475
Views
0
CrossRef citations to date
0
Altmetric
Invited Reviews

Laboratory testing for mitochondrial diseases: biomarkers for diagnosis and follow-up

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 270-289 | Received 30 Jun 2022, Accepted 04 Jan 2023, Published online: 24 Jan 2023

References

  • Zeviani M, Viscomi C. Mitochondrial neurodegeneration. Cells. 2022;11(4):637.
  • Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet. 2018;391(10139):2560–2574.
  • Stenton SL, Prokisch H. Genetics of mitochondrial diseases: identifying mutations to help diagnosis. EBioMedicine. 2020;56:102784.
  • Frazier AE, Thorburn DR, Compton AG. Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J Biol Chem. 2019;294(14):5386–5395.
  • Gorman GS, Chinnery PF, DiMauro S, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.
  • Mancuso M, McFarland R, Klopstock T, et al. International Workshop: outcome measures and clinical trial readiness in primary mitochondrial myopathies in children and adults. Consensus recommendations. 16–18 November 2016, Rome, Italy. Neuromuscul Disord. 2017;27(12):1126–1137.
  • Parikh S, Goldstein A, Karaa A, et al. Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med. 2017;19(12):1–18.
  • Koene S, van Bon L, Bertini E, et al. Outcome measures for children with mitochondrial disease: consensus recommendations for future studies from a Delphi-based International Workshop. J Inherit Metab Dis. 2018;41(6):1267–1273.
  • Rath S, Sharma R, Gupta R, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49(D1):D1541–D1547.
  • Kompare M, Rizzo WB. Mitochondrial fatty-acid oxidation disorders. Semin Pediatr Neurol. 2008;15(3):140–149.
  • Vianey-Saban C, Guffon N, Delolne F, et al. Diagnosis of inborn errors of metabolism by acylcarnitine profiling in blood using tandem mass spectrometry. J Inherit Metab Dis. 1997;20(3):411–414.
  • Touati G, Mochel F, Rabier D. Diagnostic procedures. In: Saudubray J-M, Baumgartner MR, Walter J, editors. Inborn metabolic diseases: diagnosis and treatment. 6th ed. Berlin: Springer; 2016. p. 91–108.
  • Couser N, Gucsavas-Calikoglu M. Mitochondrial disorders. In: Garg U, Smith LD, editor. Biomarkers in inborn errors of metabolism: clinical aspects and laboratory determination. 1st ed. Amsterdam: Elsevier; 2017. p. 167–190.
  • Yépez VA, Gusic M, Kopajtich R, et al. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med. 2022;14(1):38.
  • Kopajtich R, Smirnov D, Stenton SL, et al. Integration of proteomics with genomics and transcriptomics increases the diagnostic rate of Mendelian disorders. medRxiv. 2021; DOI:10.1101/2021.03.09.21253187
  • Witters P, Saada A, Honzik T, et al. Revisiting mitochondrial diagnostic criteria in the new era of genomics. Genet Med. 2018;20(4):444–451.
  • Suomalainen A, Elo JM, Pietiläinen KH, et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011;10(9):806–818.
  • Kalko SG, Paco S, Jou C, et al. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies. BMC Genomics. 2014;15:91.
  • Peñas A, Fernández-De la Torre M, Laine-Menéndez S, et al. Plasma gelsolin reinforces the diagnostic value of FGF-21 and GDF-15 for mitochondrial disorders. Int J Mol Sci. 2021;22(12):6396.
  • Maresca A, del Dotto V, Romagnoli M, et al. Expanding and validating the biomarkers for mitochondrial diseases. J Mol Med. 2020;98(10):1467–1478.
  • Trifunov S, Paredes-Fuentes AJ, Badosa C, et al. Circulating cell-free mitochondrial DNA in cerebrospinal fluid as a biomarker for mitochondrial diseases. Clin Chem. 2021;67(8):1113–1121.
  • Hubens WHG, Vallbona-Garcia A, de Coo IFM, et al. Blood biomarkers for assessment of mitochondrial dysfunction: an expert review. Mitochondrion. 2022;62:187–204.
  • Wallimann T, Wyss M, Brdiczka D, et al. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J. 1992;281(1):21–40.
  • Pajares S, Arias A, García-Villoria J, et al. Role of creatine as biomarker of mitochondrial diseases. Mol Genet Metab. 2013;108(2):119–124.
  • Mancuso M, Orsucci D, Coppede F, et al. Diagnostic approach to mitochondrial disorders: the need for a reliable biomarker. Curr Mol Med. 2009;9(9):1095–1107.
  • Koenig MK. Presentation and diagnosis of mitochondrial disorders in children. Pediatr Neurol. 2008;38(5):305–313.
  • Haas RH, Parikh S, Falk MJ, et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab. 2008;94(1):16–37.
  • Parikh S, Goldstein A, Koenig MK, et al. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med. 2015;17(9):689–701.
  • Patel KP, O'Brien TW, Subramony SH, et al. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab. 2012;106(3):385–394.
  • Debray FG, Mitchell GA, Allard P, et al. Diagnostic accuracy of blood lactate-to-pyruvate molar ratio in the differential diagnosis of congenital lactic acidosis. Clin Chem. 2007;53(5):916–921.
  • Li S, Gao D, Jiang Y. Function, detection and alteration of acylcarnitine metabolism in hepatocellular carcinoma. Metabolites. 2019;9(2):36.
  • Reuter SE, Evans AM. Carnitine and acylcarnitines. Clin Pharmacokinet. 2012;51(9):553–572.
  • Evans AM, Fornasini G. Pharmacokinetics of l-carnitine. Clin Pharmacokinet. 2003;42(11):941–967.
  • Fontaine M, Kim I, Dessein AF, et al. Fluxomic assay-assisted diagnosis orientation in a cohort of 11 patients with myopathic form of CPT2 deficiency. Mol Genet Metab. 2018;123(4):441–448.
  • McCann MR, de la Rosa MVG, Rosania GR, et al. l-Carnitine and acylcarnitines: mitochondrial biomarkers for precision medicine. Metabolites. 2021;11(1):51.
  • Morava E, Hogeveen M, de Vries M, et al. Normal serum alanine concentration differentiates transient neonatal lactic acidemia from an inborn error of energy metabolism. Biol Neonate. 2006;90(3):207–209.
  • Tyynismaa H, Carroll CJ, Raimundo N, et al. Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet. 2010;19(20):3948–3958.
  • Garone C, Minczuk M, Boenzi S, et al. Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem. 2018;62(3):443–454.
  • Davis RL, Liang C, Sue CM. A comparison of current serum biomarkers as diagnostic indicators of mitochondrial diseases. Neurology. 2016;86(21):2010–2015.
  • Varhaug KN, Hikmat O, Nakkestad HL, et al. Serum biomarkers in primary mitochondrial disorders. Brain Commun. 2021;3(1):fcaa222.
  • Huddar A, Govindaraj P, Chiplunkar S, et al. Serum fibroblast growth factor 21 and growth differentiation factor 15: two sensitive biomarkers in the diagnosis of mitochondrial disorders. Mitochondrion. 2021;60:170–177.
  • Tsygankova PG, Itkis YS, Krylova TD, et al. Plasma FGF-21 and GDF-15 are elevated in different inherited metabolic diseases and are not diagnostic for mitochondrial disorders. J Inherit Metab Dis. 2019;42(5):918–933.
  • Lehtonen JM, Auranen M, Darin N, et al. Diagnostic value of serum biomarkers FGF21 and GDF15 compared to muscle sample in mitochondrial disease. J Inherit Metab Dis. 2021;44(2):469–480.
  • Marín-Buera L, García-Bartolomé A, Morán M, et al. Differential proteomic profiling unveils new molecular mechanisms associated with mitochondrial complex III deficiency. J Proteomics. 2015;113:38–56.
  • Parikh S, Saneto R, Falk MJ, et al. A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol. 2009;11(6):414–430.
  • Montero R, Yubero D, Salgado MC, et al. Plasma coenzyme Q10 status is impaired in selected genetic conditions. Sci Rep. 2019;9(1):793.
  • Paredes-Fuentes AJ, Montero R, Codina A, et al. Coenzyme Q10 treatment monitoring in different human biological samples. Antioxidants. 2020;9(10):979.
  • Kumps A, Duez P, Mardens Y. Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem. 2002;48(5):708–717.
  • Kanungo S, Morton J, Neelakantan M, et al. Mitochondrial disorders. Ann Transl Med. 2018;6(24):475.
  • Kipper K, Hecht M, Antunes NJ, et al. Quantification of plasma and urine thymidine and 2′-deoxyuridine by LC–MS/MS for the pharmacodynamic evaluation of erythrocyte encapsulated thymidine phosphorylase in patients with mitochondrial neurogastrointestinal encephalomyopathy. J Clin Med. 2020;9(3):788.
  • Yubero D, Montero R, Ramos M, et al. Determination of urinary coenzyme Q10 by HPLC with electrochemical detection: reference values for a paediatric population. Biofactors. 2015;41(6):424–430.
  • Hall AM, Vilasi A, Garcia-Perez I, et al. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int. 2015;87(3):610–622.
  • Heeringa SF, Chernin G, Chaki M, et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest. 2011;121(5):2013–2024.
  • Chi CS. Diagnostic approach in infants and children with mitochondrial diseases. Pediatr Neonatol. 2015;56(1):7–18.
  • Chow SL, Rooney ZJ, Cleary MA, et al. The significance of elevated CSF lactate. Arch Dis Child. 2005;90(11):1188–1189.
  • Tondo M, Málaga I, O'Callaghan M, et al. Biochemical parameters to assess choroid plexus dysfunction in Kearns-Sayre syndrome patients. Mitochondrion. 2011;11(6):867–870.
  • Hikmat O, Naess K, Engvall M, et al. Elevated cerebrospinal fluid protein in POLG-related epilepsy: diagnostic and prognostic implications. Epilepsia. 2018;59(8):1595–1602.
  • Pope S, Artuch R, Heales S, et al. Cerebral folate deficiency: analytical tests and differential diagnosis. J Inherit Metab Dis. 2019;42(4):655–672.
  • Garcia-Cazorla A, Quadros EV, Nascimento A, et al. Mitochondrial diseases associated with cerebral folate deficiency. Neurology. 2008;70(16):1360–1362.
  • Ortigoza-Escobar JD, Molero-Luis M, Arias A, et al. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome. Brain. 2016;139(Pt 1):31–38.
  • Mayr JA, Freisinger P, Schlachter K, et al. Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway. Am J Hum Genet. 2011;89(6):806–812.
  • Marti-Sanchez L, Baide-Mairena H, Marcé-Grau A, et al. Delineating the neurological phenotype in children with defects in the ECHS1 or HIBCH gene. J Inherit Metab Dis. 2021;44(2):401–414.
  • Menezes MJ, Riley LG, Christodoulou J. Mitochondrial respiratory chain disorders in childhood: insights into diagnosis and management in the new era of genomic medicine. Biochim Biophys Acta. 2014;1840(4):1368–1379.
  • Phadke R. Myopathology of adult and paediatric mitochondrial diseases. J Clin Med. 2017;6(7):64.
  • Morava E, van den Heuvel L, Hol F, et al. Mitochondrial disease criteria: diagnostic applications in children. Neurology. 2006;67(10):1823–1826.
  • Jou C, Ortigoza-Escobar JD, O’Callaghan MM, et al. Muscle involvement in a large cohort of pediatric patients with genetic diagnosis of mitochondrial disease. J Clin Med. 2019;8(1):68.
  • Bakare AB, Lesnefsky EJ, Iyer S. Leigh syndrome: a tale of two genomes. Front Physiol. 2021;12:693734.
  • Moraes CT, Atencio DP, Oca-Cossio J, et al. Techniques and pitfalls in the detection of pathogenic mitochondrial DNA mutations. J Mol Diagn. 2003;5(4):197–208.
  • Kukat C, Wurm CA, Spåhr H, et al. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A. 2011;108(33):13534–13539.
  • Carelli V. Keeping in shape the dogma of mitochondrial DNA maternal inheritance. PLoS Genet. 2015;11(5):e1005179.
  • Luo S, Valencia CA, Zhang J, et al. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci U S A. 2018;115(51):13039–13044.
  • Wallace DC, Ye JH, Neckelmann SN, et al. Sequence analysis of cDNAs for the human and bovine ATP synthase beta subunit: mitochondrial DNA genes sustain seventeen times more mutations. Curr Genet. 1987;12(2):81–90.
  • Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331(6158):717–719.
  • Wong L-JC. Molecular genetics of mitochondrial disorders. Dev Disabil Res Rev. 2010;16(2):154–162.
  • Bris C, Goudenege D, Desquiret-Dumas V, et al. Bioinformatics tools and databases to assess the pathogenicity of mitochondrial DNA variants in the field of next generation sequencing. Front Genet. 2018;9:632.
  • Ip EKK, Troup M, Xu C, et al. Benchmarking the effectiveness and accuracy of multiple mitochondrial DNA variant callers: practical implications for clinical application. Front Genet. 2022;13:692257.
  • Zhang P, Samuels DC, Lehmann B, et al. Mitochondria sequence mapping strategies and practicability of mitochondria variant detection from exome and RNA sequencing data. Brief Bioinform. 2016;17(2):224–232.
  • Wagner M, Berutti R, Lorenz-Depiereux B, et al. Mitochondrial DNA mutation analysis from exome sequencing-A more holistic approach in diagnostics of suspected mitochondrial disease. J Inherit Metab Dis. 2019;42(5):909–917.
  • Kerr M, Hume S, Omar F, et al. MITO-FIND: a study in 390 patients to determine a diagnostic strategy for mitochondrial disease. Mol Genet Metab. 2020;131(1–2):66–82.
  • Bellusci M, Paredes-Fuentes AJ, Ruiz-Pesini E, et al. The genetic landscape of mitochondrial diseases in Spain: a nationwide call. Genes. 2021;12(10):1590.
  • Abicht A, Scharf F, Kleinle S, et al. Mitochondrial and nuclear disease panel (Mito-and-Panel): combined sequencing of mitochondrial and nuclear DNA by a cost-effective and sensitive NGS-based method. Mol Genet Genomic Med. 2018;6(6):1188–1198.
  • Legati A, Reyes A, Nasca A, et al. New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies. Biochim Biophys Acta. 2016;1857(8):1326–1335.
  • Schon KR, Horvath R, Wei W, et al. Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study. BMJ. 2021;375:e066288.
  • van der Ven AT, Johannsen J, Kortüm F, et al. Prevalence and clinical prediction of mitochondrial disorders in a large neuropediatric cohort. Clin Genet. 2021;100(6):766–770.
  • Tolomeo D, Orsucci D, Nesti C, et al. The diagnostic approach to mitochondrial disorders in children in the era of next-generation sequencing: a 4-year cohort study. J Clin Med. 2021;10(15):3222.
  • Forny P, Footitt E, Davison JE, et al. Diagnosing mitochondrial disorders remains challenging in the omics era. Neurol Genet. 2021;7(3):e597.
  • Wortmann SB, Koolen DA, Smeitink JA, et al. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis. 2015;38(3):437–443.
  • Plutino M, Chaussenot A, Rouzier C, et al. Targeted next generation sequencing with an extended gene panel does not impact variant detection in mitochondrial diseases. BMC Med Genet. 2018;19(1):57.
  • Köhler S, Gargano M, Matentzoglu N, et al. The human phenotype ontology in 2021. Nucleic Acids Res. 2021;49(D1):D1207–D1217.
  • Köhler S, Doelken SC, Mungall CJ, et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 2014;42(Database issue):D966–D974.
  • Schlüter A, Rodríguez-Palmero A, Verdura E, et al. Diagnosis of genetic white matter disorders by singleton whole-exome and genome sequencing using interactome-driven prioritization. Neurology. 2022;98(9):e912–e923.
  • Yim A, Koti P, Bonnard A, et al. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations. Nucleic Acids Res. 2020;48(2):605–632.
  • Maude H, Davidson M, Charitakis N, et al. NUMT confounding biases mitochondrial heteroplasmy calls in favor of the reference allele. Front Cell Dev Biol. 2019;7:201.
  • Legati A, Zanetti N, Nasca A, et al. Current and new next-generation sequencing approaches to study mitochondrial DNA. J Mol Diagn. 2021;23(6):732–741.
  • Gusic M, Prokisch H. ncRNAs: new players in mitochondrial health and disease? Front Genet. 2020;11:95.
  • Jusic A, Devaux Y, EU-CardioRNA COST Action (CA17129). Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol. 2020;115(3):23.
  • de Silva D, Tu YT, Amunts A, et al. Mitochondrial ribosome assembly in health and disease. Cell Cycle. 2015;14(14):2226–2250.
  • Tai Y, Chen J, Tao Z, et al. Non-coding RNAs: new players in mitophagy and neurodegeneration. Neurochem Int. 2022;152:105253.
  • Ji Y, Zhang J, Liang M, et al. Mitochondrial tRNA variants in 811 Chinese probands with Leber’s hereditary optic neuropathy. Mitochondrion. 2022;65:56–66.
  • Meseguer S, Martínez-Zamora A, García-Arumí E, et al. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet. 2015;24(1):167–184.
  • Mukherji S, Ebert MS, Zheng GXY, et al. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43(9):854–859.
  • Yong FL, Wang CW, Tan KS. MicroRNA expression profile of a Malaysian Bajau family with familial mitochondrial neurogastrointestinal encephalomyopathy. Genet Mol Res. 2015;14(4):13172–13183.
  • Wang W, Zhuang Q, Ji K, et al. Identification of miRNA, lncRNA and mRNA-associated ceRNA networks and potential biomarker for MELAS with mitochondrial DNA A3243G mutation. Sci Rep. 2017;7:41639.
  • Zhong S, Ng MC, Lo YM, et.al. Presence of mitochondrial tRNA Leu(UUR) a to G 3243 mutation in DNA extracted from serum and plasma of patients with type 2 diabetes mellitus. J Clin Pathol. 2000;53(6):466–469.
  • Lowes H, Pyle A, Santibanez-Koref M, et al. Circulating cell-free mitochondrial DNA levels in Parkinson’s disease are influenced by treatment. Mol Neurodegener. 2020;15(1):10.
  • Gambardella S, Limanaqi F, Ferese R, et al. ccf-mtDNA as a potential link between the brain and immune system in neuro-immunological disorders. Front Immunol. 2019;10:1064.
  • Artuch R, Vilaseca MA, Farré C, et al. Determination of lactate, pyruvate, beta-hydroxybutyrate and acetoacetate with a centrifugal analyser. Eur J Clin Chem Clin Biochem. 1995;33(8):529–533.
  • Wijngaard R, Perramón M, Parra-Robert M, et al. Validation of a gas chromatography–mass spectrometry method for the measurement of the redox state metabolic ratios lactate/pyruvate and β-hydroxybutyrate/acetoacetate in biological samples. Int J Mol Sci. 2021;22(9):4752.
  • Casado M, Sierra C, Batllori M, et al. A targeted metabolomic procedure for amino acid analysis in different biological specimens by ultra-high-performance liquid chromatography–tandem mass spectrometry. Metabolomics. 2018;14(6):76.
  • NIST MS Search Program v.2.2. chemdata:ms-search Mass Spectrometry Data Center; 2016 [Internet] [cited 2022 Jun 28]. Available from: https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:ms-search
  • Prieto JA, Andrade F, Aldámiz-Echevarría L, et al. Determination of free and total carnitine in plasma by an enzymatic reaction and spectrophotometric quantitation spectrophotometric determination of carnitine. Clin Biochem. 2006;39(10):1022–1027.
  • Minkler PE, Stoll MSK, Ingalls ST, et al. Quantitative acylcarnitine determination by UHPLC–MS/MS – going beyond tandem MS acylcarnitine “profiles”. Mol Genet Metab. 2015;116(4):231–241.
  • Elecsys® GDF-15; 2022 [cited 2022 Jun 28]. Available from: https://diagnostics.roche.com/global/en/products/params/elecsys-gdf-15.html
  • Batllori M, Molero-Luis M, Ormazabal A, et al. Analysis of human cerebrospinal fluid monoamines and their cofactors by HPLC. Nat Protoc. 2017;12(11):2359–2375.
  • Karrar E, Ahmed IAM, Manzoor MF, et al. Lipid-soluble vitamins from dairy products: extraction, purification, and analytical techniques. Food Chem. 2022;373(Pt B):131436.
  • Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83(22):8604–8610.
  • Lambrescu I, Popa A, Manole E, et al. Application of droplet digital PCR technology in muscular dystrophies research. Int J Mol Sci. 2022;23(9):4802.
  • Chen B, Jiang Y, Cao X, et al. Droplet digital PCR as an emerging tool in detecting pathogens nucleic acids in infectious diseases. Clin Chim Acta. 2021;517:156–161.
  • Olmedillas-López S, Olivera-Salazar R, García-Arranz M, et al. Current and emerging applications of droplet digital PCR in oncology: an updated review. Mol Diagn Ther. 2022;26(1):61–87.
  • Macken WL, Vandrovcova J, Hanna MG, et al. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat Rev Neurol. 2021;17(4):215–230.
  • Buzkova J, Nikkanen J, Ahola S, et al. Metabolomes of mitochondrial diseases and inclusion body myositis patients: treatment targets and biomarkers. EMBO Mol Med. 2018;10(12):e9091.
  • Sharma R, Reinstadler B, Engelstad K, et al. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest. 2021;131:e136055.
  • Wevers RA, Blau N. Think big – think omics. J Inherit Metab Dis. 2018;41(3):281–283.
  • Hoegen B, Hampstead JE, Engelke UFH, et al. Application of metabolite set enrichment analysis on untargeted metabolomics data prioritises relevant pathways and detects novel biomarkers for inherited metabolic disorders. J Inherit Metab Dis. 2022;45(4):682–695.
  • Hoegen B, Zammit A, Gerritsen A, et al. Metabolomics-based screening of inborn errors of metabolism: enhancing clinical application with a robust computational pipeline. Metabolites. 2021;11(9):568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.