A, et al. EQAS for peripheral blood morphology in Spain: a 6-year experience. Int J Lab Hematol. 2008;30(6):460–466.
  • Alférez S, Merino A, Mujica LE, et al. Automatic classification of atypical lymphoid B cells using digital blood image processing. Int J Lab Hematol. 2014;36(4):472–480.
  • Soliman DS, Al‐Kuwari E, Al‐Abdulla R, et al. Biologic characterization of atypical chronic lymphocytic leukaemia. Int J Lab Hematol. 2021;44:e49–e51.
  • Hjalmar V, Kimby E, Matutes E, et al. Trisomy 12 and lymphoplasmacytoid lymphocytes in chronic leukemic B-cell disorders. Haematologica. 1998;83:602–609.
  • Sorigue M, Raya M, Vergara S, et al. Refining the limits of borderline lymphoproliferative disorders. Cytometry B Clin Cytom. 2019;96(5):351–358.
  • Nguyen-Khac F, Lambert J, Chapiro E, et al. Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenstrom’s macroglobulinemia. Haematologica. 2013;98(4):649–654.
  • Jang M-A, Yoo E-H, Kim K, et al. Chronic lymphocytic leukemia in Korean patients: frequent atypical immunophenotype and relatively aggressive clinical behavior. Int J Hematol. 2013;97(3):403–408.
  • Yan Y, Lv R, Xiong W, et al. Subtype distribution, clinical features, and survival in B-cell chronic lymphoproliferative disorders in China: a review of 1592 cases. Clin Lymphoma Myeloma Leuk. 2020;20(6):e270–e283.
  • Demir C, Kara E, Ekinci Ö, et al. Clinical and laboratory features of CD5-negative chronic lymphocytic leukemia. Med Sci Monit. 2017;23:2137–2142.
  • Romano C, Sellitto A, Chiurazzi F, et al. Clinical and phenotypic features of CD5-negative B cell chronic lymphoproliferative disease resembling chronic lymphocytic leukemia. Int J Hematol. 2015;101(1):67–74.
  • Navarro A, Clot G, Martínez-Trillos A, et al. Improved classification of leukemic B-cell lymphoproliferative disorders using a transcriptional and genetic classifier. Haematologica. 2017;102(9):e360–e363.
  • McCarthy BA, Yancopoulos S, Tipping M, et al. A seven-gene expression panel distinguishing clonal expansions of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes. Immunol Res. 2015;63(1–3):90–100.
  • Qin S-C, Xia Y, Miao Y, et al. MYD88 mutations predict unfavorable prognosis in chronic lymphocytic leukemia patients with mutated IGHV gene. Blood Cancer J. 2017;7(12):651.
  • Jeromin S, Weissmann S, Haferlach C, et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 2014;28(1):108–117.
  • Martínez-Trillos A, Pinyol M, Navarro A, et al. Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome. Blood. 2014;123(24):3790–3796.
  • Wang L, Lawrence MS, Wan Y, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365(26):2497–2506.
  • Shuai W, Lin P, Strati P, et al. Clinicopathological characterization of chronic lymphocytic leukemia with MYD88 mutations: L265P and non-L265P mutations are associated with different features. Blood Cancer J. 2020;10(8):86.
  • Yi S, Yan Y, Jin M, et al. High incidence of MYD88 and KMT2D mutations in Chinese with chronic lymphocytic leukemia. Leukemia. 2021;35(8):2412–2415.
  • Baer C, Dicker F, Kern W, et al. Genetic characterization of MYD88-mutated lymphoplasmacytic lymphoma in comparison with MYD88-mutated chronic lymphocytic leukemia. Leukemia. 2017;31(6):1355–1362.
  • Shekhar R, Naseem S, Binota J, et al. Frequency of MYD88 L256P mutation and its correlation with clinico-hematological profile in mature B-cell neoplasm. Hematol Oncol Stem Cell Ther. 2021;14(3):231–239.
  • Falay M, Serdar MA, Dalgali H, et al. Which markers should the used for diagnostic chronic lymphocytic leukemia immunophenotyping scoring system by flow cytometry? Clin Lab. 2019;65:2049–2055.
  • Goshaw JM, Gao Q, Wardrope J, et al. 14‐Color single tube for flow cytometric characterization of CD5+ B‐LPDs and high sensitivity automated minimal residual disease quantitation of CLL/SLL. Cytometry B Clin Cytom. 2021;100(4):509–518.
  • Sorigue M. CD43 in the malignant flow cytometry laboratory in 2020. Expert Rev Hematol. 2021;14(1):123–136.
  • Jevremovic D, Dronca RS, Morice WG, et al. CD5+ B-cell lymphoproliferative disorders: beyond chronic lymphocytic leukemia and mantle cell lymphoma. Leuk Res. 2010;34(9):1235–1238.
  • Dronca RS, Jevremovic D, Hanson CA, et al. CD5-positive chronic B-cell lymphoproliferative disorders: diagnosis and prognosis of a heterogeneous disease entity. Cytometry. 2010;78B(S1):S35–S41.
  • Horna P, Pearce KE, Ketterling RP, et al. Recurrent chromosomal abnormalities in tissues involved by chronic lymphocytic leukemia/small lymphocytic lymphoma. Am J Clin Pathol. 2021;157(2):286–292.
  • Döhner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–1916.
  • Sorigue M, Junca J. Atypical chronic lymphocytic leukemia: brief historical overview and current usage of an equivocal concept. Int J Lab Hematol. 2019;41(1):e17–e19.
  • Soliman DS, Al‐Kuwari E, Siveen KS, et al. Downregulation of lymphoid enhancer‐binding factor 1 (LEF‐1) expression (by immunohistochemistry and/flow cytometry) in chronic lymphocytic leukemia with atypical immunophenotypic and cytologic features. Int J Lab Hem. 2021;43(3):515–525.
  • Zalcberg I, D'Andrea MG, Monteiro L, et al. Multidisciplinary diagnostics of chronic lymphocytic leukemia: European Research Initiative on CLL – ERIC Recommendations. Hematol Transfus Cell Ther. 2020;42(3):269–274.
  • Bazinet A, Rys RN, Barry A, et al. A 10-color flow cytometry panel for diagnosis and minimal residual disease in chronic lymphocytic leukemia. Leuk Lymphoma. 2021;62(10):2352–2359.
  • Kahneman D, Sibony O, Sunstein CR. Noise: a flaw in human judgment. New York: HarperCollins; 2021.
  • Grove WM, Zald DH, Lebow BS, et al. Clinical versus mechanical prediction: a meta-analysis. Psychol Assess. 2000;12(1):19–30.
  • Collignon O. Methodological issues in the design of a rheumatoid arthritis activity score and its cut-offs. Clin Epidemiol. 2014;6:221–226.
  • Jain RK, Mehta R, Dimitrov R, et al. Atypical ductal hyperplasia: interobserver and intraobserver variability. Mod Pathol. 2011;24(7):917–923.
  • Aggarwal R, Ringold S, Khanna D, et al. Distinctions between diagnostic and classification criteria? Arthritis Care Res. 2015;67(7):891–897.
  • Elmore JG, Barnhill RL, Elder DE, et al. Pathologists’ diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study. BMJ. 2017;357:j2813.
  • Egan C, Pittaluga S. Into the gray-zone: update on the diagnosis and classification of a rare lymphoma. Expert Rev Hematol. 2020;13(1):1–3.
  • Pilichowska M, Kritharis A, Evens AM. Gray zone lymphoma: current diagnosis and treatment options. Hematol Oncol Clin North Am. 2016;30(6):1251–1260.
  • Kempf W. A new era for cutaneous CD30-positive T-cell lymphoproliferative disorders. Semin Diagn Pathol. 2017;34(1):22–35.
  • van Dongen JJM, Lhermitte L, Böttcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908–1975.
  • Costa ES, Pedreira CE, Barrena S, et al. Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping. Leukemia. 2010;24(11):1927–1933.
  • Böttcher S, Engelmann R, Grigore G, et al. Expert-independent classification of mature B-cell neoplasms using standardized flow cytometry: a multicentric study. Blood Adv. 2021;6(3):976–992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.