718
Views
1
CrossRef citations to date
0
Altmetric
Invited Reviews

New biomarkers in acute kidney injury

, , &
Pages 23-44 | Received 16 Feb 2023, Accepted 26 Jul 2023, Published online: 05 Sep 2023

References

  • Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. Nov 2019;394(10212):1949–1964. doi: 10.1016/S0140-6736(19)32563-2.
  • Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14(10):607–625. doi: 10.1038/s41581-018-0052-0.
  • KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–141. Available from: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf
  • Susantitaphong P, Cruz DN, Cerda J, et al. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. Sep 2013;8(9):1482–1493. doi: 10.2215/CJN.00710113.
  • Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. Aug 2015;41(8):1411–1423. doi: 10.1007/s00134-015-3934-7.
  • Mehta RL, Burdmann EA, Cerda J, et al. Recognition and management of acute kidney injury in the International Society of Nephrology by25 global snapshot: a multinational cross-sectional study. Lancet. May 2016;387(10032):2017–2025. doi: 10.1016/S0140-6736(16)30240-9.
  • Kellum JA, Romagnani P, Ashuntantang G, et al. Acute kidney injury. Nat Rev Dis Primers. Jul 2021;7(1):52. doi: 10.1038/s41572-021-00284-z.
  • Lewington AJ, Cerda J, Mehta RL. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int. Sep 2013;84(3):457–467. doi: 10.1038/ki.2013.153.
  • Kellum JA, Chawla LS, Keener C, et al. The effects of alternative resuscitation strategies on acute kidney injury in patients with septic shock. Am J Respir Crit Care Med. Feb 2016;193(3):281–287. doi: 10.1164/rccm.201505-0995OC.
  • Hoste EA, Lameire NH, Vanholder RC, et al. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. J Am Soc Nephrol. Apr 2003;14(4):1022–1030. doi: 10.1097/01.asn.0000059863.48590.e9.
  • Coca SG, Yusuf B, Shlipak MG, et al. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. Jun 2009;53(6):961–973. doi: 10.1053/j.ajkd.2008.11.034.
  • Silver SA, Harel Z, McArthur E, et al. Causes of death after a hospitalization with AKI. J Am Soc Nephrol. Mar 2018;29(3):1001–1010. doi: 10.1681/ASN.2017080882.
  • Silver SA, Long J, Zheng Y, et al. Cost of acute kidney injury in hospitalized patients. J Hosp Med. Feb 2017;12(2):70–76. doi: 10.12788/jhm.2683.
  • Kellum JA, Levin N, Bouman C, et al. Developing a consensus classification system for acute renal failure. Curr Opin Crit Care. Dec 2002;8(6):509–514. doi: 10.1097/00075198-200212000-00005.
  • Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. Aug 2004;8(4):R204–12. doi: 10.1186/cc2872.
  • Mehta RL, Kellum JA, Shah SV, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31. doi: 10.1186/cc5713.
  • Chertow GM, Burdick E, Honour M, et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. Nov 2005;16(11):3365–3370. doi: 10.1681/ASN.2004090740.
  • No authors listed. Section 2: AKI definition. Kidney Int Suppl. 2011;2(1):19–36.
  • Luo X, Jiang L, Du B, et al. A comparison of different diagnostic criteria of acute kidney injury in critically ill patients. Crit Care. Jul 2014;18(4):R144. doi: 10.1186/cc13977.
  • Forni LG, Chawla L, Ronco C. Precision and improving outcomes in acute kidney injury: personalizing the approach. J Crit Care. Feb 2017;37:244–245. doi: 10.1016/j.jcrc.2016.08.027.
  • Ronco C, Bellomo R, Kellum J. Understanding renal functional reserve. Intensive Care Med. Jun 2017;43(6):917–920. doi: 10.1007/s00134-017-4691-6.
  • Schetz M, Schortgen F. Ten shortcomings of the current definition of AKI. Intensive Care Med. Jun 2017;43(6):911–913. doi: 10.1007/s00134-017-4715-2.
  • Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol. Mar 2009;20(3):672–679. doi: 10.1681/ASN.2008070669.
  • Cottam D, Azzopardi G, Forni LG. Biomarkers for early detection and predicting outcomes in acute kidney injury. Br J Hosp Med (Lond). Aug 2022;83(8):1–11. doi: 10.12968/hmed.2022.0032.
  • Doi K, Yuen PST, Eisner C, et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J Am Soc Nephrol. Jun 2009;20(6):1217–1221. doi: 10.1681/ASN.2008060617.
  • Prowle JR, Leitch A, Kirwan CJ, et al. Positive fluid balance and AKI diagnosis: assessing the extent and duration of creatinine dilution. Intensive Care Med. Jan 2015;41(1):160–161. doi: 10.1007/s00134-014-3538-7.
  • Siew ED, Matheny ME. Choice of reference serum creatinine in defining acute kidney injury. Nephron. 2015;131(2):107–112. doi: 10.1159/000439144.
  • Waikar SS, Betensky RA, Bonventre JV. Creatinine as the gold standard for kidney injury biomarker studies? Nephrol Dial Transplant. 2009;24(11):3263–3265. doi: 10.1093/ndt/gfp428.
  • Waikar SS, Sabbisetti VS, Bonventre JV. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int. 2010;78(5):486–494. doi: 10.1038/ki.2010.165.
  • Wen Y, Thiessen-Philbrook H, Moledina DG, et al. Considerations in controlling for urine concentration for biomarkers of kidney disease progression after acute kidney injury. Kidney Int Rep. Jul 2022;7(7):1502–1513. doi: 10.1016/j.ekir.2022.03.026.
  • Evidence reviews for cystatin C based equations to estimate GFR in adults, children and young people: chronic kidney disease: evidence review. London: NICE; 2021. NICE Guideline, No. 203. Available from: https://www.ncbi.nlm.nih.gov/books/NBK574725/
  • Tenstad O, Roald AB, Grubb A, et al. Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest. Aug 1996;56(5):409–414. doi: 10.3109/00365519609088795.
  • Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. Aug 2002;40(2):221–226. doi: 10.1053/ajkd.2002.34487.
  • Knight EL, Verhave JC, Spiegelman D, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. Apr 2004;65(4):1416–1421. doi: 10.1111/j.1523-1755.2004.00517.x.
  • Nejat M, Pickering JW, Walker RJ, et al. Rapid detection of acute kidney injury by plasma cystatin C in the intensive care unit. Nephrol Dial Transplant. Oct 2010;25(10):3283–3289. doi: 10.1093/ndt/gfq176.
  • Herget-Rosenthal S, Marggraf G, Husing J, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. Sep 2004;66(3):1115–1122. doi: 10.1111/j.1523-1755.2004.00861.x.
  • Shlipak MG, Coca SG, Wang Z, et al. Presurgical serum cystatin C and risk of acute kidney injury after cardiac surgery. Am J Kidney Dis. Sep 2011;58(3):366–373. doi: 10.1053/j.ajkd.2011.03.015.
  • Spahillari A, Parikh CR, Sint K, et al. Serum cystatin C- versus creatinine-based definitions of acute kidney injury following cardiac surgery: a prospective cohort study. Am J Kidney Dis. Dec 2012;60(6):922–929. doi: 10.1053/j.ajkd.2012.06.002.
  • Yong Z, Pei X, Zhu B, et al. Predictive value of serum cystatin C for acute kidney injury in adults: a meta-analysis of prospective cohort trials. Sci Rep. Jan 2017;7:41012. doi: 10.1038/srep41012.
  • Sjostrom P, Tidman M, Jones I. The shorter T1/2 of cystatin C explains the earlier change of its serum level compared to serum creatinine. Clin Nephrol. Sep 2004;62(3):241–242. doi: 10.5414/cnp62241.
  • Shah KS, Taub P, Patel M, et al. Proenkephalin predicts acute kidney injury in cardiac surgery patients. Clin Nephrol. Jan 2015;83(1):29–35. doi: 10.5414/cn108387.
  • Marino R, Struck J, Hartmann O, et al. Diagnostic and short-term prognostic utility of plasma pro-enkephalin (pro-ENK) for acute kidney injury in patients admitted with sepsis in the emergency department. J Nephrol. Dec 2015;28(6):717–724. doi: 10.1007/s40620-014-0163-z.
  • Ernst A, Kohrle J, Bergmann A. Proenkephalin a 119-159, a stable proenkephalin a precursor fragment identified in human circulation. Peptides. Jul 2006;27(7):1835–1840. doi: 10.1016/j.peptides.2006.03.008.
  • Denning GM, Ackermann LW, Barna TJ, et al. Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues. Peptides. Jan 2008;29(1):83–92. doi: 10.1016/j.peptides.2007.11.004.
  • Khorashadi M, Beunders R, Pickkers P, et al. Proenkephalin: a new biomarker for glomerular filtration rate and acute kidney injury. Nephron. 2020;144(12):655–661. doi: 10.1159/000509352.
  • Mossanen JC, Pracht J, Jansen TU, et al. Elevated soluble urokinase plasminogen activator receptor and proenkephalin serum levels predict the development of acute kidney injury after cardiac surgery. Int J Mol Sci. Jul 2017;18(8):1662. doi: 10.3390/ijms18081662.
  • Caironi P, Latini R, Struck J, et al. Circulating proenkephalin, acute kidney injury, and its improvement in patients with severe sepsis or shock. Clin Chem. Sep 2018;64(9):1361–1369. doi: 10.1373/clinchem.2018.288068.
  • Rosenqvist M, Bronton K, Hartmann O, et al. Proenkephalin a 119-159 (penKid) – a novel biomarker for acute kidney injury in sepsis: an observational study. BMC Emerg Med. Nov 2019;19(1):75. doi: 10.1186/s12873-019-0283-9.
  • Breidthardt T, Jaeger C, Christ A, et al. Proenkephalin for the early detection of acute kidney injury in hospitalized patients with chronic kidney disease. Eur J Clin Invest. Oct 2018;48(10):e12999. doi: 10.1111/eci.12999.
  • Seo DW, Li H, Qu CK, et al. Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. J Biol Chem. Feb 2006;281(6):3711–3721. doi: 10.1074/jbc.M509932200.
  • Zuo S, Liu C, Wang J, et al. IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells. J Cancer Res Clin Oncol. Jun 2012;138(6):1045–1055. doi: 10.1007/s00432-012-1153-y.
  • Shankland SJ. Cell cycle regulatory proteins in glomerular disease. Kidney Int. Oct 1999;56(4):1208–1215. doi: 10.1046/j.1523-1755.1999.00709.x.
  • Megyesi J, Safirstein RL, Price PM. Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest. Feb 1998;101(4):777–782. doi: 10.1172/JCI1497.
  • Kellum JA, Chawla LS. Cell-cycle arrest and acute kidney injury: the light and the dark sides. Nephrol Dial Transplant. 2016;31(1):16–22. doi: 10.1093/ndt/gfv130.
  • Witzgall R, Brown D, Schwarz C, et al. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large Pool of mitotically active and dedifferentiated cells. J Clin Invest. May 1994;93(5):2175–2188. doi: 10.1172/JCI117214.
  • Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. Feb 2013;17(1):R25. doi: 10.1186/cc12503.
  • Bihorac A, Chawla LS, Shaw AD, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med. Apr 2014;189(8):932–939. doi: 10.1164/rccm.201401-0077OC.
  • Su LJ, Li YM, Kellum JA, et al. Predictive value of cell cycle arrest biomarkers for cardiac surgery-associated acute kidney injury: a meta-analysis. Br J Anaesth. Aug 2018;121(2):350–357. doi: 10.1016/j.bja.2018.02.069.
  • Guzzi LM, Bergler T, Binnall B, et al. Clinical use of [TIMP-2]*[IGFBP7] biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel. Crit Care. Jun 2019;23(1):225. doi: 10.1186/s13054-019-2504-8.
  • Forni LG, Joannidis M, Artigas A, et al. Characterising acute kidney injury: the complementary roles of biomarkers of renal stress and renal function. J Crit Care. Oct 2022;71:154066. doi: 10.1016/j.jcrc.2022.154066.
  • Cai L, Rubin J, Han W, et al. The origin of multiple molecular forms in urine of HNL/NGAL. Clin J Am Soc Nephrol. Dec 2010;5(12):2229–2235. doi: 10.2215/CJN.00980110.
  • Goetz DH, Holmes MA, Borregaard N, et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. Nov 2002;10(5):1033–1043. doi: 10.1016/s1097-2765(02)00708-6.
  • Yang J, Goetz D, Li JY, et al. An iron delivery pathway mediated by a lipocalin. Mol Cell. Nov 2002;10(5):1045–1056. doi: 10.1016/s1097-2765(02)00710-4.
  • Mishra J, Mori K, Ma Q, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. Dec 2004;15(12):3073–3082. doi: 10.1097/01.ASN.0000145013.44578.45.
  • Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. Oct 2003;14(10):2534–2543. doi: 10.1097/01.asn.0000088027.54400.c6.
  • Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. Apr 2005;365(9466):1231–1238. doi: 10.1016/S0140-6736(05)74811-X.
  • Makris K, Markou N, Evodia E, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin Chem Lab Med. 2009;47(1):79–82.
  • Haase M, Devarajan P, Haase-Fielitz A, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. Apr 2011;57(17):1752–1761. doi: 10.1016/j.jacc.2010.11.051.
  • Haase M, Kellum JA, Ronco C. Subclinical AKI–an emerging syndrome with important consequences. Nat Rev Nephrol. Dec 2012;8(12):735–739. doi: 10.1038/nrneph.2012.197.
  • Martensson J, Bellomo R. The rise and fall of NGAL in acute kidney injury. Blood Purif. 2014;37(4):304–310. doi: 10.1159/000364937.
  • Ling W, Zhaohui N, Ben H, et al. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin Pract. 2008;108(3):c176–c181. doi: 10.1159/000117814.
  • Hall IE, Yarlagadda SG, Coca SG, et al. IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J Am Soc Nephrol. Jan 2010;21(1):189–197. doi: 10.1681/ASN.2009030264.
  • Lumlertgul N, Amprai M, Tachaboon S, et al. Urine neutrophil gelatinase-associated lipocalin (NGAL) for prediction of persistent AKI and major adverse kidney events. Sci Rep. May 2020;10(1):8718. doi: 10.1038/s41598-020-65764-w.
  • Cruz DN, de Cal M, Garzotto F, et al. Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med. Mar 2010;36(3):444–451. doi: 10.1007/s00134-009-1711-1.
  • Devarajan P. NGAL in acute kidney injury: from serendipity to utility. Am J Kidney Dis. Sep 2008;52(3):395–399. doi: 10.1053/j.ajkd.2008.07.008.
  • Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant. 2009;24(11):3265–3268. doi: 10.1093/ndt/gfp010.
  • Song J, Yu J, Prayogo GW, et al. Understanding kidney injury molecule 1: a novel immune factor in kidney pathophysiology. Am J Transl Res. 2019;11(3):1219–1229.
  • Zhou Y, Vaidya VS, Brown RP, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci. 2008;101(1):159–170. doi: 10.1093/toxsci/kfm260.
  • Vaidya VS, Ramirez V, Ichimura T, et al. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol. 2006;290(2):F517–F529. doi: 10.1152/ajprenal.00291.2005.
  • Ichimura T, Hung CC, Yang SA, et al. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286(3):F552–F563. doi: 10.1152/ajprenal.00285.2002.
  • Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol. 2003;14(suppl_1):S55–S61. doi: 10.1097/01.asn.0000067652.51441.21.
  • Parikh CR, Thiessen-Philbrook H, Garg AX, et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol. Jul 2013;8(7):1079–1088. doi: 10.2215/CJN.10971012.
  • Koyner JL, Vaidya VS, Bennett MR, et al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin J Am Soc Nephrol. Dec 2010;5(12):2154–2165. doi: 10.2215/CJN.00740110.
  • Han WK, Waikar SS, Johnson A, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. Apr 2008;73(7):863–869. doi: 10.1038/sj.ki.5002715.
  • Arthur JM, Hill EG, Alge JL, et al. Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney Int. Feb 2014;85(2):431–438. doi: 10.1038/ki.2013.333.
  • Geng J, Qiu Y, Qin Z, et al. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis. J Transl Med. Mar 2021;19(1):105. doi: 10.1186/s12967-021-02776-8.
  • Shao X, Tian L, Xu W, et al. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS One. 2014;9(1):e84131. doi: 10.1371/journal.pone.0084131.
  • Pelsers MM, Hermens WT, Glatz JF. Fatty acid-binding proteins as plasma markers of tissue injury. Clin Chim Acta. Feb 2005;352(1-2):15–35. doi: 10.1016/j.cccn.2004.09.001.
  • Yamamoto T, Noiri E, Ono Y, et al. Renal L-type fatty acid–binding protein in acute ischemic injury. J Am Soc Nephrol. Nov 2007;18(11):2894–2902. doi: 10.1681/ASN.2007010097.
  • Kamijo-Ikemori A, Sugaya T, Kimura K. Urinary fatty acid binding protein in renal disease. Clin Chim Acta. Dec 2006;74(1-2):1–7. doi: 10.1016/j.cca.2006.05.038.
  • Matsui K, Kamijo-Ikemorif A, Sugaya T, et al. Renal liver-type fatty acid binding protein (L-FABP) attenuates acute kidney injury in aristolochic acid nephrotoxicity. Am J Pathol. Mar 2011;178(3):1021–1032. doi: 10.1016/j.ajpath.2010.12.002.
  • Susantitaphong P, Siribamrungwong M, Doi K, et al. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: a meta-analysis. Am J Kidney Dis. Mar 2013;61(3):430–439. doi: 10.1053/j.ajkd.2012.10.016.
  • Chiang TH, Yo CH, Lee GH, et al. Accuracy of liver-type fatty acid-binding protein in predicting acute kidney injury: a meta-analysis. J Appl Lab Med. Mar 2022;7(2):421–436. doi: 10.1093/jalm/jfab092.
  • Landrier JF, Thomas C, Grober J, et al. Statin induction of liver fatty acid-binding protein (L-FABP) gene expression is peroxisome proliferator-activated receptor-alpha-dependent. J Biol Chem. Oct 2004;279(44):45512–45518. doi: 10.1074/jbc.M407461200.
  • Attridge RL, Frei CR, Ryan L, et al. Fenofibrate-associated nephrotoxicity: a review of current evidence. Am J Health Syst Pharm. Jul 2013;70(14):1219–1225. doi: 10.2146/ajhp120131.
  • Zhao YY, Weir MA, Manno M, et al. New fibrate use and acute renal outcomes in elderly adults: a population-based study. Ann Intern Med. Apr 2012;156(8):560–569. doi: 10.7326/0003-4819-156-8-201204170-00401.
  • Niehrs C. Function and biological roles of the dickkopf family of wnt modulators. Oncogene. Dec 2006;25(57):7469–7481. doi: 10.1038/sj.onc.1210054.
  • Federico G, Meister M, Mathow D, et al. Tubular dickkopf-3 promotes the development of renal atrophy and fibrosis. JCI Insight. Jan 2016;1(1):e84916. doi: 10.1172/jci.insight.84916.
  • Schunk SJ, Zarbock A, Meersch M, et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet. Aug 2019;394(10197):488–496. doi: 10.1016/S0140-6736(19)30769-X.
  • Schunk SJ, Speer T, Petrakis I, et al. Dickkopf 3-a novel biomarker of the kidney injury continuum. Nephrol Dial Transplant. Apr 2021;36(5):761–767. doi: 10.1093/ndt/gfaa003.
  • Thunø M, Macho B, Eugen-Olsen J. suPAR: the molecular crystal ball. Dis Markers. 2009;27(3-4):157–172. doi: 10.1155/2009/504294.
  • Hayek SS, Leaf DE, Samman Tahhan A, et al. Soluble urokinase receptor and acute kidney injury. N Engl J Med. 2020;382(5):416–426. doi: 10.1056/NEJMoa1911481.
  • Hayek SS, Sever S, Ko YA, et al. Soluble urokinase receptor and chronic kidney disease. N Engl J Med. Nov 2015;373(20):1916–1925. doi: 10.1056/NEJMoa1506362.
  • Hayek SS, Landsittel DP, Wei C, et al. Soluble urokinase plasminogen activator receptor and decline in kidney function in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. Jul 2019;30(7):1305–1313. doi: 10.1681/ASN.2018121227.
  • Huang Y, Huang S, Zhuo X, et al. Predictive value of suPAR in AKI: a systematic review and meta-analysis. Clin Exp Nephrol. Jan 2023;27(1):1–11. doi: 10.1007/s10157-022-02300-2.
  • Hamie L, Daoud G, Nemer G, et al. SuPAR, an emerging biomarker in kidney and inflammatory diseases. Postgrad Med J. Sep 2018;94(1115):517–524. doi: 10.1136/postgradmedj-2018-135839.
  • Novick D, Kim S, Kaplanski G, et al. Interleukin-18, more than a Th1 cytokine. Semin Immunol. Dec 2013;25(6):439–448. doi: 10.1016/j.smim.2013.10.014.
  • Lin X, Yuan J, Zhao Y, et al. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. J Nephrol. Feb 2015;28(1):7–16. doi: 10.1007/s40620-014-0113-9.
  • El Sharif A, Awad A. Curcumin immune-mediated and anti-apoptotic mechanism protect against renal ischemia/reperfusion and distant organ induced injuries. Int Immunopharmacol. 2011;11(8):992–996. doi: 10.1016/j.intimp.2011.02.015.
  • Parikh CR, Jani A, Melnikov VY, et al. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis. Mar 2004;43(3):405–414. doi: 10.1053/j.ajkd.2003.10.040.
  • Nisula S, Yang R, Poukkanen M, et al. Predictive value of urine interleukin-18 in the evolution and outcome of acute kidney injury in critically ill adult patients. Br J Anaesth. Mar 2015;114(3):460–468. doi: 10.1093/bja/aeu382.
  • Wu H, Craft ML, Wang P, et al. IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol. Dec 2008;19(12):2331–2341. doi: 10.1681/ASN.2008020170.
  • Zhao T, Su Z, Li Y, et al. Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct Target Ther. Sep 2020;5(1):201. doi: 10.1038/s41392-020-00303-7.
  • De Loor J, Decruyenaere J, Demeyere K, et al. Urinary chitinase 3-like protein 1 for early diagnosis of acute kidney injury: a prospective cohort study in adult critically ill patients. Crit Care. Feb 2016;20:38. doi: 10.1186/s13054-016-1192-x.
  • Nisula S, Kaukonen KM, Vaara ST, et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. Mar 2013;39(3):420–428. doi: 10.1007/s00134-012-2796-5.
  • Hoste EA, Vaara ST, De Loor J, et al. Urinary cell cycle arrest biomarkers and chitinase 3-like protein 1 (CHI3L1) to detect acute kidney injury in the critically ill: a post hoc laboratory analysis on the FINNAKI cohort. Crit Care. Apr 2020;24(1):144. doi: 10.1186/s13054-020-02867-w.
  • Conroy AL, Hawkes MT, Elphinstone R, et al. Chitinase-3-like 1 is a biomarker of acute kidney injury and mortality in paediatric severe malaria. Malar J. Feb 2018;17(1):82. doi: 10.1186/s12936-018-2225-5.
  • De Lorenzo R, Sciorati C, Lorè NI, et al. Chitinase-3-like protein-1 at hospital admission predicts COVID-19 outcome: a prospective cohort study. Sci Rep. May 2022;12(1):7606. doi: 10.1038/s41598-022-11532-x.
  • Schulz-Knappe P, Mägert H, Dewald B, et al. HCC-1, a novel chemokine from human plasma. J Exp Med. 1996;183(1):295–299. doi: 10.1084/jem.183.1.295.
  • Chung AC, Lan HY. Chemokines in renal injury. J Am Soc Nephrol. May 2011;22(5):802–809. doi: 10.1681/ASN.2010050510.
  • Cao Q, Wang Y, Harris DC. Pathogenic and protective role of macrophages in kidney disease. Am J Physiol Renal Physiol. Jul 2013;305(1):F3–11. doi: 10.1152/ajprenal.00122.2013.
  • Detheux M, Ständker L, Vakili J, et al. Natural proteolytic processing of hemofiltrate CC chemokine 1 generates a potent CC chemokine receptor (CCR)1 and CCR5 agonist with anti-HIV properties. J Exp Med. Nov 2000;192(10):1501–1508. doi: 10.1084/jem.192.10.1501.
  • Niewczas MA, Pavkov ME, Skupien J, et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med. 2019;25(5):805–813. doi: 10.1038/s41591-019-0415-5.
  • Hoste E, Bihorac A, Al-Khafaji A, et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med. May 2020;46(5):943–953. doi: 10.1007/s00134-019-05919-0.
  • Bagshaw SM, Al-Khafaji A, Artigas A, et al. External validation of urinary C–C motif chemokine ligand 14 (CCL14) for prediction of persistent acute kidney injury. Crit Care. May 2021;25(1):185. doi: 10.1186/s13054-021-03618-1.
  • Massoth C, Küllmar M, Enders D, et al. Comparison of C-C motif chemokine ligand 14 with other biomarkers for adverse kidney events after cardiac surgery. J Thorac Cardiovasc Surg. Jan 2023;165(1):199–207.e2. doi: 10.1016/j.jtcvs.2021.03.016.
  • Lehner GF, Forni LG, Joannidis M. Oliguria and biomarkers of acute kidney injury: star struck lovers or strangers in the night? Nephron. 2016;134(3):183–190. doi: 10.1159/000447979.
  • Priyanka P, Zarbock A, Izawa J, et al. The impact of acute kidney injury by serum creatinine or urine output criteria on major adverse kidney events in cardiac surgery patients. J Thorac Cardiovasc Surg. Jul 2021;162(1):143–151 e7. doi: 10.1016/j.jtcvs.2019.11.137.
  • Kellum JA, Sileanu FE, Murugan R, et al. Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol. Sep 2015;26(9):2231–2238. doi: 10.1681/ASN.2014070724.
  • Pepin MN, Bouchard J, Legault L, et al. Diagnostic performance of fractional excretion of urea and fractional excretion of sodium in the evaluations of patients with acute kidney injury with or without diuretic treatment. Am J Kidney Dis. Oct 2007;50(4):566–573. doi: 10.1053/j.ajkd.2007.07.001.
  • Darmon M, Vincent F, Dellamonica J, et al. Diagnostic performance of fractional excretion of urea in the evaluation of critically ill patients with acute kidney injury: a multicenter cohort study. Crit Care. Jul 2011;15(4):R178. doi: 10.1186/cc10327.
  • Hasannejad H, Takeda M, Taki K, et al. Interactions of human organic anion transporters with diuretics. J Pharmacol Exp Ther. Mar 2004;308(3):1021–1029. doi: 10.1124/jpet.103.059139.
  • Bowman RH. Renal secretion of [35-S]furosemide and depression by albumin binding. Am J Physiol. Jul 1975;229(1):93–98. doi: 10.1152/ajplegacy.1975.229.1.93.
  • Chawla LS, Davison DL, Brasha-Mitchell E, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care. Sep 2013;17(5):R207. doi: 10.1186/cc13015.
  • Rewa OG, Bagshaw SM, Wang X, et al. The furosemide stress test for prediction of worsening acute kidney injury in critically ill patients: a multicenter, prospective, observational study. J Crit Care. Aug 2019;52:109–114. doi: 10.1016/j.jcrc.2019.04.011.
  • Koyner JL, Davison DL, Brasha-Mitchell E, et al. Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol. Aug 2015;26(8):2023–2031. doi: 10.1681/ASN.2014060535.
  • van der Voort PH, Boerma EC, Pickkers P. The furosemide stress test to predict renal function after continuous renal replacement therapy [comment letter]. Crit Care. 2014;18(3):429. doi: 10.1186/cc13871.
  • Nickolas TL, Schmidt-Ott KM, Canetta P, et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol. 2012;59(3):246–255. doi: 10.1016/j.jacc.2011.10.854.
  • Matsa R, Ashley E, Sharma V, et al. Plasma and urine neutrophil gelatinase-associated lipocalin in the diagnosis of new onset acute kidney injury in critically ill patients. Crit Care. Jul 2014;18(4):R137. doi: 10.1186/cc13958.
  • de Geus HR, Bakker J, Lesaffre EM, et al. Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients. Am J Respir Crit Care Med. Apr 2011;183(7):907–914. doi: 10.1164/rccm.200908-1214OC.
  • Martensson J, Bell M, Oldner A, et al. Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med. Aug 2010;36(8):1333–1340. doi: 10.1007/s00134-010-1887-4.
  • Constantin JM, Futier E, Perbet S, et al. Plasma neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in adult critically ill patients: a prospective study. J Crit Care. Mar 2010;25(1):176 e1-6–176.e6.
  • Seibert FS, Heringhaus A, Pagonas N, et al. Dickkopf-3 in the prediction of contrast media induced acute kidney injury. J Nephrol. Jun 2021;34(3):821–828. doi: 10.1007/s40620-020-00910-1.
  • Qin Y, Qiao Y, Wang D, et al. The predictive value of soluble urokinase-type plasminogen activator receptor in contrast-induced acute kidney injury in patients undergoing percutaneous coronary intervention. Int J Gen Med. 2021;14:6497–6504. doi: 10.2147/IJGM.S339075.
  • Rasmussen SR, Nielsen RV, Mogelvang R, et al. Prognostic value of suPAR and hsCRP on acute kidney injury after cardiac surgery. BMC Nephrol. Apr 2021;22(1):120. doi: 10.1186/s12882-021-02322-0.
  • Joannidis M, Forni LG, Haase M, et al. Use of cell cycle arrest biomarkers in conjunction with classical markers of acute kidney injury. Crit Care Med. 2019;47(10):e820–e826. doi: 10.1097/CCM.0000000000003907.
  • Depret F, Hollinger A, Cariou A, et al. Incidence and outcome of subclinical acute kidney injury using penKid in critically ill patients. Am J Respir Crit Care Med. Sep 2020;202(6):822–829. doi: 10.1164/rccm.201910-1950OC.
  • Ostermann M, Zarbock A, Goldstein S, et al. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: a consensus statement. JAMA Netw Open. Oct 2020;3(10):e2019209. doi: 10.1001/jamanetworkopen.2020.19209.
  • Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. Nov 2017;43(11):1551–1561. doi: 10.1007/s00134-016-4670-3.
  • Zarbock A, Kullmar M, Ostermann M, et al. Prevention of cardiac surgery-associated acute kidney injury by implementing the KDIGO guidelines in high-risk patients identified by biomarkers: the PrevAKI-Multicenter randomized controlled trial. Anesth Analg. Aug 2021;133(2):292–302. doi: 10.1213/ANE.0000000000005458.
  • Göcze I, Jauch D, Götz M, et al. Biomarker-guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study. Ann Surg. Jun 2018;267(6):1013–1020. doi: 10.1097/SLA.0000000000002485.
  • Engelman DT, Crisafi C, Germain M, et al. Using urinary biomarkers to reduce acute kidney injury following cardiac surgery. J Thorac Cardiovasc Surg. Nov 2020;160(5):1235–1246 e2. doi: 10.1016/j.jtcvs.2019.10.034.
  • Fuchs L, Lee J, Novack V, et al. Severity of acute kidney injury and two-year outcomes in critically ill patients. Chest. Sep 2013;144(3):866–875. doi: 10.1378/chest.12-2967.
  • Schanz M, Wasser C, Allgaeuer S, et al. Urinary [TIMP-2].[IGFBP7]-guided randomized controlled intervention trial to prevent acute kidney injury in the emergency department. Nephrol Dial Transplant. Nov 2019;34(11):1902–1909. doi: 10.1093/ndt/gfy186.
  • Belcher JM, Sanyal AJ, Peixoto AJ, et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology. Aug 2014;60(2):622–632. doi: 10.1002/hep.26980.
  • Gowda YHS, Jagtap N, Karyampudi A, et al. Fractional excretion of sodium and urea in differentiating acute kidney injury phenotypes in decompensated cirrhosis. J Clin Exp Hepatol. May-Jun 2022;12(3):899–907. doi: 10.1016/j.jceh.2021.09.019.
  • Allegretti AS, Parada XV, Endres P, et al. Urinary NGAL as a diagnostic and prognostic marker for acute kidney injury in cirrhosis: a prospective study. Clin Transl Gastroenterol. May 2021;12(5):e00359. doi: 10.14309/ctg.0000000000000359.
  • Puthumana J, Ariza X, Belcher JM, et al. Urine interleukin 18 and lipocalin 2 are biomarkers of acute tubular necrosis in patients with cirrhosis: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. Jul 2017;15(7):1003–1013 e3. doi: 10.1016/j.cgh.2016.11.035.
  • Wong F, Pappas SC, Curry MP, et al. Terlipressin plus albumin for the treatment of type 1 hepatorenal syndrome. N Engl J Med. Mar 2021;384(9):818–828. doi: 10.1056/NEJMoa2008290.
  • Han WK, Bailly V, Abichandani R, et al. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. Jul 2002;62(1):237–244. doi: 10.1046/j.1523-1755.2002.00433.x.
  • Coca SG, Yalavarthy R, Concato J, et al. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. May 2008;73(9):1008–1016. doi: 10.1038/sj.ki.5002729.
  • Moledina DG, Wilson FP, Pober JS, et al. Urine TNF-alpha and IL-9 for clinical diagnosis of acute interstitial nephritis. JCI Insight. May 2019;4(10):e127456. doi: 10.1172/jci.insight.127456.
  • Moledina DG, Parikh CR. Differentiating acute interstitial nephritis from acute tubular injury: a challenge for clinicians. Nephron. 2019;143(3):211–216. doi: 10.1159/000501207.
  • Moledina DG, Wilson FP, Kukova L, et al. Urine interleukin-9 and tumor necrosis factor-alpha for prognosis of human acute interstitial nephritis. Nephrol Dial Transplant. Sep 2021;36(10):1851–1858. doi: 10.1093/ndt/gfaa169.
  • Farooqui N, Zaidi M, Vaughan L, et al. Cytokines and immune cell phenotype in acute kidney injury associated with immune checkpoint inhibitors. Kidney Int Rep. Mar 2023;8(3):628–641. doi: 10.1016/j.ekir.2022.11.020.
  • Martinez Valenzuela L, Draibe J, Bestard O, et al. Urinary cytokines reflect renal inflammation in acute tubulointerstitial nephritis: a multiplex bead-based assay assessment. J Clin Med. Jul 2021;10(13):2986. doi: 10.3390/jcm10132986.
  • Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. Mar 2012;81(5):442–448. doi: 10.1038/ki.2011.379.
  • Bagshaw SM, Mortis G, Doig CJ, et al. One-year mortality in critically ill patients by severity of kidney dysfunction: a population-based assessment. Am J Kidney Dis. Sep 2006;48(3):402–409. doi: 10.1053/j.ajkd.2006.06.002.
  • Koyner JL, Garg AX, Coca SG, et al. Biomarkers predict progression of acute kidney injury after cardiac surgery. J Am Soc Nephrol. May 2012;23(5):905–914. doi: 10.1681/ASN.2011090907.
  • Tao X, Chen C, Luo W, et al. Combining renal cell arrest and damage biomarkers to predict progressive AKI in patient with sepsis. BMC Nephrol. Dec 2021;22(1):415. doi: 10.1186/s12882-021-02611-8.
  • Moledina DG, Isguven S, McArthur E, et al. Plasma monocyte chemotactic protein-1 is associated with acute kidney injury and death after cardiac operations. Ann Thorac Surg. Aug 2017;104(2):613–620. doi: 10.1016/j.athoracsur.2016.11.036.
  • Chawla LS, Ronco C. Renal stress testing in the assessment of kidney disease. Kidney Int Rep. May 2016;1(1):57–63. doi: 10.1016/j.ekir.2016.04.005.
  • Koyner JL, Chawla LS. Use of stress tests in evaluating kidney disease. Curr Opin Nephrol Hypertens. Jan 2017;26(1):31–35. doi: 10.1097/MNH.0000000000000292.
  • Matsuura R, Komaru Y, Miyamoto Y, et al. Response to different furosemide doses predicts AKI progression in ICU patients with elevated plasma NGAL levels. Ann Intensive Care. Jan 2018;8(1):8. doi: 10.1186/s13613-018-0355-0.
  • McMahon BA, Koyner JL, Novick T, et al. The prognostic value of the furosemide stress test in predicting delayed graft function following deceased donor kidney transplantation. Biomarkers. Feb 2018;23(1):61–69. doi: 10.1080/1354750X.2017.1387934.
  • Powell TC, Warnock DG. The furosemide stress test and predicting AKI outcomes. J Am Soc Nephrol. Aug 2015;26(8):1762–1764. doi: 10.1681/ASN.2014121160.
  • Vasquez-Rios G, Moledina DG, Jia Y, et al. Pre-operative kidney biomarkers and risks for death, cardiovascular and chronic kidney disease events after cardiac surgery: the TRIBE-AKI study. J Cardiothorac Surg. Dec 2022;17(1):338. doi: 10.1186/s13019-022-02066-4.
  • Wilson M, Packington R, Sewell H, et al. Biomarkers during recovery from AKI and prediction of long-term reductions in estimated GFR. Am J Kidney Dis. May 2022;79(5):646–656 e1. doi: 10.1053/j.ajkd.2021.08.017.
  • Coca SG, Vasquez-Rios G, Mansour SG, et al. Plasma soluble tumor necrosis factor receptor concentrations and clinical events after hospitalization: findings from the ASSESS-AKI and ARID studies. Am J Kidney Dis. Feb 2023;81(2):190–200. doi: 10.1053/j.ajkd.2022.08.007.
  • Gharaibeh KA, Hamadah AM, El-Zoghby ZM, et al. Cystatin C predicts renal recovery earlier than creatinine among patients with acute kidney injury. Kidney Int Rep. Mar 2018;3(2):337–342. doi: 10.1016/j.ekir.2017.10.012.
  • Moon SJ, Park HB, Yoon SY, et al. Urinary biomarkers for early detection of recovery in patients with acute kidney injury. J Korean Med Sci. Aug 2013;28(8):1181–1186. doi: 10.3346/jkms.2013.28.8.1181.
  • Aregger F, Uehlinger DE, Witowski J, et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury. Kidney Int. Apr 2014;85(4):909–919. doi: 10.1038/ki.2013.363.
  • Meersch M, Schmidt C, Van Aken H, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One. 2014;9(3):e93460. doi: 10.1371/journal.pone.0093460.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.