1,643
Views
0
CrossRef citations to date
0
Altmetric
Invited Reviews

Progress in understanding primary glomerular disease: insights from urinary proteomics and in-depth analyses of potential biomarkers based on bioinformatics

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 346-365 | Received 17 Oct 2022, Accepted 06 Feb 2023, Published online: 23 Feb 2023

References

  • Chebotareva N, Vinogradov A, McDonnell V, et al. Urinary protein and peptide markers in chronic kidney disease. Int J Mol Sci. 2021;22(22):12123.
  • Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLOS One. 2016;11(7):e0158765.
  • Levey AS, Eckardt KU, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2005;67(6):2089–2100.
  • Pani A. Standard immunosuppressive therapy of immune-mediated glomerular diseases. Autoimmun Rev. 2013;12(8):848–853.
  • Navas-Carrillo D, Rodriguez JM, Montoro-García S, et al. High-resolution proteomics and metabolomics in thyroid cancer: deciphering novel biomarkers. Crit Rev Clin Lab Sci. 2017;54(7–8):446–457.
  • Paul P, Antonydhason V, Gopal J, et al. Bioinformatics for renal and urinary proteomics: call for aggrandization. Int J Mol Sci. 2020;21(3):961.
  • Wen Y, Parikh CR. Current concepts and advances in biomarkers of acute kidney injury. Crit Rev Clin Lab Sci. 2021;58(5):354–368.
  • Wu J, Chen YD, Gu W. Urinary proteomics as a novel tool for biomarker discovery in kidney diseases. J Zhejiang Univ Sci B. 2010;11(4):227–237.
  • Chu L, Fu G, Meng Q, et al. Identification of urinary biomarkers for type 2 diabetes using bead-based proteomic approach. Diabetes Res Clin Pract. 2013;101(2):187–193.
  • Fang X, Lu M, Xia Z, et al. Use of liquid chromatography-tandem mass spectrometry to perform urinary proteomic analysis of children with IgA nephropathy and Henoch-Schönlein purpura nephritis. J Proteomics. 2021;230:103979.
  • Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996;13:19–50.
  • Marshall T, Williams K. Two-dimensional electrophoresis of human urinary proteins following concentration by dye precipitation. Electrophoresis. 1996;17(7):1265–1272.
  • Heine G, Raida M, Forssmann WG. Mapping of peptides and protein fragments in human urine using liquid chromatography-mass spectrometry. J Chromatogr A. 1997;776(1):117–124.
  • Thongboonkerd V, McLeish KR, Arthur JM, et al. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int. 2002;62(4):1461–1469.
  • Adachi J, Kumar C, Zhang Y, et al. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol. 2006;7(9):R80.
  • Zhang F, Li X, Ni Y, et al. Preliminary study of the urinary proteome in Li and Han ethnic individuals from Hainan. Sci China Life Sci. 2020;63(1):125–137.
  • Bellei E, Rossi E, Lucchi L, et al. Proteomic analysis of early urinary biomarkers of renal changes in type 2 diabetic patients. Proteomics Clin Appl. 2008;2(4):478–491.
  • Albert C, Albert A, Kube J, et al. Urinary biomarkers may provide prognostic information for subclinical acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg. 2018;155(6):2441–2452.e13.
  • Chu Y, Lai YH, Lee MC, et al. Calsyntenin-1, clusterin and neutrophil gelatinase-associated lipocalin are candidate serological biomarkers for lung adenocarcinoma. Oncotarget. 2017;8(64):107964–107976.
  • Marimuthu A, O'Meally RN, Chaerkady R, et al. A comprehensive map of the human urinary proteome. J Proteome Res. 2011;10(6):2734–2743.
  • Papadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, et al. Biomarkers of diabetic nephropathy: a 2017 update. Crit Rev Clin Lab Sci. 2017;54(5):326–342.
  • Jarrick S, Lundberg S, Welander A, et al. Mortality in IgA nephropathy: a nationwide population-based cohort study. J Am Soc Nephrol. 2019;30(5):866–876.
  • Reid S, Cawthon PM, Craig JC, et al. Non-immunosuppressive treatment for IgA nephropathy. Cochrane Database Syst Rev. 2011;16(3):Cd003962.
  • McGrogan A, Franssen CF, de Vries CS. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant. 2011;26(2):414–430.
  • Zaza G, Bernich P, Lupo A, ‘Triveneto’ Register of Renal Biopsies (TVRRB). Incidence of primary glomerulonephritis in a large North-Eastern Italian area: a 13-year renal biopsy study. Nephrol Dial Transplant. 2013;28(2):367–372.
  • Cambier A, Gleeson PJ, Abbad L, et al. Soluble CD89 is a critical factor for mesangial proliferation in childhood IgA nephropathy. Kidney Int. 2022;101(2):274–287.
  • Dotz V, Visconti A, Lomax-Browne HJ, et al. O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function. J Am Soc Nephrol. 2021;32(10):2455–2465.
  • Tortajada A, Gutierrez E, Pickering MC, et al. The role of complement in IgA nephropathy. Mol Immunol. 2019;114:123–132.
  • Lafayette RA, Kelepouris E. Immunoglobulin a nephropathy: advances in understanding of pathogenesis and treatment. Am J Nephrol. 2018;47(Suppl 1):43–52.
  • Pattrapornpisut P, Avila-Casado C, Reich HN. IgA nephropathy: core curriculum 2021. Am J Kidney Dis. 2021;78(3):429–441.
  • Zambrano S, He L, Kano T, et al. Molecular insights into the early stage of glomerular injury in IgA nephropathy using single-cell RNA sequencing. Kidney Int. 2022;101(4):752–765.
  • Li H, Chen Z, Chen W, et al. MicroRNA-23b-3p deletion induces an IgA nephropathy-like disease associated with dysregulated mucosal IgA synthesis. J Am Soc Nephrol. 2021;32(10):2561–2578.
  • Barratt J, Feehally J. IgA nephropathy. J Am Soc Nephrol. 2005;16(7):2088–2097.
  • Rops A, Jansen E, van der Schaaf A, et al. Interleukin-6 is essential for glomerular immunoglobulin a deposition and the development of renal pathology in Cd37-deficient mice. Kidney Int. 2018;93(6):1356–1366.
  • van Delft MAM, Huizinga TWJ. An overview of autoantibodies in rheumatoid arthritis. J Autoimmun. 2020;110:102392.
  • Haubitz M, Wittke S, Weissinger EM, et al. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int. 2005;67(6):2313–2320.
  • Julian BA, Wittke S, Novak J, et al. Electrophoretic methods for analysis of urinary polypeptides in IgA-associated renal diseases. Electrophoresis. 2007;28(23):4469–4483.
  • He Q, Shao L, Yu J, et al. Urinary proteome analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with magnetic beads for identifying the pathologic presentation of clinical early IgA nephropathy. J Biomed Nanotechnol. 2012;8(1):133–139.
  • Kalantari S, Rutishauser D, Samavat S, et al. Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography. PLOS One. 2013;8(12):e80830.
  • Rudnicki M, Siwy J, Wendt R, PERSTIGAN Working Group, et al. Urine proteomics for prediction of disease progression in patients with IgA nephropathy. Nephrol Dial Transplant. 2021;37(1):42–52.
  • Guo Z, Wang Z, Lu C, et al. Analysis of the differential urinary protein profile in IgA nephropathy patients of uygur ethnicity. BMC Nephrol. 2018;19(1):358.
  • Mucha K, Bakun M, Jaźwiec R, et al. Complement components, proteolysis‑related, and cell communication‑related proteins detected in urine proteomics are associated with IgA nephropathy. Pol Arch Med Wewn. 2014;124(7-8):380–386.
  • Samavat S, Kalantari S, Nafar M, et al. Diagnostic urinary proteome profile for immunoglobulin a nephropathy. Iran J Kidney Dis. 2015;9(3):239–248.
  • Ning X, Yin Z, Li Z, et al. Comparative proteomic analysis of urine and laser microdissected glomeruli in IgA nephropathy. Clin Exp Pharmacol Physiol. 2017;44(5):576–585.
  • Navarro-Muñoz M, Ibernon M, Bonet J, et al. Uromodulin and α(1)-antitrypsin urinary peptide analysis to differentiate glomerular kidney diseases. Kidney Blood Press Res. 2012;35(5):314–325.
  • Rood IM, Merchant ML, Wilkey DW, et al. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy. Proteomics. 2015;15(21):3722–3730.
  • Choi YW, Kim YG, Song MY, et al. Potential urine proteomics biomarkers for primary nephrotic syndrome. Clin Proteomics. 2017;14:18.
  • Pang L, Li Q, Li Y, et al. Urine proteomics of primary membranous nephropathy using nanoscale liquid chromatography tandem mass spectrometry analysis. Clin Proteomics. 2018;15:5.
  • Zhang MF, Huang J, Zhang YM, et al. Complement activation products in the circulation and urine of primary membranous nephropathy. BMC Nephrol. 2019;20(1):313.
  • Lin B, Liu J, Zhang Y, et al. Urinary peptidomics reveals proteases involved in idiopathic membranous nephropathy. BMC Genomics. 2021;22(1):852.
  • Araumi A, Osaki T, Ichikawa K, et al. Urinary and plasma proteomics to discover biomarkers for diagnosing between diabetic nephropathy and minimal change nephrotic syndrome or membranous nephropathy. Biochem Biophys Rep. 2021;27:101102.
  • Pérez V, Ibernón M, López D, et al. Urinary peptide profiling to differentiate between minimal change disease and focal segmental glomerulosclerosis. PLOS One. 2014;9(1):e87731.
  • Kalantari S, Nafar M, Samavat S, et al. Urinary prognostic biomarkers in patients with focal segmental glomerulosclerosis. Nephrourol Mon. 2014;6(2):e16806.
  • Nafar M, Kalantari S, Samavat S, et al. The novel diagnostic biomarkers for focal segmental glomerulosclerosis. Int J Nephrol. 2014;2014:574261.
  • Pérez V, López D, Boixadera E, et al. Comparative differential proteomic analysis of minimal change disease and focal segmental glomerulosclerosis. BMC Nephrol. 2017;18(1):49.
  • Siwy J, Zürbig P, Argiles A, et al. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant. 2017;32(12):2079–2089.
  • Wang Y, Zheng C, Wang X, et al. Proteomic profile‑based screening of potential protein biomarkers in the urine of patients with nephrotic syndrome. Mol Med Rep. 2017;16(5):6276–6284.
  • Couser WG. Primary membranous nephropathy. Clin J Am Soc Nephrol. 2017;12(6):983–997.
  • Ronco P, Debiec H. Pathophysiological advances in membranous nephropathy: time for a shift in patient’s care. Lancet. 2015;385(9981):1983–1992.
  • Safar-Boueri L, Piya A, Beck LH, Jr., et al. Membranous nephropathy: diagnosis, treatment, and monitoring in the post-PLA2R era. Pediatr Nephrol. 2021;36(1):19–30.
  • Liu W, Gao C, Liu Z, et al. Idiopathic membranous nephropathy: glomerular pathological pattern caused by extrarenal immunity activity. Front Immunol. 2020;11:1846.
  • Liu W, Gao C, Dai H, et al. Immunological pathogenesis of membranous nephropathy: focus on PLA2R1 and its role. Front Immunol. 2019;10:1809.
  • Gu Y, Xu H, Tang D. Mechanisms of primary membranous nephropathy. Biomolecules. 2021;11(4):513.
  • Sethi S. New 'antigens’ in membranous nephropathy. J Am Soc Nephrol. 2021;32(2):268–278.
  • Lv M, Li W, Tao R, et al. Spatial-spectral density peaks-based discriminant analysis for membranous nephropathy classification using microscopic hyperspectral images. IEEE J Biomed Health Inform. 2021;25(8):3041–3051.
  • Beck LH, Jr., Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361(1):11–21.
  • Coenen MJ, Hofstra JM, Debiec H, et al. Phospholipase A2 receptor (PLA2R1) sequence variants in idiopathic membranous nephropathy. J Am Soc Nephrol. 2013;24(4):677–683.
  • Bobart SA, De Vriese AS, Pawar AS, et al. Noninvasive diagnosis of primary membranous nephropathy using phospholipase A2 receptor antibodies. Kidney Int. 2019;95(2):429–438.
  • Qin W, Beck LH, Jr., Zeng C, et al. Anti-phospholipase A2 receptor antibody in membranous nephropathy. J Am Soc Nephrol. 2011;22(6):1137–1143.
  • Ngai HH, Sit WH, Jiang PP, et al. Markedly increased urinary preprohaptoglobin and haptoglobin in passive Heymann nephritis: a differential proteomics approach. J Proteome Res. 2007;6(8):3313–3320.
  • Aregger F, Uehlinger DE, Witowski J, et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury. Kidney Int. 2014;85(4):909–919.
  • Yang Y, Wei J, Huang X, et al. iTRAQ-based proteomics of chronic renal failure rats after FuShengong decoction treatment reveals haptoglobin and alpha-1-antitrypsin as potential biomarkers. Evid Based Complement Alternat Med. 2017;2017:1480514.
  • Smith A, L'Imperio V, De Sio G, et al. α-1-Antitrypsin detected by MALDI imaging in the study of glomerulonephritis: its relevance in chronic kidney disease progression. Proteomics. 2016;16(11–12):1759–1766.
  • Vivarelli M, Massella L, Ruggiero B, et al. Minimal change disease. Clin J Am Soc Nephrol. 2017;12(2):332–345.
  • Hogan J, Radhakrishnan J. The treatment of minimal change disease in adults. J Am Soc Nephrol. 2013;24(5):702–711.
  • Meyrier AY. Treatment of focal segmental glomerulosclerosis with immunophilin modulation: when did we stop thinking about pathogenesis? Kidney Int. 2009;76(5):487–491.
  • De Vriese AS, Wetzels JF, Glassock RJ, et al. Therapeutic trials in adult FSGS: lessons learned and the road forward. Nat Rev Nephrol. 2021;17(9):619–630.
  • Meyrier A, Niaudet P. Acute kidney injury complicating nephrotic syndrome of minimal change disease. Kidney Int. 2018;94(5):861–869.
  • Chugh SS, Clement LC, Macé C. New insights into human minimal change disease: lessons from animal models. Am J Kidney Dis. 2012;59(2):284–292.
  • Maas RJ, Deegens JK, Smeets B, et al. Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat Rev Nephrol. 2016;12(12):768–776.
  • Ahn W, Bomback AS. Approach to diagnosis and management of primary glomerular diseases due to podocytopathies in adults: core curriculum 2020. Am J Kidney Dis. 2020;75(6):955–964.
  • Moura LR, Franco MF, Kirsztajn GM. Minimal change disease and focal segmental glomerulosclerosis in adults: response to steroids and risk of renal failure. J Bras Nefrol. 2015;37(4):475–480.
  • Garin EH, Mu W, Arthur JM, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int. 2010;78(3):296–302.
  • van de Lest NA, Zandbergen M, Wolterbeek R, et al. Glomerular C4d deposition can precede the development of focal segmental glomerulosclerosis. Kidney Int. 2019;96(3):738–749.
  • Deegens JK, Dijkman HB, Borm GF, et al. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int. 2008;74(12):1568–1576.
  • Taneda S, Honda K, Ohno M, et al. Podocyte and endothelial injury in focal segmental glomerulosclerosis: an ultrastructural analysis. Virchows Arch. 2015;467(4):449–458.
  • Williams AM, Jensen DM, Pan X, et al. Histologically resolved small RNA maps in primary focal segmental glomerulosclerosis indicate progressive changes within glomerular and tubulointerstitial regions. Kidney Int. 2022;101(4):766–778.
  • Kalantari S, Nafar M, Rutishauser D, et al. Predictive urinary biomarkers for steroid-resistant and steroid-sensitive focal segmental glomerulosclerosis using high resolution mass spectrometry and multivariate statistical analysis. BMC Nephrol. 2014;15:141.
  • Wang Y, Zheng C, Xu F, et al. Urinary fibrinogen and renal tubulointerstitial fibrinogen deposition: discriminating between primary FSGS and minimal change disease. Biochem Biophys Res Commun. 2016;478(3):1147–1152.
  • Schwaller B. Calretinin: from a "simple" Ca(2+) buffer to a multifunctional protein implicated in many biological processes. Front Neuroanat. 2014;8:3.
  • Biryukov S, Stoute JA. Complement activation in malaria: friend or foe? Trends Mol Med. 2014;20(5):293–301.
  • Niculescu F, Rus H. The role of complement activation in atherosclerosis. Immunol Res. 2004;30(1):73–80.
  • Bachmann M, Kukkurainen S, Hytönen VP, et al. Cell adhesion by integrins. Physiol Rev. 2019;99(4):1655–1699.
  • Tada H, Nishioka T, Takase A, et al. Porphyromonas gingivalis induces the production of interleukin-31 by human mast cells, resulting in dysfunction of the gingival epithelial barrier. Cell Microbiol. 2019;21(3):e12972.
  • Kochi S, Yamashiro K, Hongo S, et al. Aggregatibacter actinomycetemcomitans regulates the expression of integrins and reduces cell adhesion via integrin α5 in human gingival epithelial cells. Mol Cell Biochem. 2017;436(1–2):39–48.
  • Shi SF, Wang SX, Zhang YK, et al. Ultrastructural features and expression of cytoskeleton proteins of podocyte from patients with minimal change disease and focal segmental glomerulosclerosis. Ren Fail. 2008;30(5):477–483.
  • Ye Q, Lan B, Liu H, et al. A critical role of the podocyte cytoskeleton in the pathogenesis of glomerular proteinuria and autoimmune podocytopathies. Acta Physiol (Oxf). 2022;235(4):e13850.
  • Gao W, Liu Y, Fan L, et al. Role of γ-adducin in actin cytoskeleton rearrangements in podocyte pathophysiology. Am J Physiol Renal Physiol. 2021;320(1):F97–F113.