208
Views
0
CrossRef citations to date
0
Altmetric
Invited Reviews

Inherited causes of exocrine pancreatic insufficiency in pediatric patients: clinical presentation and laboratory testing

, &
Pages 366-381 | Received 01 Nov 2022, Accepted 09 Feb 2023, Published online: 06 Mar 2023

References

  • National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Pancreatitis in Children 2020. Available from: https://www.niddk.nih.gov/news/archive/2020/story-discovery-prancreatitis-children.
  • Cystic Fibrosis Foundation, Bethesda MD, www.cff.org., (accessed Sept 20, 2022. Bethesda, MD.
  • Guo J, Garratt A, Hill A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J Cyst Fibros. 2022 ;21(3):456–462.
  • Shteinberg M, Haq IJ, Polineni D, et al. Cystic fibrosis. Lancet. 2021;397(10290):2195–2211.
  • Angyal D, Bijvelds MJC, Bruno MJ, et al. Bicarbonate transport in cystic fibrosis and pancreatitis. Cells. 2021;11(1):54.
  • Kayani K, Mohammed R, Mohiaddin H. Cystic fibrosis-related diabetes. Front Endocrinol . 2018;9:20.
  • Kerem E, Corey M, Kerem BS, et al. The relation between genotype and phenotype in cystic fibrosis–analysis of the most common mutation (Delta F508). N Engl J Med. 1990; 323(22):1517–1522.
  • Durie PR, Forstner GG. Pathophysiology of the exocrine pancreas in cystic fibrosis. J R Soc Med. 1989;82(Suppl 16):2–10.
  • O'Sullivan BP, Baker D, Leung KG, et al. Evolution of pancreatic function during the first year in infants with cystic fibrosis. J Pediatr. 2013;162(4):808–812.e1.
  • De Boeck K, Weren M, Proesmans M, et al. Pancreatitis among patients with cystic fibrosis: correlation with pancreatic status and genotype. Pediatrics. 2005; 115(4):e463-9–e469.
  • Durno C, Corey M, Zielenski J, et al. Genotype and phenotype correlations in patients with cystic fibrosis and pancreatitis. Gastroenterology. 2002; 123(6):1857–1864.
  • Ooi CY, Dorfman R, Cipolli M, et al. Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis. Gastroenterology. 2011; 140(1):153–161.
  • Guda NM, Muddana V, Whitcomb DC, et al. Recurrent acute pancreatitis: international state-of-the-science conference with recommendations. Pancreas. 2018; 47(6):653–666.
  • Freeman AJ, Ooi CY. Pancreatitis and pancreatic cystosis in cystic fibrosis. J Cyst Fibros. 2017;16 Suppl 2(Suppl 2):S79–S86.
  • Sellers ZM. Pancreatic complications in children with cystic fibrosis. Curr Opin Pediatr. 2020;32(5):661–667.
  • Freswick PN, Reid EK, Mascarenhas MR. Pancreatic enzyme replacement therapy in cystic fibrosis. Nutrients. 2022;14(7):1341.
  • Singh VK, Schwarzenberg SJ. Pancreatic insufficiency in cystic fibrosis. J Cyst Fibros. 2017;16(Suppl 2):S70–S78.
  • Scotet V, Gutierrez H, Farrell PM. Newborn screening for CF across the globe – Where is it worthwhile? Int J Neonatal Screen. 2020; 6(1):18.
  • Comeau AM, Parad RB, Dorkin HL, et al. Population-based newborn screening for genetic disorders when multiple mutation DNA testing is incorporated: a cystic fibrosis newborn screening model demonstrating increased sensitivity but more carrier detections. Pediatrics. 2004; 113(6):1573–1581.
  • Pique L, Graham S, Pearl M, et al. Cystic fibrosis newborn screening programs: implications of the CFTR variant spectrum in nonwhite patients. Genet Med. 2017;19(1):36–44.
  • Bell SC, Mall MA, Gutierrez H, et al. The future of cystic fibrosis care: a global perspective. Lancet Respir Med. 2020; 8(1):65–124.
  • Brownell JN, Bashaw H, Stallings VA. Growth and nutrition in cystic fibrosis. Semin Respir Crit Care Med. 2019;40(6):775–791.
  • Reilly JJ, Edwards CA, Weaver LT. Malnutrition in children with cystic fibrosis: the energy-balance equation. J Pediatr Gastroenterol Nutr. 1997;25(2):127–136.
  • Stephenson AL, Mannik LA, Walsh S, et al. Longitudinal trends in nutritional status and the relation between lung function and BMI in cystic fibrosis: a population-based cohort study. Am J Clin Nutr. 2013; 97(4):872–877.
  • Yen EH, Quinton H, Borowitz D. Better nutritional status in early childhood is associated with improved clinical outcomes and survival in patients with cystic fibrosis. J Pediatr. 2013;162(3):530–535 e1.
  • Daftary A, Acton J, Heubi J, et al. Fecal elastase-1: utility in pancreatic function in cystic fibrosis. J Cyst Fibros. 2006;5(2):71–76.
  • Struyvenberg MR, Martin CR, Freedman SD. Practical guide to exocrine pancreatic insufficiency - Breaking the myths. BMC Med. 2017; 15(1):29.
  • Bierlaagh MC, Muilwijk D, Beekman JM, et al. A new era for people with cystic fibrosis. Eur J Pediatr. 2021; 180(9):2731–2739.
  • Fortner CN, Seguin JM, Kay DM. Normal pancreatic function and false-negative CF newborn screen in a child born to a mother taking CFTR modulator therapy during pregnancy. J Cyst Fibros. 2021; 20(5):835–836.
  • Davies JC, Cunningham S, Harris WT, et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2–5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir Med. 2016;4(2):107–115.
  • Rosenfeld M, Cunningham S, Harris WT, et al. An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2–5years (KLIMB). J Cyst Fibros. 2019;18(6):838–843.
  • Rosenfeld M, Wainwright CE, Higgins M, et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): a phase 3 single-arm study. Lancet Respir Med. 2018; 6(7):545–553.
  • Stallings VA, Sainath N, Oberle M, et al. Energy balance and mechanisms of weight gain with ivacaftor treatment of cystic fibrosis gating mutations. J Pediatr. 2018;201:229–237.e4.
  • Megalaa R, Gopalareddy V, Champion E, et al. Time for a gut check: pancreatic sufficiency resulting from CFTR modulator use. Pediatr Pulmonol. 2019;54(8):E16–e18.
  • Smith H, Rayment JH. Sustained recovery of exocrine pancreatic function in a teenager with cystic fibrosis treated with ivacaftor. Pediatr Pulmonol. 2020; 55(10):2493–2494. `
  • Munce D, Lim M, Akong K. Persistent recovery of pancreatic function in patients with cystic fibrosis after ivacaftor. Pediatr Pulmonol. 2020; 55(12):3381–3383.
  • Akshintala VS, Kamal A, Faghih M, et al. Cystic fibrosis transmembrane conductance regulator modulators reduce the risk of recurrent acute pancreatitis among adult patients with pancreas sufficient cystic fibrosis. Pancreatology. 2019; 19(8):1023–1026.
  • Ramsey ML, Gokun Y, Sobotka LA, et al. Cystic fibrosis transmembrane conductance regulator modulator use is associated with reduced pancreatitis hospitalizations in patients with cystic fibrosis. Am J Gastroenterol. 2021;116(12):2446–2454.
  • Gould MJ, Smith H, Rayment JH, et al. CFTR modulators increase risk of acute pancreatitis in pancreatic insufficient patients with cystic fibrosis. J Cyst Fibros. 2022; 21(4):600–602.
  • McKay IR, Ooi CY. The exocrine pancreas in cystic fibrosis in the era of CFTR modulation: a mini review. Front Pediatr. 2022;10:914790.
  • Liu QY, Abu-El-Haija M, Husain SZ, et al. Risk factors for rapid progression from acute recurrent to chronic pancreatitis in children: report from INSPPIRE. J Pediatr Gastroenterol Nutr. 2019; 69(2):206–211.
  • LaRusch J, Lozano-Leon A, Stello K, et al. The common chymotrypsinogen C (CTRC) variant G60G (C.180T) Increases risk of chronic pancreatitis but not recurrent acute pancreatitis in a North American population. Clin Transl Gastroenterol. 2015;6(1):e68–e68.
  • Gumaste VV, Roditis N, Mehta D, et al. Serum lipase levels in nonpancreatic abdominal pain versus acute pancreatitis. Am J Gastroenterol. 1993; 88(12):2051–2055.
  • Morinville VD, Husain SZ, Bai H, Definitions of pediatric pancreatitis and survey of present clinical practices. J Pediatr Gastroenterol Nutr. 2012;55(3):261–265.
  • Howes N, Lerch MM, Greenhalf W, et al. Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol. 2004; 2(3):252–261.
  • Majumder S, Chari ST. Chronic pancreatitis. Lancet. 2016;387(10031):1957–1966.
  • Gariepy CE, Heyman MB, Lowe ME, et al. Causal evaluation of acute recurrent and chronic pancreatitis in children: consensus from the INSPPIRE group. J Pediatr Gastroenterol Nutr. 2017;64(1):95–103.
  • Conwell DL, Lee LS, Yadav D, et al. American pancreatic association practice guidelines in chronic pancreatitis: evidence-based report on diagnostic guidelines. Pancreas. 2014;43(8):1143–1162.
  • Ellis I, Lerch MM, Whitcomb DC. Genetic testing for hereditary pancreatitis: guidelines for indications, counselling, consent and privacy issues. Pancreatology. 2001;1(5):405–415.
  • Goldstein A, Falk MJ, et al. Mitochondrial DNA deletion syndromes. In: Adam MP, Everman DB, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1116/.
  • Pearson HA, Lobel JS, Kocoshis SA, et al. A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediatr. 1979; 95(6):976–984.
  • Crippa BL, Leon E, Calhoun A, et al. Biochemical abnormalities in Pearson syndrome. Am J Med Genet A. 2015; 167A(3):621–628.
  • Reynolds E, Byrne M, Ganetzky R, et al. Pediatric single large-scale mtDNA deletion syndromes: the power of patient reported outcomes. Mol Genet Metab. 2021; 134(4):301–308.
  • Wild KT, Goldstein AC, Muraresku C, et al. Broadening the phenotypic spectrum of pearson syndrome: five new cases and a review of the literature. Am J Med Genet A. 2020;182(2):365–373.
  • Grady JP, Campbell G, Ratnaike T, et al. Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain. 2014;137(Pt 2):323–334.
  • Sadikovic B, Wang J, El-Hattab AW, et al. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes. PLOS One. 2010; 5(12):e15687.
  • Farruggia P, Di Cataldo A, Pinto RM, et al. Pearson syndrome: a retrospective cohort study from the marrow failure study group of A.I.E.O.P. Associazione Italiana Emato-Oncologia Pediatrica. JIMD Rep. 2016;26:37–43.
  • Rotig A, Cormier V, Blanche S, et al. Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest. 1990;86(5):1601–1608.
  • Pronman L, Rondinelli M, Burkardt DD, et al. Pearson syndrome: a rare cause of failure to thrive in infants. Clin Pediatr . 2019; 58(7):819–824.
  • Zaffanello M, Zamboni G. Therapeutic approach in a case of pearson’s syndrome. Minerva Pediatr. 2005; 57(3):143–146.
  • Ying Y, Liang Y, Luo X, et al. Case report: clinical and genetic characteristics of pearson syndrome in a chinese boy and 139 patients. Front Genet. 2022;13:802402.
  • Mack DR, Forstner GG, Wilschanski M, et al. Shwachman syndrome: exocrine pancreatic dysfunction and variable phenotypic expression. Gastroenterology. 1996;111(6):1593–1602.
  • Bodian M, Sheldon W, Lightwood R. Congenital hypoplasia of the exocrine pancreas. Acta Paediatr. 1964 May;53:282–293.
  • Andolina JR, Morrison CB, Thompson AA, et al. Shwachman-Diamond syndrome: diarrhea, no longer required? J Pediatr Hematol Oncol. 2013; 35(6):486–489.
  • Farooqui SM, Ward R, Aziz M. Shwachman-Diamond syndrome. StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
  • Sukalo M, Fiedler A, Guzmán C, et al. Mutations in the human UBR1 gene and the associated phenotypic spectrum. Hum Mutat. 2014;35(5):521–531.
  • Zenker M, Mayerle J, Reis A, et al. Genetic basis and pancreatic biology of Johanson-Blizzard syndrome. Endocrinol Metab Clin North Am. 2006; 35(2):243–253.
  • Vanlieferinghen PH, Borderon C, Francannet CH, et al. Johanson-Blizzard syndrome. a new case with autopsy findings. Genet Couns. 2001;12(3):245–250.
  • Ellery KM, Erdman SH. Johanson-Blizzard syndrome: expanding the phenotype of exocrine pancreatic insufficiency. JOP. 2014; 15(4):388–390.
  • Mitchell E, Gilbert M, Loomes KM. Alagille syndrome. Clin Liver Dis. 2018;22(4):625–641.
  • Burroughs L, Woolfrey A, Shimamura A. Shwachman-Diamond syndrome: a review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hematol Oncol Clin North Am. 2009; 23(2):233–248.
  • Levin TL, Mäkitie O, Berdon WE, et al. Shwachman-bodian-diamond syndrome: metaphyseal chondrodysplasia in children with pancreatic insufficiency and neutropenia. Pediatr Radiol. 2015; 45(7):1066–1071.
  • Gliwicz D, Jankowska I, Wierzbicka A, et al. Exocrine pancreatic function in children with alagille syndrome. Sci Rep. 2016; 6:35229.
  • Kamath BM, Piccoli DA, Magee JC, et al. Pancreatic insufficiency is not a prevalent problem in alagille syndrome. J Pediatr Gastroenterol Nutr. 2012;55(5):612–614.
  • Manoli I, Sloan JL, Venditti CP, et al. Isolated methylmalonic acidemia. In: Adam MP, Everman DB, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1116/.
  • Shchelochkov OA, Carrillo N, Venditti C, et al. Propionic acidemia. In: Adam MP, Everman DB, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1116/.
  • Baumgartner MR, Horster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014; 9:130.
  • Fraser JL, Venditti CP. Methylmalonic and propionic acidemias: clinical management update. Curr Opin Pediatr. 2016;28(6):682–693.
  • Forny P, Horster F, Ballhausen D, et al. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: first revision. J Inherit Metab Dis. 2021;44(3):566–592.
  • Bhoomagoud M, Jung T, Atladottir J, et al. Reducing extracellular pH sensitizes the acinar cell to secretagogue-induced pancreatitis responses in rats. Gastroenterology. 2009; 137(3):1083–1092.
  • Kahler SG, Sherwood WG, Woolf D, et al. Pancreatitis in patients with organic acidemias. J Pediatr. 1994;124(2):239–243.
  • Chandler RJ, Zerfas PM, Shanske S, et al. Mitochondrial dysfunction in mut methylmalonic acidemia. Faseb J. 2009;23(4):1252–1261.
  • Gallego-Villar L, Perez-Cerda C, Perez B, et al. Functional characterization of novel genotypes and cellular oxidative stress studies in propionic acidemia. J Inherit Metab Dis. 2013; 36(5):731–740.
  • Richard E, Alvarez-Barrientos A, Perez B, et al. Methylmalonic acidaemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway. J Pathol. 2007;213(4):453–461.
  • Schwab MA, Sauer SW, Okun JG, et al. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J. 2006;398(1):107–112.
  • Mukherjee R, Criddle DN, Gukovskaya A, et al. Mitochondrial injury in pancreatitis. Cell Calcium. 2008; 44(1):14–23.
  • Schoenberg MH, Birk D, Beger HG. Oxidative stress in acute and chronic pancreatitis. Am J Clin Nutr. 1995;62(6 Suppl):1306S–1314S.
  • Gilmore A, Bock HG, Nowicki M. Hyperamylasemia/hyperlipasemia in a child with propionic acidemia. Am J Med Genet A. 2008;146A(23):3090–3091.
  • Sutton VR, Chapman KA, Gropman AL, et al. Chronic management and health supervision of individuals with propionic acidemia. Mol Genet Metab. 2012; 105(1):26–33.
  • DiGregorio N, Sharma S. Physiology, secretin. . Treasure Island (FL): StatPearls Publishing Copyright © 2022.
  • Jones MC, Vaqar S. Cholecystokinin test. . Treasure Island (FL): StatPearls Publishing Copyright © 2022.
  • Pollack BJ, Grendell JH. Where have all the dreiling tubes gone? Am J Gastroenterol. 2006; 101(2):356–359.
  • Singh VK, Yadav D, Garg PK. Diagnosis and management of chronic pancreatitis: a review. Jama. 2019; 322(24):2422–2434.
  • Shandro BM, Nagarajah R, Poullis A. Challenges in the management of pancreatic exocrine insufficiency. World J Gastrointest Pharmacol Ther. 2018;9(5):39–46.
  • Patel N, Sellers ZM, Grover A, et al. Endoscopic pancreatic function testing (ePFT) in children: a position paper from the NASPGHAN pancreas committee. J Pediatr Gastroenterol Nutr. 2021;72(1):144–150.
  • Horvath K, Mehta DI, Hill ID. Assessment of exocrine pancreatic function during endoscopy in children. J Pediatr Gastroenterol Nutr. 2019;68(6):768–776.
  • Gelfond D. A path to consensus on endoscopic pancreatic function testing. J Pediatr Gastroenterol Nutr. 2019;68(6):761–762.
  • Alfaro Cruz L, Parniczky A, Mayhew A, et al. Utility of direct pancreatic function testing in children. Pancreas. 2017;46(2):177–182.
  • Mehta DI, He Z, Bornstein J, et al. Report on the short endoscopic exocrine pancreatic function test in children and young adults. Pancreas. 2020;49(5):642–649.
  • Leeds JS, Oppong K, Sanders DS. The role of fecal elastase-1 in detecting exocrine pancreatic disease. Nat Rev Gastroenterol Hepatol. 2011;8(7):405–415.
  • Amanquah SD, Darko R, Maddy SQ, et al. Faecal pancreatic elastase–1 a non invasive measure of exocrine pancreatic function. West Afr J Med. 2004;23(3):240–244.
  • Weiss FU, Budde C, Lerch MM. Specificity of a polyclonal fecal elastase ELISA for CELA3. PLOS One. 2016;11(7):e0159363.
  • Domínguez-Muñoz JE, Dh P, Lerch MM, et al. Potential for screening for pancreatic exocrine insufficiency using the fecal elastase-1 test. Dig Dis Sci. 2017;62(5):1119–1130.
  • Uc A, Fishman DS. Pancreatic disorders. Pediatr Clin North Am. 2017;64(3):685–706.
  • Löser C, Möllgaard A, Fölsch UR. Faecal elastase 1: a novel, highly sensitive, and specific tubeless pancreatic function test. Gut. 1996;39(4):580–586.
  • Walkowiak J, Cichy WK, Herzig KH. Comparison of fecal elastase-1 determination with the secretin-cholecystokinin test in patients with cystic fibrosis. Scand J Gastroenterol. 1999; 34(2):202–207.
  • Wali PD, Loveridge-Lenza B, He Z, et al. Comparison of fecal elastase-1 and pancreatic function testing in children. J Pediatr Gastroenterol Nutr. 2012;54(2):277–280.
  • Meyts I, Wuyts W, Proesmans M, et al. Variability of fecal pancreatic elastase measurements in cystic fibrosis patients. J Cyst Fibros. 2002;1(4):265–268.
  • Vanga RR, Tansel A, Sidiq S, et al. Diagnostic performance of measurement of fecal elastase-1 in detection of exocrine pancreatic insufficiency: Systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(8):1220–1228.e4.
  • Beharry S, Ellis L, Corey M, et al. How useful is fecal pancreatic elastase 1 as a marker of exocrine pancreatic disease? J Pediatr. 2002;141(1):84–90.
  • Garah J, Rosen I, Shaoul R. Transient exocrine pancreatic insufficiency in children: an existing entity? J Pediatr Gastroenterol Nutr. 2019; Apr68(4):574–577.
  • Wyness SP, Nelson HA, Jensen R, et al. Clinical and analytical characterization of the DiaSorin and ScheBo fecal pancreatic elastase 1 assays. Pancreas. 2022; Mar 151(3):243–249.
  • Sankararaman S, Schindler T, Sferra TJ. Management of exocrine pancreatic insufficiency in children. Nutr Clin Pract. 2019;34 Suppl 1(Suppl 1):S27–s42.
  • Turck D, Braegger CP, Colombo C, et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin Nutr. 2016;35(3):557–577.
  • Münch A, Garten L, Bührer C. Protracted maturation of pancreatic-specific elastase 1 excretion in preterm infants of extremely low gestational age. J Pediatr Gastroenterol Nutr. 2013;56(5):532–536.
  • Benahmed NA, Manene D, Barbot L, et al. Fecal pancreatic elastase in infants under 2 years of age. Ann Biol Clin. 2008;66(5):549–552.
  • Wieczorek-Filipiak M, Drzymała-Czyż S, Szczepanik M, et al. Fecal elastase-1 in healthy children up to 2 years of age: a cross-sectional study. Dev Period Med. 2018;22(2):123–127.
  • Tardelli AC, Camargos PA, Penna FJ, et al. Comparison of diagnostic methods for pancreatic insufficiency in infants with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2013; 56(2):178–181.
  • Münch A, Bührer C, Longardt AC. Digestive enzyme replacement relieves growth failure in preterm infants with poor exocrine pancreatic function: a retrospective case series. Eur J Pediatr. 2021;180(9):2951–2958.
  • Schneider A, Funk B, Caspary W, et al. Monoclonal versus polyclonal ELISA for assessment of fecal elastase concentration: pitfalls of a new assay. Clin Chem. 2005; 51(6):1052–1054.
  • Johnson LM, Spannagl M, Wojtalewicz N, et al. Comparison of fecal calprotectin and pancreatic elastase assays based on proficiency testing results. Clin Biochem. 2022;107:19–23.
  • Lankisch PG, Schmidt I, König H, et al. Faecal elastase 1: not helpful in diagnosing chronic pancreatitis associated with mild to moderate exocrine pancreatic insufficiency. Gut. 1998;42(4):551–554.
  • Forsmark CE. Diagnosis and management of exocrine pancreatic insufficiency. Curr Treat Options Gastroenterol. 2018; 16(3):306–315.
  • Hill PG. Faecal fat: time to give it up. Ann Clin Biochem. 2001; 38(Pt 3):164–167.
  • Nordgaard I, Hansen BS, Mortensen PB. Colon as a digestive organ in patients with short bowel. Lancet. 1994;343(8894):373–376.
  • Wieczorek-Filipiak M, Drzymała-Czyż S, Szczepanik M, et al. Fecal fat concentration and excretion in the first 2 years of life: a cross-sectional study. J Pediatr Gastroenterol Nutr. 2019;68(2):285–289.
  • Caras S, Boyd D, Zipfel L, et al. Evaluation of stool collections to measure efficacy of PERT in subjects with exocrine pancreatic insufficiency. J Pediatr Gastroenterol Nutr. 2011;53(6):634–640.
  • Drummey GD, Benson JA, Jr., Jones CM. Microscopical examination of the stool for steatorrhea. N Engl J Med. 1961; 264:85–87.
  • 9.5.7 Qualitative fecal fat. 4th ed. Leber A, editor. Clinical microbiology procedures handbook Washington, DC: ASM Press; 2016. .
  • Fine KD, Ogunji F. A new method of quantitative fecal fat microscopy and its correlation with chemically measured fecal fat output. Am J Clin Pathol. 2000;13(4):528–534.
  • Van De Kamer JH, Pikaar NA, Bolssens-Frankena A, et al. Quantitative determination of the different higher saturated fatty acids in fat from blood, chyle and faeces, by means of partition chromatography on rubber. Biochem J. 1955; 61(2):180–186.
  • Korpi-Steiner NL, Ward JN, Kumar V, et al. Comparative analysis of fecal fat quantitation via nuclear magnetic resonance spectroscopy (1H NMR) and gravimetry. Clin Chim Acta. 2009; 400(1–2):33–36.
  • Appendix: reference intervals. In: Burtis CA, ER, editor. Tietz textbook of clinical chemistry. 2nd ed. Philadelphia, PA: w. B. Saunders and Company; 1991. p. 2187.
  • Norcia LN, Lundberg WO. Fat excretion: the influence of dietary fat on fecal fat excretion. J Nutr. 1954;54(4):491–508.
  • Thompson GN, Robb TA, Davidson GP. Taurine supplementation, fat absorption, and growth in cystic fibrosis. J Pediatr. 1987;111(4):501–506.
  • Roy SK, Haider R, Akbar MS, et al. Persistent diarrhoea: clinical efficacy and nutrient absorption with a rice based diet. Arch Dis Child. 1990;65(3):294–297.
  • Borowitz D, Aronoff N, Cummings LC, et al. Coefficient of fat absorption to measure the efficacy of pancreatic enzyme replacement therapy in people with cystic fibrosis: gold standard or coal standard? Pancreas. 2022;51(4):310–318.
  • Williams J, MacDonald A, Weller PH, et al. Two enteric coated microspheres in cystic fibrosis. Arch Dis Child. 1990;65(6):594–597.
  • Patchell CJ, Desai M, Weller PH, et al. Creon 10,000 minimicrospheres vs. J Cyst Fibros. 2002; 1(4):287–291.
  • Johnson L. Screening for gastrointestinal and pancreatic diseases. Adv Clin Chem. 2022;108:129–153.
  • Paracchini V, Seia M, Raimondi S, et al. Cystic fibrosis newborn screening: distribution of blood immunoreactive trypsinogen concentrations in hypertrypsinemic neonates. JIMD Rep. 2012;4:17–23.
  • Crockett S, Falck-Ytter Y, Wani S, et al. Acute pancreatitis guideline. Gastroenterology. 2018; 154(4):1102.
  • Bollbach R, Becker M, Rotthauwe HW. Serum immunoreactive trypsin and pancreatic lipase in cystic fibrosis. Eur J Pediatr. 1985;144(2):167–170.
  • Gillard BK, Cox KL, Pollack PA, et al. Cystic fibrosis serum pancreatic amylase. Am J Dis Child. 1984;138(6):577–580.
  • Dror Y, Donadieu J, Koglmeier J, et al. Draft consensus guidelines for diagnosis and treatment of Shwachman-diamond syndrome. Ann N Y Acad Sci. 2011;1242(1):40–55.
  • Ventrucci M, Pezzilli R, Gullo L, et al. Role of serum pancreatic enzyme assays in diagnosis of pancreatic disease. Dig Dis Sci. 1989;34(1):39–45.
  • Jacobson DG, Curington C, Connery K, et al. Trypsin-like immunoreactivity as a test for pancreatic insufficiency. N Engl J Med. 1984;310(20):1307–1309.
  • Moore DJ, Forstner GG, Largman C, et al. Serum immunoreactive cationic trypsinogen: a useful indicator of severe exocrine dysfunction in the paediatric patient without cystic fibrosis. Gut. 1986;27(11):1362–1368.
  • Capurso G, Traini M, Piciucchi M, et al. Exocrine pancreatic insufficiency: prevalence, diagnosis, and management. Clin Exp Gastroenterol. 2019;12:129–139.
  • Cleghorn G, Benjamin L, Corey M, et al. Serum immunoreactive pancreatic lipase and cationic trypsinogen for the assessment of exocrine pancreatic function in older patients with cystic fibrosis. Pediatrics. 1986;77(3):301–306.
  • Schumann G, Aoki R, Ferrero C, et al. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 8. Reference procedure for the measurement of catalytic concentration of alpha-amylase [alpha-Amylase: 1,4-alpha-D-glucan 4-glucanohydrolase (AMY), EC 3.2.1.1]. 2006. 01/01.
  • Mifflin TE, Hamilton M, Hubbard E, et al. Pancreatic amylase measured in serum by use of a monoclonal antibody immunochemically immobilized to a solid phase. Clin Chem. 1989; 35(1):110–114.
  • Panteghini M, Bonora R, Pagani F. Measurement of pancreatic lipase activity in serum by a kinetic colorimetric assay using a new chromogenic substrate. Ann Clin Biochem: Int J Lab Med. 2001;38(4):365–370.
  • Grosse S, Boyle C, Botkin J, et al. Newborn screening for cystic fibrosis: evaluation of benefits and risks and recommendations for state newborn screening programs. Morb Monthly Wkly Rep. 2004;53:1–37.
  • Hendrix MM, Foster SL, Cordovado SK. Newborn screening quality assurance program for CFTR mutation detection and gene sequencing to identify cystic fibrosis. J Inborn Errors Metab Screen. 2016;4(0):232640981666135.
  • Southern KW, Munck A, Pollitt R, et al. A survey of newborn screening for cystic fibrosis in Europe. J Cyst Fibros. 2007;6(1):57–65.
  • Li L, Zhou Y, Bell CJ, et al. Development and characterization of dried blood spot materials for the measurement of immunoreactive trypsinogen. J Med Screen. 2006;13(2):79–84.
  • Dutta SK, Bustin MP, Russell RM, et al. Deficiency of fat-soluble vitamins in treated patients with pancreatic insufficiency. Ann Intern Med. 1982;97(4):549–552.
  • Lindkvist B, MP, Domínguez-Munoz JE. Clinical, anthropometric and laboratory nutritional markers of pancreatic exocrine insufficiency: prevalence and diagnostic use. Pancreatology. 2015;15:589–597.
  • Min M, Patel B, Han S, et al. Exocrine pancreatic insufficiency and malnutrition in chronic pancreatitis. Pancreas. 2018;47(8):1015–1018.
  • Sikkens ECM, Cahen DL, Koch A, et al. The prevalence of fat-soluble vitamin deficiencies and a decreased bone mass in patients with chronic pancreatitis. Pancreatology. 2013;13(3):238–242.
  • Abu-El-Haija M, Uc A, Werlin SL, et al. Nutritional considerations in pediatric pancreatitis: a position paper from the NASPGHAN pancreas committee and ESPGHAN cystic fibrosis/pancreas working group. J Pediatr Gastroenterol Nutr. 2018;67(1):131–143.
  • Borowitz D, Baker RD, Stallings V. Consensus report on nutrition for pediatric patients with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2002;35(3):246–259.
  • Karpińska J, Mikołuć B, Motkowski R, et al. HPLC method for simultaneous determination of retinol, alpha-tocopherol and coenzyme Q10 in human plasma. J Pharm Biomed Anal. 2006; 42(2):232–236.
  • Thibeault D, Su H, MacNamara E, et al. Isocratic rapid liquid chromatographic method for simultaneous determination of carotenoids, retinol, and tocopherols in human serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2009; 877(11–12):1077–1083.
  • Thomas JB, Duewer DL, Burdette CQ, et al. Preparation and value assignment of standard reference material 968e fat-soluble vitamins, caretenoids, and cholesterol in human serum. Anal Bioanal Chem. 2012;402(2):749–762.
  • Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol. 2006;66(7):606–630.
  • Semeraro A, Altieri I, Patriarca M, et al. Evaluation of uncertainty of measurement from method validation data: an application to the simultaneous determination of retinol and α-tocopherol in human serum by HPLC. J Chromatogr B. 2009;877(11):1209–1215.
  • Yuan C, Burgyan M, Bunch DR, et al. Fast, simple, and sensitive high-performance liquid chromatography method for measuring vitamins a and E in human blood plasma. J Sep Sci. 2014;37(17):2293–2299.
  • DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S–1696S.
  • Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–1930.
  • Jukic AMZ, Hoofnagle AN, Lutsey PL. Measurement of vitamin D for epidemiologic and clinical research: Shining light on a complex decision. Am J Epidemiol. 2018;187(4):879–890.
  • Sempos CT, Vesper HW, Phinney KW, et al. Vitamin D status as an international issue: national surveys and the problem of standardization. Scand J Clin Lab Invest Suppl. 2012;243:32–40.
  • Shearer MJ, Newman P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. J Lipid Res. 2014;55(3):345–362.
  • Mosler K, Von Kries R, Vermeer C, et al. Assessment of vitamin K deficiency in CF—how much sophistication is useful? J Cyst Fibros. 2003;2(2):91–96.
  • Fusaro M, Gallieni M, Rizzo M, et al. Vitamin K plasma levels determination in human health. Clin Chem Lab Med. 2017;55(6):789–799.
  • Calder PC. Functional roles of fatty acids and their effects on human health. JPEN J Parenter Enteral Nutr. 2015;39(1 Suppl):18S–32S.
  • Gramlich L, Ireton-Jones C, Miles JM, et al. Essential fatty acid requirements and intravenous lipid emulsions. JPEN J Parenter Enteral Nutr. 2019;43(6):697–707.
  • Mogensen K. Essential fatty acid deficiency. Pract. Gastroenterol. 2017;41(6): 37–44.
  • Harris WS, Thomas RM. Biological variability of blood omega-3 biomarkers. Clin Biochem. 2010; 2010/02/01/43(3):338–340.
  • Yuzyuk T, Lozier B, Schwarz EL, et al. Intra-individual variability of long-chain fatty acids (C12–C24) in plasma and red blood cells. Prostaglandins Leukot Essent Fatty Acids. 2018;135:30–38.
  • Katan MB, Deslypere JP, van Birgelen AP, et al. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res. 1997;38(10):2012–2022.
  • Balogun KA, Zuromski LM, Kim R, et al. Establishing age-stratified red blood cell fatty acid reference ranges using model-based clustering and iterative application of the harris-boyd method. Clin Biochem. 2021; 97:25–33.
  • Lagerstedt SA, Hinrichs DR, Batt SM, et al. Quantitative determination of plasma c8-c26 total fatty acids for the biochemical diagnosis of nutritional and metabolic disorders. Mol Genet Metab. 2001;73(1):38–45.
  • Lozier BK, Kim RN, Zuromski LM, et al. Effect of fasting status and other pre-analytical variables on quantitation of long-chain fatty acids in red blood cells. Prostaglandins Leukot Essent Fatty Acids. 2020;163:102211.
  • Kish-Trier E, Schwarz EL, Pasquali M, et al. Quantitation of total fatty acids in plasma and serum by GC-NCI-MS. Clin Mass Spectrom. 2016;2:11–17.
  • Holman RT. The ratio of trienoic: tetraenoic acids in tissue lipids as a measure of essential fatty acid requirement. J Nutr. 1960;70(3):405–410.
  • Innis SM. Essential fatty acids in growth and development. Prog Lipid Res. 1991;30(1):39–103.
  • Fortson MR, Freedman SN, Webster PD. Clinical assessment of hyperlipidemic pancreatitis. Am J Gastroenterol. 1995 ;90(12):2134–2139.
  • Tenner S, Baillie J, DeWitt J, , et al. American college of gastroenterology guideline: management of acute pancreatitis. Am J Gastroenterol. 2013;108(9):1400–1415; 1416. 1416.
  • Yang AL, McNabb-Baltar J. Hypertriglyceridemia and acute pancreatitis. Pancreatology. 2020;20(5):795–800.
  • Kimura W, Mossner J. Role of hypertriglyceridemia in the pathogenesis of experimental acute pancreatitis in rats. Int J Pancreatol. 1996;20(3):177–184.
  • Christian JB, Arondekar B, Buysman EK, et al. Clinical and economic benefits observed when follow-up triglyceride levels are less than 500 mg/dL in patients with severe hypertriglyceridemia. J Clin Lipidol. 2012; 6(5):450–461.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.