6,231
Views
0
CrossRef citations to date
0
Altmetric
Invited Reviews

Free thyroxine measurement in clinical practice: how to optimize indications, analytical procedures, and interpretation criteria while waiting for global standardization

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 101-140 | Received 28 Mar 2022, Accepted 03 Sep 2022, Published online: 13 Oct 2022

References

  • Sheehan MT. Biochemical testing of the thyroid: TSH is the best and, oftentimes, only test needed – a review for primary care. Clin Med Res. 2016;14(2):83–92.
  • Bauer DC, Brown AN. Sensitive thyrotropin and free thyroxine testing in outpatients. Are both necessary? Arch Intern Med. 1996;156(20):2333–2337.
  • de los Santos ET, Starich GH, Mazzaferri EL. Sensitivity, specificity, and cost-effectiveness of the sensitive thyrotropin assay in the diagnosis of thyroid disease in ambulatory patients. Arch Intern Med. 1989;149(3):526–532.
  • Thienpont LM, Van Uytfanghe K, Poppe K, et al. Determination of free thyroid hormones. Best Pract Res Clin Endocrinol Metab. 2013;27(5):689–700.
  • Steele BW, Wang E, Klee GG, et al. Analytic bias of thyroid function tests: analysis of a college of American pathologists fresh frozen serum pool by 3900 clinical laboratories. Arch Pathol Lab Med. 2005;129(3):310–317.
  • Thienpont LM, Beastall G, Christofides ND, et al. Measurement of free thyroxine in laboratory medicine–proposal of measurand definition. Clin Chem Lab Med. 2007;45(4):563–564.
  • Thienpont LM, Beastall G, Christofides ND, et al. Proposal of a candidate international conventional reference measurement procedure for free thyroxine in serum. Clin Chem Lab Med. 2007;45(7):934–936.
  • Thienpont LM, Van Uytfanghe K, Beastall G, et al. Report of the IFCC Working Group for Standardization of Thyroid Function Tests; part 2: free thyroxine and free triiodothyronine. Clin Chem. 2010;56(6):912–920.
  • Baker CH, Morris JC. The sodium-iodide symporter. Curr Drug Targets Immune Endocr Metabol Disord. 2004;4(3):167–174.
  • De La Vieja A, Dohán O, Levy O, et al. Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. Physiol Rev. 2000;80(3):1083–1105.
  • Dohán O, De la Vieja A, Paroder V, et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev. 2003;24(1):48–77.
  • Darrouzet E, Lindenthal S, Marcellin D, et al. The sodium/iodide symporter: state of the art of its molecular characterization. Biochim Biophys Acta. 2014;1838(1 Pt B):244–253.
  • Portulano C, Paroder-Belenitsky M, Carrasco N. The Na+/I- symporter (NIS): mechanism and medical impact. Endocr Rev. 2014;35(1):106–149.
  • Carvalho DP, Dupuy C. Thyroid hormone biosynthesis and release. Mol Cell Endocrinol. 2017;458:6–15.
  • Ulianich L, Suzuki K, Mori A, et al. Follicular thyroglobulin (TG) suppression of thyroid-restricted genes involves the apical membrane asialoglycoprotein receptor and TG phosphorylation. J Biol Chem. 1999;274(35):25099–25107.
  • van Deventer HE, Mendu DR, Remaley AT, et al. Inverse log-linear relationship between thyroid-stimulating hormone and free thyroxine measured by direct analog immunoassay and tandem mass spectrometry. Clin Chem. 2011;57(1):122–127.
  • Hoermann R, Midgley JE, Larisch R, et al. Homeostatic control of the thyroid-pituitary axis: perspectives for diagnosis and treatment. Front Endocrinol. 2015;6:177.
  • Calebiro D, Nikolaev VO, Gagliani MC, et al. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol. 2009;7(8):e1000172.
  • Kronenberg HM, Melmed S, Larsen PR, et al. Principles of endocrinology. In Melmed S, Polonsky KS, Larsen PR eds. Williams textbook of endocrinology. Philadelphia: Elsevier Saunders; 2011. p. 3–12.
  • Larsen PR, Zavacki AM. The role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur Thyroid J. 2012;1(4):232–242.
  • Pappa T, Ferrara AM, Refetoff S. Inherited defects of thyroxine-binding proteins. Best Pract Res Clin Endocrinol Metab. 2015;29(5):735–747.
  • Larsen PR. Thyroid-pituitary interaction: feedback regulation of thyrotropin secretion by thyroid hormones. N Engl J Med. 1982;306(1):23–32.
  • Ross DS, Burch HB, Cooper DS, et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 2016;26(10):1343–1421.
  • Jonklaas J, Bianco AC, Bauer AJ, et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement. Thyroid. 2014;24(12):1670–1751.
  • Garber JR, Cobin RH, Gharib H, et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr Pract. 2012;18(6):988–1028.
  • Demers LM, Spencer CA. Laboratory medicine practice guidelines: laboratory support for the diagnosis and monitoring of thyroid disease. Clin Endocrinol. 2003;58(2):138–140.
  • Esfandiari NH, Papaleontiou M. Biochemical testing in thyroid disorders. Endocrinol Metab Clin North Am. 2017;46(3):631–648.
  • Plebani M, Giovanella L. Reflex TSH strategy: the good, the bad and the ugly. Clin Chem Lab Med. 2019;58(1):1–2.
  • Jonklaas J, Razvi S. Reference intervals in the diagnosis of thyroid dysfunction: treating patients not numbers. Lancet Diabetes Endocrinol. 2019;7(6):473–483.
  • Biondi B, Cappola AR. Subclinical hypothyroidism in older individuals. Lancet Diabetes Endocrinol. 2022;10(2):129–141.
  • Lee JH, Kim EY. Resistance to thyroid hormone due to a novel mutation of thyroid hormone receptor beta gene. Ann Pediatr Endocrinol Metab. 2014;19(4):229–231.
  • Weiss RE, Dumitrescu AM, Refetoff S. Resistance to thyroid hormone and other defects in thyroid hormone action. MediLib; 2022. Available from: https://www.medilib.ir/uptodate/show/5827.
  • Wouters H, Slagter SN, Muller Kobold AC, et al. Epidemiology of thyroid disorders in the Lifelines Cohort Study (the Netherlands). PLoS One. 2020;15(11):e0242795.
  • Farwell AP. Nonthyroidal illness syndrome. Curr Opin Endocrinol Diabetes Obes. 2013;20(5):478–484.
  • Gutch M, Kumar S, Gupta KK. Prognostic value of thyroid profile in critical care condition. Indian J Endocrinol Metab. 2018;22(3):387–391.
  • de Vries EM, Fliers E, Boelen A. The molecular basis of the non-thyroidal illness syndrome. J Endocrinol. 2015;225(3):R67–81.
  • Kahaly GJ, Bartalena L, Hegedüs L, et al. 2018 European Thyroid Association guideline for the management of Graves’ hyperthyroidism. Eur Thyroid J. 2018;7(4):167–186.
  • Reid JR, Wheeler SF. Hyperthyroidism: diagnosis and treatment. Am Fam Physician. 2005;72(4):623–630.
  • National Institute for Health and Care Excellence (NICE). Thyroid disease: assessment and management 2019 [cited June 2022]. Available from https://www.nice.org.uk/guidance/ng145.
  • Henze M, Brown SJ, Hadlow NC, et al. Rationalizing thyroid function testing: which TSH cutoffs are optimal for testing free T4? J Clin Endocrinol Metab. 2017;102(11):4235–4241.
  • Soldin OP, Soldin SJ. Thyroid hormone testing by tandem mass spectrometry. Clin Biochem. 2011;44(1):89–94.
  • Köhrle J, Richards KH. Mass spectrometry-based determination of thyroid hormones and their metabolites in endocrine diagnostics and biomedical research – implications for human serum diagnostics. Exp Clin Endocrinol Diabetes. 2020;128(6–07):358–374.
  • Faix JD. Principles and pitfalls of free hormone measurements. Best Pract Res Clin Endocrinol Metab. 2013;27(5):631–645.
  • Ekins R. Measurement of free hormones in blood. Endocr Rev. 1990;11(1):5–46.
  • Christofides ND. Free analyte immunoassay. In: Wild D, ed. The immunoassay handbook: theory and applications of ligand binding, ELISA and related techniques. 4th ed. Oxford UK: Elsevier Ltd; 2013. p. 123–138.
  • Midgley JE. Direct and indirect free thyroxine assay methods: theory and practice. Clin Chem. 2001;47(8):1353–1363.
  • Thyroid Disease Manager. Guidelines for diagnosis and management of thyroid disease 2022. [cited 2022 Mar 11]. Available from: https://www.thyroidmanager.org/guidelines/.
  • Kratzsch J, Baumann NA, Ceriotti F, et al. Global FT4 immunoassay standardization: an expert opinion review. Clin Chem Lab Med. 2021;59(6):1013–1023.
  • Faix JD, Rosen HN, Velazquez FR. Indirect estimation of thyroid hormone-binding proteins to calculate free thyroxine index: comparison of nonisotopic methods that use labeled thyroxine (”T-uptake”). Clin Chem. 1995;41(1):41–47.
  • Nusynowitz ML. Free-thyroxine index. JAMA. 1975;232(10):1050.
  • Holm SS, Hansen SH, Faber J, et al. Reference methods for the measurement of free thyroid hormones in blood: evaluation of potential reference methods for free thyroxine. Clin Biochem. 2004;37(2):85–93.
  • Ekins R. Analytic measurements of free thyroxine. Clin Lab Med. 1993;13(3):599–630.
  • Nelson JC, Tomei RT. Direct determination of free thyroxin in undiluted serum by equilibrium dialysis/radioimmunoassay. Clin Chem. 1988;34(9):1737–1744.
  • Stockigt JR. Free thyroid hormone measurement. A critical appraisal. Endocrinol Metab Clin North Am. 2001;30(2):265–289.
  • Nelson JC, Weiss RM. The effect of serum dilution on free thyroxine (T4) concentration in the low T4 syndrome of nonthyroidal illness. J Clin Endocrinol Metab. 1985;61(2):239–246.
  • Wong TK, Pekary AE, Hoo GS, et al. Comparison of methods for measuring free thyroxin in nonthyroidal illness. Clin Chem. 1992;38(5):720–724.
  • Soldin SJ, Soukhova N, Janicic N, et al. The measurement of free thyroxine by isotope dilution tandem mass spectrometry. Clin Chim Acta. 2005;358(1–2):113–118.
  • Soldin OP, Jang M, Guo T, et al. Pediatric reference intervals for free thyroxine and free triiodothyronine. Thyroid. 2009;19(7):699–702.
  • Jonklaas J, Kahric-Janicic N, Soldin OP, et al. Correlations of free thyroid hormones measured by tandem mass spectrometry and immunoassay with thyroid-stimulating hormone across 4 patient populations. Clin Chem. 2009;55(7):1380–1388.
  • Holm SS, Andreasen L, Hansen SH, et al. Influence of adsorption and deproteination on potential free thyroxine reference methods. Clin Chem. 2002;48(1):108–114.
  • Grebe SKG. Laboratory testing in thyroid disorders. In Luster M, Duntas LH, Wartofsky L, editors. The thyroid and its diseases: a comprehensive guide for the clinician. 1st ed. Oxford UK: Springer; 2019. p. 129–159.
  • Favresse J, Burlacu MC, Maiter D, et al. Interferences with thyroid function immunoassays: clinical implications and detection algorithm. Endocr Rev. 2018;39(5):830–850.
  • Revet I, Boesten LSM, Linthorst J, et al. Misleading FT4 measurement: assay-dependent antibody interference. Biochem Med. 2016;26(3):436–443.
  • Migliardi M, Fortunato A, De Renzi G. La misura degli ormoni liberi. Chapter 10. In Dotti C, Fortunato A, editors. Le analisi immunometriche: basi teoriche e applicazioni cliniche. 1st ed. Padova, Italy: Piccin Nuova Libreria; 2014. p. 297–298.
  • Fritz KS, Wilcox RB, Nelson JC. A direct free thyroxine (T4) immunoassay with the characteristics of a total T4 immunoassay. Clin Chem. 2007;53(5):911–915.
  • Fritz KS, Wilcox RB, Nelson JC. Quantifying spurious free T4 results attributable to thyroxine-binding proteins in serum dialysates and ultrafiltrates. Clin Chem. 2007;53(5):985–988.
  • Fillée C, Cumps J, Ketelslegers JM. Comparison of three free T4 (FT4) and free T3 (FT3) immunoassays in healthy subjects and patients with thyroid diseases and severe non-thyroidal illnesses. Clin Lab. 2012;58(7–8):725–736.
  • Midgley JE, Christofides ND. Point: legitimate and illegitimate tests of free-analyte assay function. Clin Chem. 2009;55(3):439–441.
  • Gu J, Soldin OP, Soldin SJ. Simultaneous quantification of free triiodothyronine and free thyroxine by isotope dilution tandem mass spectrometry. Clin Biochem. 2007;40(18):1386–1391.
  • Kuzmanovska S, Miladinova D. Comparison of thyroid-stimulating hormone and free thyroxine immunoassays performed on Immulite 2000 and Maglumi 800 automated analyzers. Open Access Maced J Med Sci. 2020;8(B):168–174.
  • Padoan A, Cosma C, Plebani M. Evaluation of the analytical performances of six measurands for thyroid functions of Mindray CL-2000i system. J Lab Precis Med. 2018;3.
  • Yue B, Rockwood AL, Roberts WL. Analysis of free thyroxine in serum by ED-LC-MS/MS. Clin Chem. 2007;53:D122.
  • Yue B, Rockwood AL, Sandrock T, et al. Free thyroid hormones in serum by direct equilibrium dialysis and online solid-phase extraction–liquid chromatography/tandem mass spectrometry. Clin Chem. 2008;54(4):642–651.
  • Köhrle J. The colorful diversity of thyroid hormone metabolites. Eur Thyroid J. 2019;8(3):115–129.
  • Welsh KJ, Soldin SJ. Diagnosis of endocrine disease: how reliable are free thyroid and total T3 hormone assays? Eur J Endocrinol. 2016;175(6):R255–R263.
  • Tanoue R, Kume I, Yamamoto Y, et al. Determination of free thyroid hormones in animal serum/plasma using ultrafiltration in combination with ultra-fast liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2018;1539:30–40.
  • Richards KH, Schanze N, Monk R, et al. A validated LC-MS/MS method for cellular thyroid hormone metabolism: uptake and turnover of mono-iodinated thyroid hormone metabolites by PCCL3 thyrocytes. PLoS One. 2017;12(8):e0183482.
  • Bowerbank SL, Carlin MG, Dean JR. A direct comparison of liquid chromatography-mass spectrometry with clinical routine testing immunoassay methods for the detection and quantification of thyroid hormones in blood serum. Anal Bioanal Chem. 2019;411(13):2839–2853.
  • Annesley TM. Ion suppression in mass spectrometry. Clin Chem. 2003;49(7):1041–1044.
  • Soukhova N, Soldin OP, Soldin SJ. Isotope dilution tandem mass spectrometric method for T4/T3. Clin Chim Acta. 2004;343(1-2):185–190.
  • Welsh KJ, Stolze BR, Yu X, et al. Assessment of thyroid function in intensive care unit patients by liquid chromatography tandem mass spectrometry methods. Clin Biochem. 2017;50(6):318–322.
  • Csako G, Zweig MH, Benson C, et al. On the albumin-dependence of measurements of free thyroxin. II. Patients with non-thyroidal illness. Clin Chem. 1987;33(1):87–92.
  • Iitaka M, Kawasaki S, Sakurai S, et al. Serum substances that interfere with thyroid hormone assays in patients with chronic renal failure. Clin Endocrinol. 1998;48(6):739–746.
  • Gant Kanegusuku A, Araque KA, Nguyen H, et al. The effect of specific binding proteins on immunoassay measurements of total and free thyroid hormones and cortisol. Ther Adv Endocrinol. 2021;12:204201882198924.
  • Araque KA, Klubo-Gwiezdzinska J, Nieman LK, et al. Assessment of thyroid function tests and harmonization: opinion on thyroid hormone harmonization. Ther Adv Endocrinol Metab. 2019;10:2042018819897049.
  • Stagnaro-Green A, Abalovich M, Alexander E, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid. 2011;21(10):1081–1125.
  • Anckaert E, Poppe K, Van Uytfanghe K, et al. FT4 immunoassays may display a pattern during pregnancy similar to the equilibrium dialysis ID-LC/tandem MS candidate reference measurement procedure in spite of susceptibility towards binding protein alterations. Clin Chim Acta. 2010;411(17–18):1348–1353.
  • Martel J, Després N, Ahnadi CE, et al. Comparative multicentre study of a panel of thyroid tests using different automated immunoassay platforms and specimens at high risk of antibody interference. Clin Chem Lab Med. 2000;38(8):785–793.
  • d‘Herbomez M, Forzy G, Gasser F, et al. Clinical evaluation of nine free thyroxine assays: persistent problems in particular populations. Clin Chem Lab Med. 2003;41(7):942–947.
  • Thienpont LM. A major step forward in the routine measurement of serum free thyroid hormones. Clin Chem. 2008;54(4):625–626.
  • Giovannini S, Zucchelli GC, Iervasi G, et al. Multicentre comparison of free thyroid hormones immunoassays: the Immunocheck study. Clin Chem Lab Med. 2011;49(10):1669–1676.
  • Kristensen GB, Rustad P, Berg JP, et al. Analytical bias exceeding desirable quality goal in 4 out of 5 common immunoassays: results of a native single serum sample external quality assessment program for cobalamin, folate, ferritin, thyroid-stimulating hormone, and free T4 analyses. Clin Chem. 2016;62(9):1255–1263.
  • Tate JR, Yen T, Jones GR. Transference and validation of reference intervals. Clin Chem. 2015;61(8):1012–1015.
  • Berg J. The UK Pathology Harmony initiative; the foundation of a global model. Clin Chim Acta. 2014;432:22–26.
  • Thienpont LM, Van Uytfanghe K, Van Houcke S, et al. A progress report of the IFCC Committee for Standardization of Thyroid Function Tests. Eur Thyroid J. 2014;3(2):109–116.
  • Thienpont LM, Van Uytfanghe K, De Grande LAC, et al. Harmonization of serum thyroid-stimulating hormone measurements paves the way for the adoption of a more uniform reference interval. Clin Chem. 2017;63(7):1248–1260.
  • Vesper HW, Van Uytfanghe K, Hishinuma A, et al. Implementing reference systems for thyroid function tests – a collaborative effort. Clin Chim Acta. 2021;519:183–186.
  • Thienpont LM, Van Uytfanghe K, Van Houcke S. Standardization activities in the field of thyroid function tests: a status report. Clin Chem Lab Med. 2010;48(11):1577–1583.
  • International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). Standardization of thyroid function tests (C-STFT) 2022. [cited 2022 Mar 11]. Available from: https://www.ifcc.org/ifcc-scientific-division/sd-committees/c-stft/.
  • ISO. In vitro diagnostic medical devices — requirements for establishing metrological traceability of values assigned to calibrators, trueness control materials and human samples. ISO 175112020. Geneva, Switzerland: International Organization for Standardization; 2020.
  • Van Houcke SK, Van Uytfanghe K, Shimizu E, et al. IFCC international conventional reference procedure for the measurement of free thyroxine in serum: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Working Group for Standardization of Thyroid Function Tests (WG-STFT)(1). Clin Chem Lab Med. 2011;49(8):1275–1281.
  • CLSI. Measurement of free thyroid hormones. Approved guideline. CLSI document C45-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2004.
  • IFCC. Reference intervals and decision limits (C-RIDL). Geneva, Switzerland: International Federation of Clinical Chemistry and Laboratory Medicine; 2022. Available from: https://www.ifcc.org/ifcc-scientific-division/sd-committees/c-ridl/
  • IFCC. Summary of activities to collect information about concerns and potential risks associated with changes in reference intervals for free thyroxine and TSH and about communication and interactions among relevant stakeholders (C-STFT). Geneva, Switzerland: International Federation of Clinical Chemistry and Laboratory Medicine; 2022. Available from: https://ifcc-cstft.org/research/summary-of-activities-to-collect-information-about-concerns-and-potential-risks-associated.
  • Midgley JE. Global FT4 immunoassay standardization. Response to: Kratzsch J et al. Global FT4 immunoassay standardization: an expert opinion review. Clin Chem Lab Med. 2021;59(6):e223–e224.
  • Giovanella L. Free-thyroxine standardization: waiting for godot while well serving our patients today. Clin Chem Lab Med. 2021;59(6):e225–e226.
  • Jones GRD, Haeckel R, Loh TP, et al. Indirect methods for reference interval determination – review and recommendations. Clin Chem Lab Med. 2018;57(1):20–29.
  • CLSI. Defining, establishing, and verifying reference intervals in the clinical laboratory. Approved Guideline – Third Edition. CLSI document EP28-A3C. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.
  • Zou Y, Wang D, Cheng X, et al. Reference intervals for thyroid-associated hormones and the prevalence of thyroid diseases in the Chinese population. Ann Lab Med. 2021;41(1):77–85.
  • Ceriotti F, Henny J. “Are my laboratory results normal?” Considerations to be made concerning reference intervals and decision limits. Ejifcc. 2008;19(2):106–114.
  • Ceriotti F, Hinzmann R, Panteghini M. Reference intervals: the way forward. Ann Clin Biochem. 2009;46(Pt 1):8–17.
  • Sikaris KA. Physiology and its importance for reference intervals. Clin Biochem Rev. 2014;35(1):3–14.
  • Kouri T, Kairisto V, Virtanen A, et al. Reference intervals developed from data for hospitalized patients: computerized method based on combination of laboratory and diagnostic data. Clin Chem. 1994;40(12):2209–2215.
  • Bhattacharya CG. A simple method of resolution of a distribution into gaussian components. Biometrics. 1967;23(1):115–135.
  • Jones G, Horowitz G, Katayev A, et al. Reference intervals data mining: getting the right paper. Am J Clin Pathol. 2015;144(3):526–527.
  • Yang J, Li Y, Liu Q, et al. Brief introduction of medical database and data mining technology in big data era. J Evid Based Med. 2020;13(1):57–69.
  • Barth JH, Luvai A, Jassam N, et al. Comparison of method-related reference intervals for thyroid hormones: studies from a prospective reference population and a literature review. Ann Clin Biochem. 2018;55(1):107–112.
  • Quinn FA, Tam MC, Wong PT, et al. Thyroid autoimmunity and thyroid hormone reference intervals in apparently healthy Chinese adults. Clin Chim Acta. 2009;405(1–2):156–159.
  • Schalin-Jäntti C, Tanner P, Välimäki MJ, et al. Serum TSH reference interval in healthy Finnish adults using the Abbott Architect 2000i analyzer. Scand J Clin Lab Invest. 2011;71(4):344–349.
  • Milinković N, Ignjatović S, Žarković M, et al. Indirect estimation of age-related reference limits of thyroid parameters: a cross-sectional study of outpatients’ results. Scand J Clin Lab Invest. 2014;74(5):378–384.
  • De Grande LAC, Van Uytfanghe K, Reynders D, et al. Standardization of free thyroxine measurements allows the adoption of a more uniform reference interval. Clin Chem. 2017;63(10):1642–1652.
  • Ehrenkranz J, Bach PR, Snow GL, et al. Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid. 2015;25(8):954–961.
  • Hickman PE, Koerbin G, Simpson A, et al. Using a thyroid disease-free population to define the reference interval for TSH and free T4 on the Abbott Architect analyser. Clin Endocrinol. 2017;86(1):108–112.
  • Barhanovic NG, Antunovic T, Kavaric S, et al. Age and assay related changes of laboratory thyroid function tests in the reference female population. J Med Biochem. 2019;38(1):22–32.
  • Plouvier E, Alliot L, Bigorie B, et al. [Necessity to define thyroid reference values for better clinical interpretation]. Ann Biol Clin. 2011;69(1):77–83.
  • Baloch Z, Carayon P, Conte-Devolx B, et al. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid. 2003;13(1):3–126.
  • Wang Y, Zhang YX, Zhou YL, et al. Establishment of reference intervals for serum thyroid-stimulating hormone, free and total thyroxine, and free and total triiodothyronine for the Beckman Coulter DxI-800 analyzers by indirect method using data obtained from Chinese population in Zhejiang province. J Clin Lab Anal. 2017;31(4):e22069.
  • Li ZZ, Yu BZ, Wang JL, et al. Reference intervals for thyroid-stimulating hormone and thyroid hormones using the access TSH 3rd IS method in China. J Clin Lab Anal. 2020;34(5):e23197.
  • Wang D, Yu S, Cheng X, et al. Nationwide Chinese study for establishing reference intervals for thyroid hormones and related tests. Clin Chim Acta. 2019;496:62–67.
  • Kratzsch J, Fiedler GM, Leichtle A, et al. New reference intervals for thyrotropin and thyroid hormones based on National Academy of Clinical Biochemistry criteria and regular ultrasonography of the thyroid. Clin Chem. 2005;51(8):1480–1486.
  • Friis-Hansen L, Hilsted L. Reference intervals for thyreotropin and thyroid hormones for healthy adults based on the NOBIDA material and determined using a Modular E170. Clin Chem Lab Med. 2008;46(9):1305–1312.
  • Takeda K, Mishiba M, Sugiura H, et al. Evaluated reference intervals for serum free thyroxine and thyrotropin using the conventional outliner rejection test without regard to presence of thyroid antibodies and prevalence of thyroid dysfunction in Japanese subjects. Endocr J. 2009;56(9):1059–1066.
  • Chan AO, Iu YP, Shek CC. The reference interval of thyroid-stimulating hormone in Hong Kong Chinese. J Clin Pathol. 2011;64(5):433–436.
  • Yoshihara A, Noh JY, Ohye H, et al. Reference limits for serum thyrotropin in a Japanese population. Endocr J. 2011;58(7):585–588.
  • Amouzegar A, Delshad H, Mehran L, et al. Reference limit of thyrotropin (TSH) and free thyroxine (FT4) in thyroperoxidase positive and negative subjects: a population based study. J Endocrinol Invest. 2013;36(11):950–954.
  • Marwaha RK, Tandon N, Ganie MA, et al. Reference range of thyroid function (FT3, FT4 and TSH) among Indian adults. Clin Biochem. 2013;46(4–5):341–345.
  • Fontes R, Coeli CR, Aguiar F, et al. Reference interval of thyroid stimulating hormone and free thyroxine in a reference population over 60 years old and in very old subjects (over 80 years): comparison to young subjects. Thyroid Res. 2013;6(1):13.
  • Sriphrapradang C, Pavarangkoon S, Jongjaroenprasert W, et al. Reference ranges of serum TSH, FT4 and thyroid autoantibodies in the Thai population: the national health examination survey. Clin Endocrinol (Oxf). 2014;80(5):751–756.
  • Mirjanic-Azaric B, Avram S, Stojakovic-Jelisavac T, et al. Direct estimation of reference intervals for thyroid parameters in the Republic of Srpska. J Med Biochem. 2017;36(2):137–144.
  • Park SY, Kim HI, Oh HK, et al. Age- and gender-specific reference intervals of TSH and free T4 in an iodine-replete area: data from Korean National Health and Nutrition Examination Survey IV (2013-2015). PLoS One. 2018;13(2):e0190738.
  • Reix N, Massart C, d‘Herbomez M, et al. Thyroid-stimulating hormone and free thyroxine on the ADVIA centaur immunoassay system: a multicenter assessment of analytical performance. Clin Biochem. 2013;46(13–14):1305–1308.
  • Wang P, Gao YJ, Cheng J, et al. Serum thyroid hormone reference intervals in the apparently healthy individuals of Zhengzhou area of China. Genet Mol Res. 2014;13(3):7275–7281.
  • Cai J, Fang Y, Jing D, et al. Reference intervals of thyroid hormones in a previously iodine-deficient but presently more than adequate area of Western China: a population-based survey. Endocr J. 2016;63(4):381–388.
  • Hoermann R, Larisch R, Dietrich JW, et al. Derivation of a multivariate reference range for pituitary thyrotropin and thyroid hormones: diagnostic efficiency compared with conventional single-reference method. Eur J Endocrinol. 2016;174(6):735–743.
  • Barth JH, Spencer JD, Goodall SR, et al. Reference intervals for thyroid hormones on Advia Centaur derived from three reference populations and a review of the literature. Ann Clin Biochem. 2016;53(Pt 3):385–389.
  • Jones GR, Koetsier SD. RCPAQAP first combined measurement and reference interval survey. Clin Biochem Rev. 2014;35(4):243–250.
  • Lee GR, Griffin A, Halton K, et al. Generating method-specific reference ranges – a harmonious outcome? Pract Lab Med. 2017;9:1–11.
  • Kratzsch J, Schubert G, Pulzer F, et al. Reference intervals for TSH and thyroid hormones are mainly affected by age, body mass index and number of blood leucocytes, but hardly by gender and thyroid autoantibodies during the first decades of life. Clin Biochem. 2008;41(13):1091–1098.
  • Tahmasebi H, Trajcevski K, Higgins V, et al. Influence of ethnicity on population reference values for biochemical markers. Crit Rev Clin Lab Sci. 2018;55(5):359–375.
  • Bohn MK, Higgins V, Asgari S, et al. Paediatric reference intervals for 17 Roche cobas 8000 e602 immunoassays in the CALIPER cohort of healthy children and adolescents. Clin Chem Lab Med. 2019;57(12):1968–1979.
  • Strich D, Karavani G, Levin S, et al. Normal limits for serum thyrotropin vary greatly depending on method. Clin Endocrinol. 2016;85(1):110–115.
  • Yeap BB, Manning L, Chubb SA, et al. Reference ranges for thyroid-stimulating hormone and free thyroxine in older men: results from the Health In Men study. J Gerontol A Biol Sci Med Sci. 2017;72(3):444–449.
  • Boelaert K, Torlinska B, Holder RL, et al. Older subjects with hyperthyroidism present with a paucity of symptoms and signs: a large cross-sectional study. J Clin Endocrinol Metab. 2010;95(6):2715–2726.
  • Mitrou P, Raptis SA, Dimitriadis G. Thyroid disease in older people. Maturitas. 2011;70(1):5–9.
  • Xiong J, Liu S, Hu K, et al. Study of reference intervals for free triiodothyronine, free thyroxine, and thyroid-stimulating hormone in an elderly Chinese Han population. PLoS One. 2020;15(9):e0239579.
  • Gussekloo J, van Exel E, de Craen AJ, et al. Thyroid status, disability and cognitive function, and survival in old age. JAMA. 2004;292(21):2591–2599.
  • Yeap BB, Alfonso H, Hankey GJ, et al. Higher free thyroxine levels are associated with all-cause mortality in euthyroid older men: the Health In Men study. Eur J Endocrinol. 2013;169(4):401–408.
  • Correia A, Nascimento MLF, Teixeira L, et al. Free thyroxine but not TSH levels are associated with decline in functional status in a cohort of geriatric outpatients. Eur Geriatr Med. 2022;13(1):147–154.
  • Wang D, Yu S, Ma C, et al. Reference intervals for thyroid-stimulating hormone, free thyroxine, and free triiodothyronine in elderly Chinese persons. Clin Chem Lab Med. 2019;57(7):1044–1052.
  • Yazbeck CF, Sullivan SD. Thyroid disorders during pregnancy. Med Clin North Am. 2012;96(2):235–256.
  • De Groot L, Abalovich M, Alexander EK, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(8):2543–2565.
  • Ekinci EI, Lu ZX, Sikaris K, et al. Longitudinal assessment of thyroid function in pregnancy. Ann Clin Biochem. 2013;50(Pt 6):595–602.
  • Springer D, Jiskra J, Limanova Z, et al. Thyroid in pregnancy: from physiology to screening. Crit Rev Clin Lab Sci. 2017;54(2):102–116.
  • Glinoer D. The regulation of thyroid function in pregnancy: pathways of endocrine adaptation from physiology to pathology. Endocr Rev. 1997;18(3):404–433.
  • Alexander EK, Pearce EN, Brent GA, et al. 2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid. 2017;27(3):315–389.
  • Ho CKM, Tan ETH, Ng MJ, et al. Gestational age-specific reference intervals for serum thyroid hormone levels in a multi-ethnic population. Clin Chem Lab Med. 2017;55(11):1777–1788.
  • Veltri F, Belhomme J, Kleynen P, et al. Maternal thyroid parameters in pregnant women with different ethnic backgrounds: do ethnicity-specific reference ranges improve the diagnosis of subclinical hypothyroidism? Clin Endocrinol. 2017;86(6):830–836.
  • Korevaar TI, Medici M, de Rijke YB, et al. Ethnic differences in maternal thyroid parameters during pregnancy: the Generation R study. J Clin Endocrinol Metab. 2013;98(9):3678–3686.
  • Mosso L, Martínez A, Rojas MP, et al. Early pregnancy thyroid hormone reference ranges in Chilean women: the influence of body mass index. Clin Endocrinol. 2016;85(6):942–948.
  • Collares FM, Korevaar TIM, Hofman A, et al. Maternal thyroid function, prepregnancy obesity and gestational weight gain-the Generation R study: a prospective cohort study. Clin Endocrinol. 2017;87(6):799–806.
  • Wiersinga WM. Smoking and thyroid. Clin Endocrinol. 2013;79(2):145–151.
  • Joosen AM, van der Linden IJ, de Jong-Aarts N, et al. TSH and fT4 during pregnancy: an observational study and a review of the literature. Clin Chem Lab Med. 2016;54(7):1239–1246.
  • Okosieme OE, Agrawal M, Usman D, et al. Method-dependent variation in TSH and FT4 reference intervals in pregnancy: a systematic review. Ann Clin Biochem. 2021;58(5):537–546.
  • Akarsu S, Akbiyik F, Karaismailoglu E, et al. Gestation specific reference intervals for thyroid function tests in pregnancy. Clin Chem Lab Med. 2016;54(8):1377–1383.
  • Fan JX, Yang S, Qian W, et al. Comparison of the reference intervals used for the evaluation of maternal thyroid function during pregnancy using sequential and nonsequential methods. Chin Med J (Engl). 2016;129(7):785–791.
  • Hernández JM, Soldevila B, Velasco I, et al. Reference intervals of thyroid function tests assessed by immunoassay and mass spectrometry in healthy pregnant women living in Catalonia. JCM. 2021;10(11):2444.
  • Liu J, Yu X, Xia M, et al. Development of gestation-specific reference intervals for thyroid hormones in normal pregnant Northeast Chinese women: what is the rational division of gestation stages for establishing reference intervals for pregnancy women? Clin Biochem. 2017;50(6):309–317.
  • Ollero MD, Toni M, Pineda JJ, et al. Thyroid function reference values in healthy iodine-sufficient pregnant women and influence of thyroid nodules on thyrotropin and free thyroxine values. Thyroid. 2019;29(3):421–429.
  • Quinn FA, Reyes-Mendez MA, Nicholson L, et al. Thyroid function and thyroid autoimmunity in apparently healthy pregnant and non-pregnant Mexican women. Clin Chem Lab Med. 2014;52(9):1305–1311.
  • Shen FX, Xie ZW, Lu SM, et al. Gestational thyroid reference intervals in antibody-negative Chinese women. Clin Biochem. 2014;47(7–8):673–675.
  • Yang X, Meng Y, Zhang Y, et al. Thyroid function reference ranges during pregnancy in a large Chinese population and comparison with current guidelines. Chin Med J. 2019;132(5):505–511.
  • Yuen LY, Chan MHM, Sahota DS, et al. Development of gestational age-specific thyroid function test reference intervals in four analytic platforms through multilevel modeling. Thyroid. 2020;30(4):598–608.
  • Bunch DR, Firmender K, Harb R, et al. First- and second-trimester reference intervals for thyroid function testing in a US population. Am J Clin Pathol. 2021;155(6):776–780.
  • Donovan LE, Metcalfe A, Chin A, et al. A practical approach for the verification and determination of site- and trimester-specific reference intervals for thyroid function tests in pregnancy. Thyroid. 2019;29(3):412–420.
  • Duan Y, Peng L, Cui Y, et al. Reference intervals for thyroid function and the negative correlation between FT4 and HbA1c in pregnant women of West China. Clin Lab. 2015;61(7):777–783.
  • Han L, Zheng W, Zhai Y, et al. Reference intervals of trimester-specific thyroid stimulating hormone and free thyroxine in Chinese women established by experimental and statistical methods. J Clin Lab Anal. 2018;32(4):e22344.
  • Huang C, Wu Y, Chen L, et al. Establishment of assay method- and trimester-specific reference intervals for thyroid hormones during pregnancy in Chengdu. J Clin Lab Anal. 2021;35(5):e23763.
  • Khalil AB, Salih BT, Chinengo O, et al. Trimester specific reference ranges for serum TSH and free T4 among United Arab Emirates pregnant women. Pract Lab Med. 2018;12:e00098.
  • Kim HJ, Cho YY, Kim SW, et al. Reference intervals of thyroid hormones during pregnancy in Korea, an iodine-replete area. Korean J Intern Med. 2018;33(3):552–560.
  • Moon HW, Chung HJ, Park CM, et al. Establishment of trimester-specific reference intervals for thyroid hormones in Korean pregnant women. Ann Lab Med. 2015;35(2):198–204.
  • Sekhri T, Juhi JA, Wilfred R, et al. Trimester specific reference intervals for thyroid function tests in normal Indian pregnant women. Indian J Endocrinol Metab. 2016;20(1):101–107.
  • Sun R, Xia J. The reference intervals of thyroid hormones for pregnant women in Zhejiang province. Lab Med. 2017;49(1):5–10.
  • Zhang J, Li W, Chen QB, et al. Establishment of trimester-specific thyroid stimulating hormone and free thyroxine reference interval in pregnant Chinese women using the Beckman Coulter UniCel™ DxI 600. Clin Chem Lab Med. 2015;53(9):1409–1414.
  • Zhang X, Yao B, Li C, et al. Reference intervals of thyroid function during pregnancy: self-sequential longitudinal study versus cross-sectional study. Thyroid. 2016;26(12):1786–1793.
  • Zhou H, Ma ZF, Lu Y, et al. Assessment of iodine status among pregnant women and neonates using neonatal thyrotropin (TSH) in mainland China after the introduction of new revised universal salt iodisation (USI) in 2012: a re-emergence of iodine deficiency? Int J Endocrinol. 2019;2019:3618169.
  • Zhang D, Cai K, Wang G, et al. Trimester-specific reference ranges for thyroid hormones in pregnant women. Medicine. 2019;98(4):e14245.
  • Forhead AJ, Fowden AL. Thyroid hormones in fetal growth and prepartum maturation. J Endocrinol. 2014;221(3):R87–R103.
  • Derakhshan A, Shu H, Broeren MAC, et al. Reference ranges and determinants of thyroid function during early pregnancy: the SELMA study. J Clin Endocrinol Metab. 2018;103(9):3548–3556.
  • Andersen SL, Christensen PA, Knøsgaard L, et al. Classification of thyroid dysfunction in pregnant women differs by analytical method and type of thyroid function test. J Clin Endocrinol Metab. 2020;105:dgaa567.
  • Bliddal S, Feldt-Rasmussen U, Boas M, et al. Gestational age-specific reference ranges from different laboratories misclassify pregnant women’s thyroid status: comparison of two longitudinal prospective cohort studies. Eur J Endocrinol. 2014;170(2):329–339.
  • Lee RH, Spencer CA, Mestman JH, et al. Free T4 immunoassays are flawed during pregnancy. Am J Obstet Gynecol. 2009;200(3):260.e261–266.
  • Geno KA, Reed MS, Cervinski MA, et al. Evaluation of thyroid function in pregnant women using automated immunoassays. Clin Chem. 2021;67(5):772–780.
  • Feldt-Rasmussen U, Bliddal S, Rasmussen AK, et al. Challenges in interpretation of thyroid function tests in pregnant women with autoimmune thyroid disease. J Thyroid Res. 2011;2011:1–7.
  • Tarım Ö. Thyroid hormones and growth in health and disease. J Clin Res Pediatr Endocrinol. 2011;3(2):51–55.
  • Leung AKC, Leung AAC. Evaluation and management of the child with hypothyroidism. World J Pediatr. 2019;15(2):124–134.
  • Srinivasan S, Misra M. Hyperthyroidism in children. Pediatr Rev. 2015;36(6):239–248.
  • Chaudhari M, Slaughter JL. Thyroid function in the neonatal intensive care unit. Clin Perinatol. 2018;45(1):19–30.
  • Lazarus J, Brown RS, Daumerie C, et al. 2014 European Thyroid Association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur Thyroid J. 2014;3(2):76–94.
  • Adeli K, Higgins V, Trajcevski K, et al. The Canadian laboratory initiative on pediatric reference intervals: a CALIPER white paper. Crit Rev Clin Lab Sci. 2017;54(6):358–413.
  • Colantonio DA, Kyriakopoulou L, Chan MK, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem. 2012;58(5):854–868.
  • Bailey D, Colantonio D, Kyriakopoulou L, et al. Marked biological variance in endocrine and biochemical markers in childhood: establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clin Chem. 2013;59(9):1393–1405.
  • Karbasy K, Lin DC, Stoianov A, et al. Pediatric reference value distributions and covariate-stratified reference intervals for 29 endocrine and special chemistry biomarkers on the beckman coulter immunoassay systems: a CALIPER study of healthy community children. Clin Chem Lab Med. 2016;54(4):643–657.
  • Higgins V, Fung AWS, Chan MK, et al. Pediatric reference intervals for 29 Ortho VITROS 5600 immunoassays using the CALIPER cohort of healthy children and adolescents. Clin Chem Lab Med. 2018;56(2):327–340.
  • Bohn MK, Horn P, League D, et al. Pediatric reference intervals for endocrine markers and fertility hormones in healthy children and adolescents on the Siemens Healthineers Atellica immunoassay system. Clin Chem Lab Med. 2021;59(8):1421–1430.
  • Aldrimer M, Ridefelt P, Rödöö P, et al. Reference intervals on the Abbott Architect for serum thyroid hormones, lipids and prolactin in healthy children in a population-based study. Scand J Clin Lab Invest. 2012;72(4):326–332.
  • Önsesveren I, Barjaktarovic M, Chaker L, et al. Childhood thyroid function reference ranges and determinants: a literature overview and a prospective cohort study. Thyroid. 2017;27(11):1360–1369.
  • Argente Del Castillo P, Pastor García MI, Morell-Garcia D, et al. Thyroid panel reference intervals in healthy children and adolescents: a Spanish cohort. Clin Biochem. 2021;91:39–44.
  • Bokulić A, Zec I, Marijančević D, et al. Establishing paediatric reference intervals for thyroid function tests in Croatian population on the Abbott Architect i2000. Biochem Med. 2021;31(3):030702.
  • Radicioni AF, Tahani N, Spaziani M, et al. Reference ranges for thyroid hormones in normal Italian children and adolescents and overweight adolescents. J Endocrinol Invest. 2013;36(5):326–330.
  • Romero-Villarreal JB, Palacios-Saucedo GC, Ocaña-Hernández LA, et al. [Reference intervals for total triiodothyronine (TT3), free thyroxine (FT4), and thyrotropin (TSH) by chemiluminescence immunoassay in children younger than six years old from northeastern Mexico]. Gac Med Mex. 2014;150(Suppl 2):248–254.
  • Gunapalasingham G, Frithioff-Bøjsøe C, Lund MAV, et al. Reference values for fasting serum concentrations of thyroid-stimulating hormone and thyroid hormones in Healthy Danish/North-European white children and adolescents. Scand J Clin Lab Invest. 2019;79(1–2):129–135.
  • Iwaku K, Noh JY, Minagawa A, et al. Determination of pediatric reference levels of FT3, FT4 and TSH measured with ECLusys kits. Endocr J. 2013;60(6):799–804.
  • Loh TP, Sethi SK, Metz MP. Paediatric reference interval and biological variation trends of thyrotropin (TSH) and free thyroxine (T4) in an Asian population. J Clin Pathol. 2015;68(8):642–647.
  • Strich D, Edri S, Gillis D. Current normal values for TSH and FT3 in children are too low: evidence from over 11,000 samples. J Pediatr Endocrinol Metab. 2012;25(3–4):245–248.
  • Kapelari K, Kirchlechner C, Högler W, et al. Pediatric reference intervals for thyroid hormone levels from birth to adulthood: a retrospective study. BMC Endocr Disord. 2008;8(1):15.
  • Soldin SJ, Cheng LL, Lam LY, et al. Comparison of FT4 with log TSH on the Abbott Architect ci8200: pediatric reference intervals for free thyroxine and thyroid-stimulating hormone. Clin Chim Acta. 2010;411(3-4):250–252.
  • Verburg FA, Kirchgässner C, Hebestreit H, et al. Reference ranges for analytes of thyroid function in children. Horm Metab Res. 2011;43(6):422–426.
  • Oladipo O, Nenninger DA, Parvin CA, et al. Intraindividual variability of thyroid function tests in a pediatric population. Clin Chim Acta. 2010;411(15–16):1143–1145.
  • Jayasuriya MS, Choy KW, Chin LK, et al. Reference intervals for neonatal thyroid function tests in the first 7 days of life. J Pediatr Endocrinol Metab. 2018;31(10):1113–1116.
  • Naafs JC, Heinen CA, Zwaveling-Soonawala N, et al. Age-specific reference intervals for plasma free thyroxine and thyrotropin in term neonates during the first two weeks of life. Thyroid. 2020;30(8):1106–1111.
  • Campbell PJ, Brown SJ, Kendrew P, et al. Changes in thyroid function across adolescence: a longitudinal study. J Clin Endocrinol Metab. 2020;105:dgz331.
  • Taylor PN, Razvi S, Pearce SH, et al. Clinical review: a review of the clinical consequences of variation in thyroid function within the reference range. J Clin Endocrinol Metab. 2013;98(9):3562–3571.
  • Fisher DA, Grueters A. Disorders of the thyroid in the newborn and infant. Chapter 6. In Sperling MA, editor. Pediatric endocrinology. 3rd ed. Philadelphia, PA: Saunders Elsevier; 2008. p. 198–226.
  • Aktas S. Evaluation of thyrotropin and thyroxine levels in the first month of life. Cyprus J Med Sci. 2019;4(2):99–102.
  • Mutlu M, Karagüzel G, Alıyazicioğlu Y, et al. Reference intervals for thyrotropin and thyroid hormones and ultrasonographic thyroid volume during the neonatal period. J Matern Fetal Neonatal Med. 2012;25(2):120–124.
  • Omuse G, Kassim A, Kiigu F, et al. Reference intervals for thyroid stimulating hormone and free thyroxine derived from neonates undergoing routine screening for congenital hypothyroidism at a university teaching hospital in Nairobi, Kenya: a cross sectional study. BMC Endocr Disord. 2016;16(1):23.
  • Wong JSL, Selveindran NM, Mohamed RZ, et al. Reference intervals for thyroid-stimulating hormone (TSH) and free thyroxine (FT4) in infants’ day 14-30 of life and a comparison with other studies. J Pediatr Endocrinol Metab. 2020;33(9):1125–1132.
  • Lin X, Zheng LJ, Li HB, et al. Reference intervals for preterm thyroid function during the fifth to seventh day of life. Clin Biochem. 2021;95:54–59.
  • Karavani G, Strich D, Edri S, et al. Increases in thyrotropin within the near-normal range are associated with increased triiodothyronine but not increased thyroxine in the pediatric age group. J Clin Endocrinol Metab. 2014;99(8):E1471–E1475.
  • Fisher DA, Grueters A. Thyroid disorders in childhood and adolescence. Chapter 7. In Sperling MA, ed. Pediatric endocrinology. 3rd ed. Philadelphia, PA: Saunders Elsevier; 2008. p. 227–253.
  • Galior K, Stan M, Baumann N. Higher FT4 results in levothyroxine-treated patients with normal TSH compared to patients without thyroid disease. J Endocr Soc. 2019;3(Suppl_1):MON–623.
  • Lu ZX, Sikaris KA, Yen T, et al. Should there be separate free thyroxine reference limits for thyroxine-treated patients? Clin Biochem Rev. 2016;37:S40.
  • Wheeler E, Choy KW, Chin LK, et al. Routine free thyroxine reference intervals are suboptimal for monitoring children on thyroxine replacement therapy and target intervals need to be assay-specific. Sci Rep. 2019;9(1):19080.
  • Fraser CG. Reference change values. Clin Chem Lab Med. 2011;50(5):807–812.
  • Fraser CG. Reference change values: the way forward in monitoring. Ann Clin Biochem. 2009;46(Pt 3):264–265.
  • Andersen S, Bruun NH, Pedersen KM, et al. Biologic variation is important for interpretation of thyroid function tests. Thyroid. 2003;13(11):1069–1078.
  • Andersen S, Pedersen KM, Bruun NH, et al. Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab. 2002;87(3):1068–1072.
  • Ankrah-Tetteh T, Wijeratne S, Swaminathan R. Intraindividual variation in serum thyroid hormones, parathyroid hormone and insulin-like growth factor-1. Ann Clin Biochem. 2008;45(2):167–169.
  • Erden G, Barazi AO, Tezcan G, et al. Biological variation and reference change values of TSH, free T3, and free T4 levels in serum of healthy Turkish individuals. Turk J Med Sci. 2008;38:153–158.
  • Bottani M, Aarsand AK, Banfi G, et al. European biological variation study (EuBIVAS): within- and between-subject biological variation estimates for serum thyroid biomarkers based on weekly samplings from 91 healthy participants. Clin Chem Lab Med. 2022;60(4):523–532.
  • Mairesse A, Wauthier L, Courcelles L, et al. Biological variation and analytical goals of four thyroid function biomarkers in healthy European volunteers. Clin Endocrinol (Oxf). 2021;94(5):845–850.
  • Zhang Y, He DH, Jiang SN, et al. Biological variation of thyroid function biomarkers over 24 hours. Clin Chim Acta. 2021;523:519–524.
  • Ghazal K, Brabant S, Prie D, et al. Hormone immunoassay interference: a 2021 update. Ann Lab Med. 2022;42(1):3–23.
  • Hattori N, Ishihara T, Shimatsu A. Variability in the detection of macro TSH in different immunoassay systems. Eur J Endocrinol. 2016;174(1):9–15.
  • Ismail AA, Walker PL, Barth JH, et al. Wrong biochemistry results: two case reports and observational study in 5310 patients on potentially misleading thyroid-stimulating hormone and gonadotropin immunoassay results. Clin Chem. 2002;48(11):2023–2029.
  • Drees JC, Stone JA, Reamer CR, et al. Falsely undetectable TSH in a cohort of South Asian euthyroid patients. J Clin Endocrinol Metab. 2014;99(4):1171–1179.
  • Estrada JM, Soldin D, Buckey TM, et al. Thyrotropin isoforms: implications for thyrotropin analysis and clinical practice. Thyroid. 2014;24(3):411–423.
  • Sapin R, Schlienger JL, Grunenberger F, et al. In vitro and in vivo effects of increased concentrations of free fatty acids on free thyroxin measurements as determined by five assays. Clin Chem. 1990;36(4):611–613.
  • Toldy E, Locsei Z, Szabolcs I, et al. Protein interference in thyroid assays: an in vitro study with in vivo consequences. Clin Chim Acta. 2005;352(1–2):93–104.
  • DeCosimo DR, Fang SL, Braverman LE. Prevalence of familial dysalbuminemic hyperthyroxinemia in Hispanics. Ann Intern Med. 1987;107(5):780–781.
  • Mimoto MS, Refetoff S. Clinical recognition and evaluation of patients with inherited serum thyroid hormone-binding protein mutations. J Endocrinol Invest. 2020;43(1):31–41.
  • Koulouri O, Moran C, Halsall D, et al. Pitfalls in the measurement and interpretation of thyroid function tests. Best Pract Res Clin Endocrinol Metab. 2013;27(6):745–762.
  • Jaume JC, Mendel CM, Frost PH, et al. Extremely low doses of heparin release lipase activity into the plasma and can thereby cause artifactual elevations in the serum-free thyroxine concentration as measured by equilibrium dialysis. Thyroid. 1996;6(2):79–83.
  • Külz M, Fellner S, Rocktäschel J, et al. Dubiously increased FT4 and FT3 levels in clinically euthyroid patients: clinical finding or analytical pitfall? Clin Chem Lab Med. 2022;60(6):877–885.
  • Ghosh S, Howlett M, Boag D, et al. Interference in free thyroxine immunoassay. Eur J Intern Med. 2008;19(3):221–222.
  • Monchamp T, Chopra IJ, Wah DT, et al. Falsely elevated thyroid hormone levels due to anti-sheep antibody interference in an automated electrochemiluminescent immunoassay. Thyroid. 2007;17(3):271–275.
  • Zanchetta MB, Giacoia E, Jerkovich F, et al. Asymptomatic elevated parathyroid hormone level due to immunoassay interference. Osteoporos Int. 2021;32(10):2111–2114.
  • Fiad TM, Duffy J, McKenna TJ. Multiple spuriously abnormal thyroid function indices due to heterophilic antibodies. Clin Endocrinol. 1994;41(3):391–395.
  • Lam L, Bagg W, Smith G, et al. Apparent hyperthyroidism caused by biotin-like interference from IgM anti-streptavidin antibodies. Thyroid. 2018;28(8):1063–1067.
  • Wouters Y, Oosterbos J, Reynaert N, et al. Alarmed by misleading interference in free T3 and free T4 assays: a new case of anti-streptavidin antibodies. Clin Chem Lab Med. 2020;58(3):e69–e71.
  • Favresse J, Paridaens H, Pirson N, et al. Massive interference in free T4 and free T3 assays misleading clinical judgment. Clin Chem Lab Med. 2017;55(4):e84–e86.
  • Sakata S, Matsuda M, Ogawa T, et al. Prevalence of thyroid hormone autoantibodies in healthy subjects. Clin Endocrinol. 1994;41(3):365–370.
  • Ni J, Long Y, Zhang L, et al. High prevalence of thyroid hormone autoantibody and low rate of thyroid hormone detection interference. J Clin Lab Anal. 2022;36(1):e24124.
  • Zouwail SA, O'Toole AM, Clark PM, et al. Influence of thyroid hormone autoantibodies on 7 thyroid hormone assays. Clin Chem. 2008;54(5):927–928.
  • Ylli D, Soldin SJ, Stolze B, et al. Biotin interference in assays for thyroid hormones, thyrotropin and thyroglobulin. Thyroid. 2021;31(8):1160–1170.
  • Colon PJ, Greene DN. Biotin interference in clinical immunoassays. J Appl Lab Med. 2018;2(6):941–951.
  • Mzougui S, Favresse J, Soleimani R, et al. Biotin interference: evaluation of a new generation of electrochemiluminescent immunoassays for high-sensitive troponin T and thyroid-stimulating hormone testing. Clin Chem Lab Med. 2020;58(12):2037–2045.
  • Choi J, Yun SG. Comparison of biotin interference in second- and third-generation Roche free thyroxine immunoassays. Ann Lab Med. 2020;40(3):274–276.
  • D'Aurizio F, Biasotto A, Cipri C, et al. Thyroid function tests, incongruent internally and with thyroid status, both in a pregnant woman and in her newborn daughter. Eur Thyroid J. 2022;11:e210088.
  • Ricci V, Esteban MP, Sand G, et al. Interference of anti-streptavidin antibodies: more common than we thought? In relation to six confirmed cases. Clin Biochem. 2021;90:62–65.
  • Weiss RE, Refetoff S, et al. Thyroid function testing. Chapter 77. In Jameson JL, De Groot JL, de Kretser DM eds. Endocrinology: Adult and pediatric. 7th ed. Philadelphia, PA: Saunders Elsevier; 2016. p. 1444–1492.
  • García-González E, Aramendía M, Álvarez-Ballano D, et al. Serum sample containing endogenous antibodies interfering with multiple hormone immunoassays. Laboratory strategies to detect interference. Pract Lab Med. 2016;4:1–10.
  • Mongolu S, Armston AE, Mozley E, et al. Heterophilic antibody interference affecting multiple hormone assays: is it due to rheumatoid factor? Scand J Clin Lab Invest. 2016;76(3):240–242.
  • Trambas C, Lu Z, Yen T, et al. Depletion of biotin using streptavidin-coated microparticles: a validated solution to the problem of biotin interference in streptavidin-biotin immunoassays. Ann Clin Biochem. 2018;55(2):216–226.
  • Goettemoeller T, McShane AJ, Rao P. Misleading FT4 and FT3 due to immunoassay interference from autoantibodies. Clin Biochem. 2022;101:16–18.