269
Views
2
CrossRef citations to date
0
Altmetric
Invited Reviews

Molecular effects of ozone on amino acids and proteins, especially human hemoglobin and albumin, and the need to personalize ozone concentration in major ozone autohemotherapy

& ORCID Icon
Pages 382-397 | Received 20 Sep 2022, Accepted 25 Feb 2023, Published online: 11 Mar 2023

References

  • Bocci V, Borrelli E, Travagli V, et al. The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med Res Rev. 2009;29(4):646–682.
  • Mehraban F, Seyedarabi A, Seraj Z, et al. Molecular insights into the effect of ozone on human hemoglobin in autohemotherapy: highlighting the importance of the presence of blood antioxidants during ozonation. Int J Biol Macromol. 2018;119:1276–1285.
  • Travagli V, Zanardi I, Silvietti A, et al. A physicochemical investigation on the effects of ozone on blood. Int J Biol Macromol. 2007;41(5):504–511.
  • Babior BM, Takeuchi C, Ruedi J, et al. Investigating antibody-catalyzed ozone generation by human neutrophils. Proc Natl Acad Sci. 2003;100(6):3031–3034.
  • Onyango AN. Alternatives to the ‘water oxidation pathway’of biological ozone formation. J Chem Biol. 2016;9(1):1–8.
  • Nazari L, Sarathy S, Santoro D, et al. Recent advances in energy recovery from wastewater sludge. In: Rosendahl L, editor. Direct thermochemical liquefaction for energy applications. Sawston: Elsevier; 2018. p. 67–100.
  • Tietze LF, Bratz M. Dialkyl mesoxalates by ozonolysis of dialkyl benzalmalonates: dimethyl mesoxalate. Propanedioic acid, oxo‐, dimethyl ester. In: Kende AS, Freeman JP, editors. Organic syntheses. Vol 71. New York (NY): Wiley; 2003. p. 214.
  • Bocci V. Introduction. In: Bocci V, editor. Ozone. A new medical drug. Dordrecht: Springer; 2005. p. 1–3.
  • Leusink J, Kraft G. Antimicrobial effects of ozonated water against generic E. coli on swine intestines varying ozone concentrations and exposure times. White paper. (Year not given). https://ozone-solutions-ecommerce.s3.amazonaws.com/Whitepapers/Protein/Pork/Antimicrobial+Effects+of+Ozonated+Water+Against+Generic+E.coli+on+Swine.pdf
  • Javad A, Abdolali B, Fariborz K, et al. Mechanisms of pathophysiology of blood vessels in patients with multiple sclerosis treated with ozone therapy: a systematic review. Acta Biomed. 2019;90(3):213–217.
  • Delgado-Roche L, Riera-Romo M, Mesta F, et al. Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur J Pharmacol. 2017;811:148–154.
  • Clavo B, Santana-Rodríguez N, Llontop P, et al. Ozone therapy as adjuvant for cancer treatment: is further research warranted? Evid Based Complement Alternat Med. 2018;2018:7931849.
  • Kızıltan HŞ, Bayir AG, Yucesan G, et al. Medical ozone and radiotherapy in a peritoneal, erlich-ascites, tumor-cell model. Altern Ther Health Med. 2015;21(2):24–29.
  • Luongo M, Brigida AL, Mascolo L, et al. Possible therapeutic effects of ozone mixture on hypoxia in tumor development. Anticancer Res. 2017;37(2):425–435.
  • Kuroda K, Azuma K, Mori T, et al. The safety and anti-tumor effects of ozonated water in vivo. Int J Mol Sci. 2015;16(10):25108–25120.
  • Clavo B, Rodríguez-Esparragón F, Rodríguez-Abreu D, et al. Modulation of oxidative stress by ozone therapy in the prevention and treatment of chemotherapy-induced toxicity: review and prospects. Antioxidants. 2019;8(12):588.
  • Bocci V, Zanardi I, Huijberts MS, et al. An integrated medical treatment for type-2 diabetes. Diabetes Metab Syndr. 2014;8(1):57–61.
  • Bocci V, Zanardi I, Huijberts MSP, et al. Diabetes and chronic oxidative stress. A perspective based on the possible usefulness of ozone therapy. Diabetes Metab Syndr. 2011;5(1):45–49.
  • Izadi M, Jafari NJ, Hosseini MS, et al. Therapeutic effects of ozone in patients with diabetic foot ulcers: review of the literature. Biomed Res. 2017;28(18):7846–7850.
  • Izadi M, Kheirjou R, Mohammadpour R, et al. Efficacy of comprehensive ozone therapy in diabetic foot ulcer healing. Diabetes Metab Syndr. 2019;13(1):822–825.
  • Kushmakov R, Gandhi J, Seyam O, et al. Ozone therapy for diabetic foot. Med Gas Res. 2018;8(3):111–115.
  • Wen Q, Chen Q. An overview of ozone therapy for treating foot ulcers in patients with diabetes. Am J Med Sci. 2020;360(2):112–119.
  • Bocci V, Zanardi I, Travagli V. Ozone: a new therapeutic agent in vascular diseases. Am J Cardiovasc Drugs. 2011;11(2):73–82.
  • Juchniewicz H, Lubkowska A. Oxygen-ozone (O2-O3) therapy in peripheral arterial disease (PAD): a review study. Ther Clin Risk Manag. 2020;16:579.
  • Scassellati C, Ciani M, Galoforo AC, et al. Molecular mechanisms in cognitive frailty: potential therapeutic targets for oxygen-ozone treatment. Mech Ageing Dev. 2020;186:111210.
  • Travagli V, Zanardi I, Valacchi G, et al. Ozone and ozonated oils in skin diseases: a review. Mediators Inflamm. 0102010;2010:610418.
  • Valacchi G, Fortino V, Bocci V. The dual action of ozone on the skin. Br J Dermatol. 2005;153(6):1096–1100.
  • Zeng J, Lu J. Mechanisms of action involved in ozone-therapy in skin diseases. Int Immunopharmacol. 2018;56:235–241.
  • Rowen RJ, Robins H. Ozone therapy for complex regional pain syndrome: review and case report. Curr Pain Headache Rep. 2019;23(6):41.
  • Sconza C, Respizzi S, Virelli L, et al. Oxygen–ozone therapy for the treatment of knee osteoarthritis: a systematic review of randomized controlled trials. Arthroscopy. 2020;36(1):277–286.
  • Tartari APS, Moreira FF, Pereira MCDS, et al. Anti-inflammatory effect of ozone therapy in an experimental model of rheumatoid arthritis. Inflammation. 2020;43(3):985–993.
  • Borrelli E, Alexandre A, Iliakis E, et al. Disc herniation and knee arthritis as chronic oxidative stress diseases: the therapeutic role of oxygen ozone therapy. J Arthritis. 2015;4(3):1–6.
  • Zaher Merhi AB, Moseley-LaRue R, Moseley AR, et al. Ozone therapy: overview of its potential utility in male reproduction. Am J Immunol. 2018;14(1):15–25.
  • Leon O, Menendez S, Merino N, et al. Ozone oxidative preconditioning: a protection against cellular damage by free radicals. Mediators Inflamm. 1998;7(4):289–294.
  • Calabrese EJ. Hormesis is Central to toxicology, pharmacology and risk assessment. Hum Exp Toxicol. 2010;29(4):249–261.
  • Sagai M, Bocci V. Mechanisms of action involved in ozone therapy: is healing induced via a mild oxidative stress? Med Gas Res. 2011;1(1):29.
  • Smith AJ, Oertle J, Warren D, et al. Ozone therapy: a critical physiological and diverse clinical evaluation with regard to immune modulation, anti-infectious properties, anti-cancer potential, and impact on anti-oxidant enzymes. Open J Mol Integr Physiol. 2015;5(03):37.
  • Bocci V, Aldinucci C, Mosci F, et al. Ozonation of human blood induces a remarkable upregulation of heme oxygenase-1 and heat stress protein-70. Mediators Inflamm. 2007;2007:26785.
  • Martinez-Sanchez G, Al-Dalain SM, Menendez S, et al. Therapeutic efficacy of ozone in patients with diabetic foot. Eur J Pharmacol. 2005;523(1-3):151–161.
  • Smith NL, Wilson AL, Gandhi J, et al. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med Gas Res. 2017;7(3):212–219.
  • Galiè M, Covi V, Tabaracci G, et al. The role of Nrf2 in the antioxidant cellular response to medical ozone exposure. Int J Mol Sci. 2019;20(16):4009.
  • Re L, Martínez-Sánchez G, Bordicchia M, et al. Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo? A preliminary result. Eur J Pharmacol. 2014;742:158–162.
  • Elvis AM, Ekta JS. Ozone therapy: a clinical review. J Nat Sci Biol Med. 2011;2(1):66–70.
  • Bocci V, Zanardi I, Travagli V. Oxygen/ozone as a medical gas mixture. A critical evaluation of the various methods clarifies positive and negative aspects. Med Gas Res. 2011;1(1):6.
  • Bocci VA, Zanardi I, Travagli V. Ozone acting on human blood yields a hormetic dose-response relationship. J Transl Med. 2011;9(1):66.
  • Valacchi G, Bocci V. Studies on the biological effects of ozone: 11. Release of Factors from Human Endothelial Cells. Mediators Inflamm. 2000;9:271–276.
  • Mancuso C, Capone C, Ranieri SC, et al. Bilirubin as an endogenous modulator of neurotrophin redox signaling. J Neurosci Res. 2008;86(10):2235–2249.
  • Zamora ZB, Borrego A, López OY, et al. Effects of ozone oxidative preconditioning on TNF-α release and antioxidant-prooxidant intracellular balance in mice during endotoxic shock. Mediators Inflamm. 2005;2005:16–22.
  • Viebahn-Hansler R, Fernandez L, Fahmy OS. Z. Ozone in medicine: the low-dose ozone concept-guidelines and treatment strategies. Ozone: sci Eng. 2012;34(6):408–424.
  • Bocci V. Autohaemotherapy after treatment of blood with ozone. A reappraisal. J Int Med Res. 1994;22(3):131–144.
  • Maslennikov OV, Kontorshchikova CN, Gribkova IA. Ozone therapy in practice health manual, ministry of health service of the Russian Federation. The state medical academy of Nizhny Novgorod, Russia. 2008. https://absoluteozone.com/wp-content/uploads/2022/05/Ozone-Therapy-in-Practice.pdf
  • Ozler M, Akay C, Oter S, et al. Similarities and differences of hyperbaric oxygen and medical ozone applications. Free Radic Res. 2011;45(11-12):1267–1278.
  • Schmidt H. Regelsberger’s intravenous oxygen therapy–an interpretation of results in practice from a biochemical and physiological point of view. Forsch Komp Klas Nat. 2002;9(1):7–18.
  • Bocci VA. Tropospheric ozone toxicity vs. usefulness of ozone therapy. Arch Med Res. 2007;38(2):265–267.
  • Fanali G, Di Masi A, Trezza V, et al. Human serum albumin: from bench to bedside. Mol Asp Med. 2012;33(3):209–290.
  • Mousavy SJ, Riazi GH, Kamarei M, et al. Effects of mobile phone radiofrequency on the structure and function of the normal human hemoglobin. Int J Biol Macromol. 2009;44(3):278–285.
  • Di Paolo N, Gaggiotti E, Galli F. Extracorporeal blood oxygenation and ozonation: clinical and biological implications of ozone therapy. Redox Rep. 2005;10(3):121–130.
  • Bocci V, Aldinucci C. Biochemical modifications induced in human blood by oxygenation‐ozonation. J Biochem Mol Toxicol. 2006;20(3):133–138.
  • Criegee R. Mechanism of ozonolysis. Angew Chem Int Edit. 1975;14(11):745–752.
  • Viebahn-Haensler R, León Fernández OS. Ozone in medicine. The low-dose ozone concept and its basic biochemical mechanisms of action in chronic inflammatory diseases. Int J Mol Sci. 2021;22(15):7890.
  • Sies H. Hydrogen peroxide as a Central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 2017;11:613–619.
  • Bocci V. Ozone as janus: this controversial gas can be either toxic or medically useful. Mediators Inflamm. 2004;13(1):3–11.
  • Mehraban F, Seyedarabi A, Ahmadian S, et al. Personalizing the safe, appropriate and effective concentration (s) of ozone for a non-diabetic individual and four type II diabetic patients in autohemotherapy through blood hemoglobin analysis. J Transl Med. 2019;17(1):227.
  • Cataldo F. Ozone degradation of biological macromolecules: proteins, hemoglobin, RNA, and DNA. Ozone: sci Eng. 2006;28(5):317–328.
  • Cataldo F. On the action of ozone on proteins. Polym Degrad Stab. 2003;82(1):105–114.
  • Pryor WA, Giamalva DH, Church DF. Kinetics of ozonation. 2. Amino acids and model compounds in water and comparisons to rates in nonpolar solvents. J Am Chem Soc. 1984;106(23):7094–7100.
  • Bailey PS. Ozonation of aromatic compounds: heterocyclics. In: Wasserman HH, editor. Ozonation in organic chemistry. Volume 2: nonolefinic compounds. New York (NY): Academic Press; 1982. p. 111–154.
  • Sharma VK, Graham NJD. Oxidation of amino acids, peptides and proteins by ozone: a review. Ozone: sci Eng. 2010;32(2):81–90.
  • Mulkerrin MG. Protein structure analysis using circular dichroism. In: Havel HA, editor. Spectroscopic methods for determining protein structure in solution. Chapter 2. New York (NY): Wiley-VCH; 1996. p. 5–27.
  • Kotiaho T, Eberlin MN, Vainiotalo P, et al. Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides. J Am Soc Mass Spectrom. 2000;11(6):526–535.
  • Warnell JL, Berg CP. The preparation of L-, D-and DL-kynurenine1. J Am Chem Soc. 1954;76(6):1708–1709.
  • Mudd J, Leavitt R, Ongun A, et al. Reaction of ozone with amino acids and proteins. Atmos Environ. 1969;3(6):669–681.
  • Berlett BS, Levine RL, Stadtman ER. Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin. J Biol Chem. 1996;271(8):4177–4182.
  • Cataldo F, Gentilini L. Chemical kinetics measurements on the reaction between blood and ozone. Int J Biol Macromol. 2005;36(1):61–65.
  • Mehraban F, Rayati S, Mirzaaghaei V, et al. Highlighting the importance of water alkalinity using phosphate buffer diluted with deionized, double distilled and tap water, in lowering oxidation effects on human hemoglobin ozonated at high ozone concentrations in vitro. Front Mol Biosci. 2020;7:289.
  • Sandhiya L, Kolandaivel P, Senthilkumar K. Oxidation and nitration of tyrosine by ozone and nitrogen dioxide: reaction mechanisms and biological and atmospheric implications. J Phys Chem B. 2014;118(13):3479–3490.
  • Stadtman ER. Protein oxidation and aging. Free Radic Res. 2006;40(12):1250–1258.
  • Kampf CJ, Liu F, Reinmuth-Selzle K, et al. Protein cross-linking and oligomerization through dityrosine formation upon exposure to ozone. Environ Sci Technol. 2015;49(18):10859–10866.
  • Malencik DA, Sprouse JF, Swanson CA, et al. Dityrosine: preparation, isolation, and analysis. Anal Biochem. 1996;242(2):202–213.
  • Ahmed MH, Ghatge MS, Safo MK. Hemoglobin: structure, function and allostery. Subcell Biochem. 2020;94:345–382.
  • Stryer L. Chapter 7. Portrait of an allosteric protein. In: Stryer L, editor. Biochemistry. New York: H Freeman & Co; 1995. p. 147–180.
  • Basu A, Kumar GS. Interaction of toxic azo dyes with heme protein: biophysical insights into the binding aspect of the food additive amaranth with human hemoglobin. J Hazard Mater. 2015;289:204–209.
  • Reeder BJ, Grey M, Silaghi-Dumitrescu R-L, et al. Tyrosine residues as redox cofactors in human hemoglobin implications for engineering nontoxic blood substitutes. J Biol Chem. 2008;283(45):30780–30787.
  • Cooper CE, Silkstone GG, Simons M, et al. Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute. Free Radic Biol Med. 2019;134:106–118.
  • Kan H-I, Chen I-Y, Zulfajri M, et al. Subunit disassembly pathway of human hemoglobin revealing the site-specific role of its cysteine residues. J Phys Chem B. 2013;117(34):9831–9839.
  • Vitturi DA, Sun C-W, Harper VM, et al. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radic Biol Med. 2013;55:119–129.
  • Gaston B, May WJ, Sullivan S, et al. Essential role of hemoglobin beta-93-cysteine in posthypoxia facilitation of breathing in conscious mice. J Appl Physiol. 2014;116(10):1290–1299.
  • Blacken GR, Wang Y, Lopez JA, et al. Cysteine 93 of hemoglobin beta chain is the major target of oxidation during red blood cell storage. Blood. 2009;114(22):4040.
  • Deng L, Meng W, Li D, et al. The effect of ozone on hypoxia, hemolysis and morphological change of blood from patients with aortic dissection (AD): a preliminary in vitro experiment of ozonated autohemotherapy for treating AD. Am J Transl Res. 2018;10(6):1829.
  • Baieth HE-SA, Elashmawi IS. Influence of ozone on the rheological and electrical properties of stored human blood. J Biomed Res. 2012;26(3):185–192.
  • Nagababu E, Rifkind JM. Heme degradation during autoxidation of oxyhemoglobin. Biochem Biophys Res Commun. 2000;273(3):839–845.
  • Nagababu E, Rifkind JM. Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem Biophys Res Commun. 1998;247(3):592–596.
  • Nagababu E, Rifkind JM. Reaction of hydrogen peroxide with ferrylhemoglobin: superoxide production and heme degradation. Biochemistry. 2000;39(40):12503–12511.
  • Carvalho FAO, Carvalho JWP, Santiago PS, et al. Further characterization of the subunits of the giant extracellular hemoglobin of glossoscolex paulistus (HbGp) by SDS-PAGE electrophoresis and MALDI-TOF-MS. Process Biochem. 2011;46(11):2144–2151.
  • Regazzoni L, Panusa A, Yeum K-J, et al. Hemoglobin glutathionylation can occur through cysteine sulfenic acid intermediate: electrospray ionization LTQ-Orbitrap hybrid mass spectrometry studies. J Chromatogr B. 2009;877(28):3456–3461.
  • Bocci V, Zanardi I, Michaeli D, et al. Mechanisms of action and chemical-biological interactions between ozone and body compartments: a critical appraisal of the different administration routes. Curr Drug Ther. 2009;4(3):159–173.
  • Rossi R, Dalle-Donne I, Milzani A, et al. Oxidized forms of glutathione in peripheral blood as biomarkers of oxidative stress. Clin Chem. 2006;52(7):1406–1414.
  • Waterman MR. Role of cysteine residues in hemoglobin structure and function: transfer of p-mercuribenzoate from α subunits to β subunits during tetramer formation. Biochim Biophys Acta -Protein Struct. 1974;371(1):159–167.
  • Jia Y, Buehler PW, Boykins RA, et al. Structural basis of peroxide-mediated changes in human hemoglobin: a novel oxidative pathway. J Biol Chem. 2007;282(7):4894–4907.
  • Damodaran S, Kinsella JE. Chapter 13. Effects of ions on protein conformation and functionality. In: Cherry JP, editor. Food protein deterioration: mechanisms and functionality. Washington DC: ACS Symposium Series Vol. 206; 1982. p. 327–357.
  • Gardoni D, Vailati A, Canziani R. Decay of ozone in water: a review. Ozone: sci Eng. 2012;34(4):233–242.
  • Peng WK, Chen L, Boehm BO, et al. Molecular phenotyping of oxidative stress in diabetes mellitus with point-of-care NMR system. NPJ Aging Mech Dis. 2020;6(1):1–12.
  • Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41(6):1211–1219.
  • Rondeau P, Bourdon E. The glycation of albumin: structural and functional impacts. Biochimie. 2011;93(4):645–658.
  • Arasteh A, Farahi S, Habibi-Rezaei M, et al. Glycated albumin: an overview of the in vitro models of an in vivo potential disease marker. J Diabetes Metab Disord. 2014;13(1):49.
  • Kragh-Hansen U. Molecular and practical aspects of the enzymatic properties of human serum albumin and of albumin–ligand complexes. Biochim Biophys Acta - Gen Subj. 2013;1830(12):5535–5544.
  • De Simone G, di Masi A, Ascenzi P. Serum albumin: a multifaced enzyme. Int J Mol Sci. 2021;22(18):10086. doi: 10.3390/ijms221810086
  • Gorobets M, Wasserman L, Vasilyeva A, et al. Modification of human serum albumin under induced oxidation. Doklady Biochem Biophys. 2017;74(1):231–235.
  • Lotosh NY, Savel’ev S, Selishcheva A. Modification of albumin with different degrees of the oxidation of SH-groups in the reaction with glucose. Russ J Bioorganic Chem. 2016;42(6):624–630.
  • Kobayashi Y, Suzuki R, Yasukawa K, et al. Oxidized albumin in blood reflects the severity of multiple vascular complications in diabetes mellitus. Metabol Open. 2020;6:100032.
  • Watanabe H. Oxidized albumin: evaluation of oxidative stress as a marker for the progression of kidney disease. Biol Pharm Bull. 2022;45(12):1728–1732.
  • Droge W. Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol. 2002;37(12):1333–1345.
  • Ogasawara Y, Namai T, Togawa T, et al. Formation of albumin dimers induced by exposure to peroxides in human plasma: a possible biomarker for oxidative stress. Biochem Biophys Res Commun. 2006;340(2):353–358.
  • Lahiri J, Sandhu S, Levine BG, et al. Human serum albumin dimerization enhances the S2 emission of bound cyanine IR806. J Phys Chem Lett. 2022;13(7):1825–1832.
  • Zamanian-Azodi M, Rezaei-Tavirani M, Vafaee R. Critical concentration of glucose changes human serum albumin conformation: circular dichroism (CD) and UV spectroscopy approaches. J Paramed Sci. 2013;4(3):2008–4978.
  • Taghavi F, Habibi-Rezaei M, Amani M, et al. The status of glycation in protein aggregation. Int J Biol Macromol. 2017;100:67–74.
  • Anguizola J, Matsuda R, Barnaby OS, et al. Glycation of human serum albumin. Clin Chim Acta. 2013;425:64–76.
  • Carballal S, Alvarez B, Turell L, et al. Sulfenic acid in human serum albumin. Amino Acids. 2007;32(4):543–551.
  • Levine RL, Berlett BS, Moskovitz J, et al. Methionine residues may protect proteins from critical oxidative damage. Mech Ageing Dev. 1999;107(3):323–332.
  • Otagiri M, Chuang VTG. Pharmaceutically important pre-and posttranslational modifications on human serum albumin. Biol Pharm Bull. 2009;32(4):527–534.
  • Mohamadi-Nejad A, Moosavi-Movahedi A, Hakimelahi G, et al. Thermodynamic analysis of human serum albumin interactions with glucose: insights into the diabetic range of glucose concentration. Int J Biochem Cell Biol. 2002;34(9):1115–1124.
  • Anraku M, Chuang VTG, Maruyama T, et al. Redox properties of serum albumin. Biochim Biophys Acta Gen Subj. 2013;1830(12):5465–5472.
  • Sitar ME, Aydin S, Cakatay U. Human serum albumin and its relation with oxidative stress. Clin Lab. 2013;59(9-10):945–952.
  • Zhdanova NG, Shirshin EA, Maksimov EG, et al. Tyrosine fluorescence probing of the surfactant-induced conformational changes of albumin. Photochem Photobiol Sci. 2015;14(5):897–908.
  • Fehske K, Müller W, Wollert U. Direct demonstration of the highly reactive tyrosine residue of human serum albumin located in fragment 299–585. Arch Biochem Biophys. 1980;205(1):217–221.
  • Lang JD, McArdle PJ, O'Reilly PJ, et al. Oxidant-antioxidant balance in acute lung injury. Chest. 2002;122(6):314S–3320S.
  • Carballal S, Radi R, Kirk MC, et al. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Biochemistry. 2003;42(33):9906–9914.
  • Jiang S, Hägglund P, Carroll L, et al. Crosslinking of human plasma C-reactive protein to human serum albumin via disulfide bond oxidation. Redox Biol. 2021;41:101925.
  • Vlassopoulos A, Lean M, Combet E. Role of oxidative stress in physiological albumin glycation: a neglected interaction. Free Radic Biol Med. 2013;60:318–324.
  • Mudd JB, Dawson P, Tseng S, et al. Reaction of ozone with protein tryptophans: band III, serum albumin, and cytochrome C. Arch Biochem Biophys. 1997;338(2):143–149.
  • Anraku M, Yamasaki K, Maruyama T, et al. Effect of oxidative stress on the structure and function of human serum albumin. Pharm Res. 2001;18(5):632–639.
  • Gorobets MG, Wasserman LA, Bychkova AV, et al. Thermodynamic features of bovine and human serum albumins under ozone and hydrogen peroxide induced oxidation studied by differential scanning calorimetry. Chem Phys. 2019;523:34–41.
  • Meucci E, Mordente A, Martorana G. Metal-catalyzed oxidation of human serum albumin: conformational and functional changes. Implications in protein aging. J Biol Chem. 1991;266(8):4692–4699.
  • Karthik L, Kumar G, Keswani T, et al. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One. 2014;9(3):e90972. doi:10.1371/journal.pone.0090972

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.