523
Views
0
CrossRef citations to date
0
Altmetric
Invited Reviews

General features, pathogenesis, and laboratory diagnostics of autoimmune encephalitis

, , , , &
Pages 45-69 | Received 23 Mar 2023, Accepted 09 Aug 2023, Published online: 30 Sep 2023

References

  • Dalmau J, Graus F. Antibody-mediated encephalitis. Ropper AH, editor. N Engl J Med. 2018;378(9):840–851. doi: 10.1056/NEJMra1708712.
  • Dubey D, Pittock SJ, Kelly CR, et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis: autoimmune encephalitis. Ann Neurol. 2018;83(1):166–177. doi: 10.1002/ana.25131.
  • Dalmau J, Geis C, Graus F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev. 2017;97(2):839–887. doi: 10.1152/physrev.00010.2016.
  • Gastaldi M, Scaranzin S, Pietro B, et al. Paraneoplastic neurological syndromes: transitioning between the old and the new. Curr Oncol Rep. 2022;24(10):1237–1249. doi: 10.1007/s11912-022-01279-z.
  • Uy CE, Binks S, Irani SR. Autoimmune encephalitis: clinical spectrum and management. Pract Neurol. 2021;21(5):412–423. doi: 10.1136/practneurol-2020-002567.
  • Graus F, Vogrig A, Muñiz-Castrillo S, et al. Updated diagnostic criteria for paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm. 2021;8:e1014. doi: 10.1212/NXI.0000000000001014.
  • Graus F, Titulaer MJ, Balu R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391–404. doi: 10.1016/S1474-4422(15)00401-9.
  • Corsellis JAN, Goldberg GJ, Norton AR. “limbic encephalitis” and its association with carcinoma. Brain. 1968;91(3):481–496. doi: 10.1093/brain/91.3.481.
  • Ding JB, Dongas J, Hu K, et al. Autoimmune limbic encephalitis: a review of clinicoradiological features and the challenges of diagnosis. Cureus [Internet]; 2021 [cited 2023 Mar 20]. Available from: https://www.cureus.com/articles/67206-autoimmune-limbic-encephalitis-a-review-of-clinicoradiological-features-and-the-challenges-of-diagnosis
  • Graus F, Delattre JY, Antoine JC, et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry. 2004;75(8):1135–1140. doi: 10.1136/jnnp.2003.034447.
  • Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol. 2011;69(5):892–900. doi: 10.1002/ana.22307.
  • Irani SR, Pettingill P, Kleopa KA, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol. 2012;72(2):241–255. doi: 10.1002/ana.23577.
  • Dalmau J, Tüzün E, Wu H, et al. Paraneoplastic anti- N -methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25–36. doi: 10.1002/ana.21050.
  • Al-Diwani A, Handel A, Townsend L, et al. The psychopathology of NMDAR-antibody encephalitis in adults: a systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry. 2019;6(3):235–246. doi: 10.1016/S2215-0366(19)30001-X.
  • Dalmau J, Armangué T, Planagumà J, et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol. 2019;18(11):1045–1057. doi: 10.1016/S1474-4422(19)30244-3.
  • Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12(2):157–165. doi: 10.1016/S1474-4422(12)70310-1.
  • Bost C, Chanson E, Picard G, et al. Malignant tumors in autoimmune encephalitis with anti-NMDA receptor antibodies. J Neurol. 2018;265(10):2190–2200. doi: 10.1007/s00415-018-8970-0.
  • Dalmau J, Lancaster E, Martinez-Hernandez E, et al. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10(1):63–74. doi: 10.1016/S1474-4422(10)70253-2.
  • Kayser MS, Dalmau J. Anti-NMDA receptor encephalitis, autoimmunity, and psychosis. Schizophr Res. 2016;176(1):36–40. doi: 10.1016/j.schres.2014.10.007.
  • Spatola M, Petit-Pedrol M, Simabukuro MM, et al. Investigations in GABA a receptor antibody-associated encephalitis. Neurology. 2017;88(11):1012–1020. doi: 10.1212/WNL.0000000000003713.
  • Deng B, Cai M, Qiu Y, et al. MRI characteristics of autoimmune encephalitis with autoantibodies to GABAA receptor: a case series. Neurol Neuroimmunol Neuroinflamm. 2022;9:e1158. doi: 10.1212/NXI.0000000000001158.
  • Gaig C, Graus F, Compta Y, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology. 2017;88(18):1736–1743. doi: 10.1212/WNL.0000000000003887.
  • Honorat JA, Komorowski L, Josephs KA, et al. IgLON5 antibody: neurological accompaniments and outcomes in 20 patients. Neurol Neuroimmunol Neuroinflamm. 2017;4(5):e385. doi: 10.1212/NXI.0000000000000385.
  • Sabater L, Gaig C, Gelpi E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol. 2014;13(6):575–586. doi: 10.1016/S1474-4422(14)70051-1.
  • Werner J, Jelcic I, Schwarz EI, et al. Anti-IgLON5 disease: a new bulbar-onset motor neuron mimic syndrome. Neurol Neuroimmunol Neuroinflamm. 2021;8(2):e962. doi: 10.1212/NXI.0000000000000962.
  • Gelpi E, Höftberger R, Graus F, et al. Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol. 2016;132(4):531–543. doi: 10.1007/s00401-016-1591-8.
  • Hinman MN, Lou H. Diverse molecular functions of Hu proteins. Cell Mol Life Sci. 2008;65(20):3168–3181. doi: 10.1007/s00018-008-8252-6.
  • Graus F, Keime-Guibert F, Reñe R, et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain. 2001;124(Pt 6):1138–1148. doi: 10.1093/brain/124.6.1138.
  • Li Q, Michel K, Annahazi A, et al. Anti-Hu antibodies activate enteric and sensory neurons. Sci Rep. 2016;6:38216. doi: 10.1038/srep38216.
  • Totland C, Aarskog NK, Eichler TW, et al. CDR2 antigen and Yo antibodies. Cancer Immunol Immunother. 2011;60(2):283–289. doi: 10.1007/s00262-010-0943-9.
  • Greenlee JE, Brashear HR. Antibodies to cerebellar Purkinje cells in patients with paraneoplastic cerebellar degeneration and ovarian carcinoma. Ann Neurol. 1983;14(6):609–613. doi: 10.1002/ana.410140603.
  • Déchelotte B, Muñiz-Castrillo S, Joubert B, et al. Diagnostic yield of commercial immunodots to diagnose paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm. 2020;7:e701. doi: 10.1212/NXI.0000000000000701.
  • Gong X, Tan M, Gao Y, et al. CRMP-5 interacts with actin to regulate neurite outgrowth. Mol Med Rep. 2016;13(2):1179–1185. doi: 10.3892/mmr.2015.4662.
  • Honnorat J, Antoine JC, Derrington E, et al. Antibodies to a subpopulation of glial cells and a 66 kDa developmental protein in patients with paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry. 1996;61(3):270–278. doi: 10.1136/jnnp.61.3.270.
  • Sabater L, Saiz A, Dalmau J, et al. Pitfalls in the detection of CV2 (CRMP5) antibodies. J Neuroimmunol. 2016;290:80–83. doi: 10.1016/j.jneuroim.2015.11.009.
  • Jensen KB, Dredge BK, Stefani G, et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron. 2000;25(2):359–371. doi: 10.1016/s0896-6273(00)80900-9.
  • Simard C, Vogrig A, Joubert B, et al. Clinical spectrum and diagnostic pitfalls of neurologic syndromes with Ri antibodies. Neurol Neuroimmunol Neuroinflamm. 2020;7:e699. doi: 10.1212/NXI.0000000000000699.
  • Dalmau J, Graus F, Villarejo A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain. 2004;127(Pt 8):1831–1844. doi: 10.1093/brain/awh203.
  • Wigge P, McMahon HT. The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci. 1998;21(8):339–344. doi: 10.1016/s0166-2236(98)01264-8.
  • Antoine JC, Absi L, Honnorat J, et al. Antiamphiphysin antibodies are associated with various paraneoplastic neurological syndromes and tumors. Arch Neurol. 1999;56(2):172–177. doi: 10.1001/archneur.56.2.172.
  • Gadoth A, Kryzer TJ, Fryer J, et al. Microtubule-associated protein 1B: novel paraneoplastic biomarker: MAP1B IgG. Ann Neurol. 2017;81(2):266–277. doi: 10.1002/ana.24872.
  • Stevanovic M, Drakulic D, Lazic A, et al. SOX transcription factors as important regulators of neuronal and glial differentiation during nervous system development and adult neurogenesis. Front. Mol. Neurosci. 2021;14:654031. doi: 10.3389/fnmol.2021.654031.
  • Sabater L, Titulaer M, Saiz A, et al. SOX1 antibodies are markers of paraneoplastic Lambert-Eaton myasthenic syndrome. Neurology. 2008;70(12):924–928. doi: 10.1212/01.wnl.0000281663.81079.24.
  • Ruiz-García R, Martínez-Hernández E, García-Ormaechea M, et al. Caveats and pitfalls of SOX1 autoantibody testing with a commercial line blot assay in paraneoplastic neurological investigations. Front Immunol. 2019;10:769. doi: 10.3389/fimmu.2019.00769.
  • Vogrig A, Péricart S, Pinto A-L, et al. Immunopathogenesis and proposed clinical score for identifying Kelch-like protein-11 encephalitis. Brain Commun. 2021;3(3):fcab185. doi: 10.1093/braincomms/fcab185.
  • Basal E, Zalewski N, Kryzer TJ, et al. Paraneoplastic neuronal intermediate filament autoimmunity. Neurology. 2018;91(18):e1677–e1689. doi: 10.1212/WNL.0000000000006435.
  • Zekeridou A, Kryzer T, Guo Y, et al. Phosphodiesterase 10A IgG: a novel biomarker of paraneoplastic neurologic autoimmunity. Neurology. 2019;93(8):e815–e822. doi: 10.1212/WNL.0000000000007971.
  • Zekeridou A, Yang B, Lennon VA, et al. Anti-neuronal nuclear antibody 3 autoimmunity targets dachshund homolog 1. Ann Neurol. 2022;91(5):670–675. doi: 10.1002/ana.26320.
  • Eiraku M, Hirata Y, Takeshima H, et al. Delta/notch-like epidermal growth factor (EGF)-related receptor, a novel EGF-like repeat-containing protein targeted to dendrites of developing and adult central nervous system neurons. J Biol Chem. 2002;277(28):25400–25407. doi: 10.1074/jbc.M110793200.
  • Greene M, Lai Y, Baella N, et al. Antibodies to delta/notch-like epidermal growth factor–related receptor in patients with anti-Tr, paraneoplastic cerebellar degeneration, and Hodgkin lymphoma. JAMA Neurol. 2014;71(8):1003–1008. doi: 10.1001/jamaneurol.2014.999.
  • Probst C, Komorowski L, de Graaff E, et al. Standardized test for anti-Tr/DNER in patients with paraneoplastic cerebellar degeneration. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e68. doi: 10.1212/NXI.0000000000000068.
  • van Coevorden-Hameete MH, van Beuningen SFB, Perrenoud M, et al. Antibodies to TRIM46 are associated with paraneoplastic neurological syndromes. Ann Clin Transl Neurol. 2017;4(9):680–686. doi: 10.1002/acn3.396.
  • Honorat JA, Lopez-Chiriboga AS, Kryzer TJ, et al. Autoimmune gait disturbance accompanying adaptor protein-3B2-IgG. Neurology. 2019;93(10):e954–e963. doi: 10.1212/WNL.0000000000008061.
  • Miske R, Scharf M, Stark P, et al. Autoantibodies against the Purkinje cell protein RGS8 in paraneoplastic cerebellar syndrome. Neurol Neuroimmunol Neuroinflamm. 2021;8:e987. doi: 10.1212/NXI.0000000000000987.
  • Muñiz-Castrillo S, Hedou JJ, Ambati A, et al. Distinctive clinical presentation and pathogenic specificities of anti-AK5 encephalitis. Brain. 2021;144(9):2709–2721. doi: 10.1093/brain/awab153.
  • Fenalti G, Buckle AM. Structural biology of the GAD autoantigen. Autoimmun Rev. 2010;9(3):148–152. doi: 10.1016/j.autrev.2009.05.003.
  • Graus F, Saiz A, Dalmau J. GAD antibodies in neurological disorders—insights and challenges. Nat Rev Neurol. 2020;16(7):353–365. doi: 10.1038/s41582-020-0359-x.
  • Do L-D, Moritz CP, Muñiz-Castrillo S, et al. Argonaute autoantibodies as biomarkers in autoimmune neurologic diseases. Neurol Neuroimmunol Neuroinflamm. 2021;8:e1032. doi: 10.1212/NXI.0000000000001032.
  • Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38(6):364–374. doi: 10.1016/j.tins.2015.04.003.
  • Fang B, McKeon A, Hinson SR, et al. Autoimmune glial fibrillary acidic protein astrocytopathy: a novel meningoencephalomyelitis. JAMA Neurol. 2016;73(11):1297–1307. doi: 10.1001/jamaneurol.2016.2549.
  • Bataller L, Wade DF, Graus F, et al. Antibodies to Zic4 in paraneoplastic neurologic disorders and small-cell lung cancer. Neurology. 2004;62(5):778–782. doi: 10.1212/01.wnl.0000113749.77217.01.
  • Hinson SR, Honorat JA, Grund EM, et al. Septin-5 and - 7-IgGs : neurologic, serologic, and pathophysiologic characteristics. Ann Neurol. 2022;92(6):1090–1101. doi: 10.1002/ana.26482.
  • Hansen KB, Yi F, Perszyk RE, et al. NMDA receptors in the central nervous system. In: Burnashev N, Szepetowski P, editors. NMDA receptors [Internet]. New York, NY: Springer; 2017 [cited 2023 Mar 21]. p. 1–80. Available from: https://doi.org/10.1007/978-1-4939-7321-7_1
  • McCracken L, Zhang J, Greene M, et al. Improving the antibody-based evaluation of autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm. 2017;4(6):e404. doi: 10.1212/NXI.0000000000000404.
  • Gresa-Arribas N, Titulaer MJ, Torrents A, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol. 2014;13(2):167–177. doi: 10.1016/S1474-4422(13)70282-5.
  • Baudin P, Cousyn L, Navarro V. The LGI1 protein: molecular structure, physiological functions and disruption-related seizures. Cell Mol Life Sci. 2021;79(1):16. doi: 10.1007/s00018-021-04088-y.
  • van Sonderen A, Thijs RD, Coenders EC, et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology. 2016;87(14):1449–1456. doi: 10.1212/WNL.0000000000003173.
  • Saint-Martin M, Pieters A, Déchelotte B, et al. Impact of anti-CASPR2 autoantibodies from patients with autoimmune encephalitis on CASPR2/TAG-1 interaction and Kv1 expression. J Autoimmun. 2019;103:102284. doi: 10.1016/j.jaut.2019.05.012.
  • van Sonderen A, Petit-Pedrol M, Dalmau J, et al. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol. 2017;13(5):290–301. doi: 10.1038/nrneurol.2017.43.
  • Burgos CF, Yévenes GE, Aguayo LG. Structure and pharmacologic modulation of inhibitory glycine receptors. Mol Pharmacol. 2016;90(3):318–325. doi: 10.1124/mol.116.105726.
  • Carvajal-González A, Leite MI, Waters P, et al. Glycine receptor antibodies in Perm and related syndromes: characteristics, clinical features and outcomes. Brain. 2014;137(Pt 8):2178–2192. doi: 10.1093/brain/awu142.
  • Sigel E, Steinmann ME. Structure, function, and modulation of GABAA receptors. J Biol Chem. 2012;287(48):40224–40231. doi: 10.1074/jbc.R112.386664.
  • Terunuma M. Diversity of structure and function of GABAB receptors: a complexity of GABAB-mediated signaling. Proc Jpn Acad Ser B Phys Biol Sci. 2018;94(10):390–411. doi: 10.2183/pjab.94.026.
  • Hoftberger R, Titulaer MJ, Sabater L, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology. 2013;81(17):1500–1506. doi: 10.1212/WNL.0b013e3182a9585f.
  • Ruiz-García R, Muñoz-Sánchez G, Naranjo L, et al. Limitations of a commercial assay as diagnostic test of autoimmune encephalitis. Front Immunol. 2021;12:691536. doi: 10.3389/fimmu.2021.691536.
  • Lancaster E, Lai M, Peng X, et al. Antibodies to the GABAB receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol. 2010;9(1):67–76. doi: 10.1016/S1474-4422(09)70324-2.
  • Hoftberger R, van Sonderen A, Leypoldt F, et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology. 2015;84(24):2403–2412. doi: 10.1212/WNL.0000000000001682.
  • Spatola M, Sabater L, Planagumà J, et al. Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology. 2018;90(22):e1964–e1972. doi: 10.1212/WNL.0000000000005614.
  • Boronat A, Gelfand JM, Gresa-Arribas N, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol. 2013;73(1):120–128. doi: 10.1002/ana.23756.
  • Martel JC, Gatti McArthur S. Dopamine receptor subtypes, physiology and pharmacology: new ligands and concepts in schizophrenia. Front Pharmacol. 2020;11:1003. doi: 10.3389/fphar.2020.01003.
  • Dale RC, Merheb V, Pillai S, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain. 2012;135(Pt 11):3453–3468. doi: 10.1093/brain/aws256.
  • Gresa-Arribas N, Planagumà J, Petit-Pedrol M, et al. Human neurexin-3α antibodies associate with encephalitis and alter synapse development. Neurology. 2016;86(24):2235–2242. doi: 10.1212/WNL.0000000000002775.
  • Pandya NJ, Klaassen RV, van der Schors RC, et al. Group 1 metabotropic glutamate receptors 1 and 5 form a protein complex in mouse hippocampus and cortex. Proteomics. 2016;16(20):2698–2705. doi: 10.1002/pmic.201500400.
  • Spatola M, Petit Pedrol M, Maudes E, et al. Clinical features, prognostic factors, and antibody effects in anti-mGluR1 encephalitis. Neurology. 2020;95(22):e3012–e3025. doi: 10.1212/WNL.0000000000010854.
  • Abarkan M, Gaitan J, Lebreton F, et al. The glutamate receptor GluK2 contributes to the regulation of glucose homeostasis and its deterioration during aging. Mol Metab. 2019;30:152–160. doi: 10.1016/j.molmet.2019.09.011.
  • Landa J, Guasp M, Míguez-Cabello F, et al. Encephalitis with autoantibodies against the glutamate kainate receptors GluK2. Ann Neurol. 2021;90(1):101–117. doi: 10.1002/ana.26098.
  • Landa J, Guasp M, Petit-Pedrol M, et al. Seizure-related 6 homolog like 2 autoimmunity: neurologic syndrome and antibody effects. Neurol Neuroimmunol Neuroinflamm. 2021;8:e916. doi: 10.1212/NXI.0000000000000916.
  • Lancaster E. The diagnosis and treatment of autoimmune encephalitis. J Clin Neurol. 2016;12(1):1–13. doi: 10.3988/jcn.2016.12.1.1.
  • Kelley BP, Patel SC, Marin HL, et al. Autoimmune encephalitis: pathophysiology and imaging review of an overlooked diagnosis. AJNR Am J Neuroradiol. 2017;38(6):1070–1078. doi: 10.3174/ajnr.A5086.
  • Blinder T, Lewerenz J. Cerebrospinal fluid findings in patients with autoimmune encephalitis—a systematic analysis. Front Neurol. 2019;10:804. doi: 10.3389/fneur.2019.00804.
  • Zhang T, Duan Y, Ye J, et al. Brain MRI characteristics of patients with anti-N-methyl-D-aspartate receptor encephalitis and their associations with 2-year clinical outcome. AJNR Am J Neuroradiol. 2018;39(5):824–829. doi: 10.3174/ajnr.A5593.
  • Armangue T, Santamaria J, Dalmau J. When a serum test overrides the clinical assessment. Neurology. 2015;84(13):1379–1381. doi: 10.1212/WNL.0000000000001425.
  • Graus F, Escudero D, Oleaga L, et al. Syndrome and outcome of antibody-negative limbic encephalitis. Eur J Neurol. 2018;25(8):1011–1016. doi: 10.1111/ene.13661.
  • Muñiz-Castrillo S, Vogrig A, Honnorat J. Associations between HLA and autoimmune neurological diseases with autoantibodies. Auto Immun Highlights. 2020;11(1):2. doi: 10.1186/s13317-019-0124-6.
  • Seldin MF. The genetics of human autoimmune disease: a perspective on progress in the field and future directions. J Autoimmun. 2015;64:1–12. doi: 10.1016/j.jaut.2015.08.015.
  • Ramanathan S, Brilot F, Irani SR, et al. Origins and immunopathogenesis of autoimmune central nervous system disorders. Nat Rev Neurol. 2023;19(3):172–190. doi: 10.1038/s41582-023-00776-4.
  • Kim T-J, Lee S-T, Moon J, et al. Anti-LGI1 encephalitis is associated with unique HLA subtypes: HLA subtypes in anti-LGI1 encephalitis. Ann Neurol. 2017;81(2):183–192. doi: 10.1002/ana.24860.
  • Mueller SH, Färber A, Prüss H, et al. Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis: GWAS. Ann Neurol. 2018;83(4):863–869. doi: 10.1002/ana.25216.
  • van Sonderen A, Roelen DL, Stoop JA, et al. Anti-LGI1 encephalitis is strongly associated with HLA-DR7 and HLA-DRB4: anti-LGI1 encephalitis. Ann Neurol. 2017;81(2):193–198. doi: 10.1002/ana.24858.
  • Muñiz-Castrillo S, Haesebaert J, Thomas L, et al. Clinical and prognostic value of immunogenetic characteristics in anti-LGI1 encephalitis. Neurol Neuroimmunol Neuroinflamm. 2021;8:e974. doi: 10.1212/NXI.0000000000000974.
  • Peris Sempere V, Muñiz-Castrillo S, Ambati A, et al. Human leukocyte antigen association study reveals DRB1*04:02 effects additional to DRB1*07:01 in anti-LGI1 encephalitis. Neurol Neuroimmunol Neuroinflamm. 2022;9:e1140. doi: 10.1212/NXI.0000000000001140.
  • Binks S, Varley J, Lee W, et al. Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain. 2018;141(8):2263–2271. doi: 10.1093/brain/awy109.
  • Muñiz-Castrillo S, Joubert B, Elsensohn M-H, et al. Anti-CASPR2 clinical phenotypes correlate with HLA and immunological features. J Neurol Neurosurg Psychiatry. 2020;91(10):1076–1084. doi: 10.1136/jnnp-2020-323226.
  • Gaig C, Ercilla G, Daura X, et al. HLA and microtubule-associated protein tau H1 haplotype associations in anti-IgLON5 disease. Neurol Neuroimmunol Neuroinflamm. 2019;6:e605. doi: 10.1212/NXI.0000000000000605.
  • Tietz AK, Angstwurm K, Baumgartner T, et al. Genome-wide association study identifies 2 new loci associated with anti-NMDAR encephalitis. Neurol Neuroimmunol Neuroinflamm. 2021;8(6):e1085. doi: 10.1212/NXI.0000000000001085.
  • de Graaf MT, de Beukelaar JWK, Haasnoot GW, et al. HLA-DQ2+ individuals are susceptible to Hu-Ab associated paraneoplastic neurological syndromes. J Neuroimmunol. 2010;226(1-2):147–149. doi: 10.1016/j.jneuroim.2010.05.035.
  • Strippel C, Herrera-Rivero M, Wendorff M, et al. A genome-wide association study in autoimmune neurological syndromes with anti-GAD65 autoantibodies. Brain. 2023;146(3):977–990. doi: 10.1093/brain/awac119.
  • Venkatesan A, Benavides DR. Autoimmune encephalitis and its relation to infection. Curr Neurol Neurosci Rep. 2015;15(3):3. doi: 10.1007/s11910-015-0529-1.
  • Höftberger R, Armangue T, Leypoldt F, et al. Clinical neuropathology practice guide 4-2013: post-herpes simplex encephalitis: n-methyl-daspartate receptor antibodies are part of the problem. Clin Neuropathol. 2013;32(4):251–254. doi: 10.5414/np300666.
  • Armangue T, Spatola M, Vlagea A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 2018;17(9):760–772. doi: 10.1016/S1474-4422(18)30244-8.
  • Sun B, Ramberger M, O'Connor KC, et al. The B cell immunobiology that underlies CNS autoantibody-mediated diseases. Nat Rev Neurol. 2020;16(9):481–492. doi: 10.1038/s41582-020-0381-z.
  • Pilotto A, Masciocchi S, Volonghi I, et al. Clinical presentation and outcomes of SARS-CoV-2 related encephalitis: the ENCOVID multicentre study. J Infect Dis. 2021;223(1):28–37. doi: 10.1093/infdis/jiaa609.
  • Manzano GS, McEntire CRS, Martinez-Lage M, et al. Acute disseminated encephalomyelitis and acute hemorrhagic leukoencephalitis following COVID-19: systematic review and meta-synthesis. Neurol Neuroimmunol Neuroinflamm. 2021;8:e1080. doi: 10.1212/NXI.0000000000001080.
  • Franke C, Ferse C, Kreye J, et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun. 2021;93:415–419. doi: 10.1016/j.bbi.2020.12.022.
  • Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21(4):687–692. doi: 10.1158/1078-0432.CCR-14-1860.
  • Manley GT, Smitt PS, Dalmau J, et al. Hu antigens: reactivity with hu antibodies, tumor expression, and major immunogenic sites. Ann Neurol. 1995;38(1):102–110. doi: 10.1002/ana.410380117.
  • Al-Diwani A, Theorell J, Damato V, et al. Cervical lymph nodes and ovarian teratomas as germinal centres in NMDA receptor-antibody encephalitis. Brain. 2022;145(8):2742–2754. doi: 10.1093/brain/awac088.
  • Simabukuro MM, Petit-Pedrol M, Castro LH, et al. GABA a receptor and LGI1 antibody encephalitis in a patient with thymoma. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e73. doi: 10.1212/NXI.0000000000000073.
  • Alexopoulos H, Dagklis IE, Akrivou S, et al. Autoimmune encephalitis with GABA B antibodies, thymoma, and GABA B receptor thymic expression. Neurol Neuroimmunol Neuroinflamm. 2014;1(4):e39. doi: 10.1212/NXI.0000000000000039.
  • Pignolet BS, Gebauer CM, Liblau RS. Immunopathogenesis of paraneoplastic neurological syndromes associated with anti-Hu antibodies: a beneficial antitumor immune response going awry. OncoImmunology. 2013;2(12):e27384. doi: 10.4161/onci.27384.
  • Peter E, Treilleux I, Wucher V, et al. Immune and genetic signatures of breast carcinomas triggering anti-Yo–associated paraneoplastic cerebellar degeneration. Neurol Neuroimmunol Neuroinflamm. 2022;9:e200015. doi: 10.1212/NXI.0000000000200015.
  • Small M, Treilleux I, Couillault C, et al. Genetic alterations and tumor immune attack in Yo paraneoplastic cerebellar degeneration. Acta Neuropathol. 2018;135(4):569–579. doi: 10.1007/s00401-017-1802-y.
  • Chefdeville A, Treilleux I, Mayeur M-E, et al. Immunopathological characterization of ovarian teratomas associated with anti-N-methyl-D-aspartate receptor encephalitis. Acta Neuropathol Commun. 2019;7(1):38. doi: 10.1186/s40478-019-0693-7.
  • Jacob JB, Jacob MK, Parajuli P. Review of immune checkpoint inhibitors in immuno-oncology. Adv Pharmacol. 2021;91:111–139. doi: 10.1016/bs.apha.2021.01.002.
  • Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11(1):3801. doi: 10.1038/s41467-020-17670-y.
  • Manenti S, Orrico M, Masciocchi S, et al. PD-1/PD-L axis in neuroinflammation: new insights. Front Neurol. 2022;13:877936. doi: 10.3389/fneur.2022.877936.
  • Velasco R, Villagrán M, Jové M, et al. Encephalitis induced by immune checkpoint inhibitors: a systematic review. JAMA Neurol. 2021;78(7):864–873. doi: 10.1001/jamaneurol.2021.0249.
  • Farina A, Villagrán-García M, Ciano-Petersen NL, et al. Anti-Hu antibodies in patients with neurologic side effects of immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm. 2023;10:e200058. doi: 10.1212/NXI.0000000000200058.
  • Vogrig A, Fouret M, Joubert B, et al. Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm. 2019;6:e604. doi: 10.1212/NXI.0000000000000604.
  • Manson G, Maria ATJ, Poizeau F, et al. Worsening and newly diagnosed paraneoplastic syndromes following anti-PD-1 or anti-PD-L1 immunotherapies, a descriptive study. J Immunother Cancer. 2019;7(1):337. doi: 10.1186/s40425-019-0821-8.
  • Raibagkar P, Ho D, Gunturu KS, et al. Worsening of anti-Hu paraneoplastic neurological syndrome related to anti-PD-1 treatment: case report and review of literature. J Neuroimmunol. 2020;341:577184. doi: 10.1016/j.jneuroim.2020.577184.
  • Malter MP, Elger CE, Surges R. Diagnostic value of CSF findings in antibody-associated limbic and anti-NMDAR-encephalitis. Seizure. 2013;22(2):136–140. doi: 10.1016/j.seizure.2012.12.013.
  • Lehmann-Horn K, Irani SR, Wang S, et al. Intrathecal B-cell activation in LGI1 antibody encephalitis. Neurol Neuroimmunol Neuroinflamm. 2020;7:e669. doi: 10.1212/NXI.0000000000000669.
  • Moscato EH, Peng X, Jain A, et al. Acute mechanisms underlying antibody effects in anti–N-methyl-D-aspartate receptor encephalitis. Ann Neurol. 2014;76(1):108–119. doi: 10.1002/ana.24195.
  • Hughes EG, Peng X, Gleichman AJ, et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci. 2010;30(17):5866–5875. doi: 10.1523/JNEUROSCI.0167-10.2010.
  • Carvajal-González A, Jacobson L, Clover L, et al. Systemic delivery of human GlyR IgG antibody induces GlyR internalization into motor neurons of brainstem and spinal cord with motor dysfunction in mice. Neuropathol Appl Neurobiol. 2021;47(2):316–327. doi: 10.1111/nan.12666.
  • Lai M, Hughes EG, Peng X, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol. 2009;65(4):424–434. doi: 10.1002/ana.21589.
  • Peng X, Hughes EG, Moscato EH, et al. Cellular plasticity induced by anti–α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann Neurol. 2015;77(3):381–398. doi: 10.1002/ana.24293.
  • Pettingill P, Kramer HB, Coebergh JA. Antibodies to GABAA receptor a1 and g2 subunits. Neurology. 2015;84(12):1233–1241. doi: 10.1212/WNL.0000000000001326.
  • Landa J, Gaig C, Plagumà J, et al. Effects of IgLON5 antibodies on neuronal cytoskeleton: a link between autoimmunity and neurodegeneration. Ann Neurol. 2020;88(5):1023–1027. doi: 10.1002/ana.25857.
  • Martinez-Hernandez E, Horvath J, Shiloh-Malawsky Y, et al. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology. 2011;77(6):589–593. doi: 10.1212/WNL.0b013e318228c136.
  • Zrzavy T, Endmayr V, Bauer J, et al. Neuropathological variability within a spectrum of NMDAR-encephalitis. Ann Neurol. 2021;90(5):725–737. doi: 10.1002/ana.26223.
  • Tüzün E, Zhou L, Baehring JM, et al. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol. 2009;118(6):737–743. doi: 10.1007/s00401-009-0582-4.
  • Klang A, Schmidt P, Kneissl S, et al. IgG and complement deposition and neuronal loss in cats and humans with epilepsy and voltage-gated potassium channel complex antibodies. J Neuropathol Exp Neurol. 2014;73(5):403–413. doi: 10.1097/NEN.0000000000000063.
  • Bien CG, Vincent A, Barnett MH, et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain. 2012;135(Pt 5):1622–1638. doi: 10.1093/brain/aws082.
  • Körtvelyessy P, Bauer J, Stoppel CM, et al. Complement-associated neuronal loss in a patient with CASPR2 antibody–associated encephalitis. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e75. doi: 10.1212/NXI.0000000000000075.
  • Räuber S, Schroeter CB, Strippel C, et al. Cerebrospinal fluid proteomics indicates immune dysregulation and neuronal dysfunction in antibody associated autoimmune encephalitis. J Autoimmun. 2023;135:102985. doi: 10.1016/j.jaut.2022.102985.
  • Huijbers MG, Querol LA, Niks EH, et al. The expanding field of IgG4-mediated neurological autoimmune disorders. Eur J Neurol. 2015;22(8):1151–1161. doi: 10.1111/ene.12758.
  • Perugino CA, Stone JH. IgG4-related disease: an update on pathophysiology and implications for clinical care. Nat Rev Rheumatol. 2020;16(12):702–714. doi: 10.1038/s41584-020-0500-7.
  • Aalberse RC, Schuurman J. IgG4 breaking the rules. Immunology. 2002;105(1):9–19. doi: 10.1046/j.0019-2805.2001.01341.x.
  • Ohkawa T, Fukata Y, Yamasaki M, et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J Neurosci. 2013;33(46):18161–18174. doi: 10.1523/JNEUROSCI.3506-13.2013.
  • Joubert B, Petit-Pedrol M, Planagumà J, et al. Human CASPR2 antibodies reversibly alter memory and the CASPR2 protein complex. Ann Neurol. 2022;91(6):801–813. doi: 10.1002/ana.26345.
  • Patterson KR, Dalmau J, Lancaster E. Mechanisms of Caspr2 antibodies in autoimmune encephalitis and neuromyotonia: caspr2 antibody mechanisms. Ann Neurol. 2018;83(1):40–51. doi: 10.1002/ana.25120.
  • Mikasova L, De Rossi P, Bouchet D, et al. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain. 2012;135(Pt 5):1606–1621. doi: 10.1093/brain/aws092.
  • Planagumà J, Leypoldt F, Mannara F, et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain. 2015;138(Pt 1):94–109. doi: 10.1093/brain/awu310.
  • Crisp SJ, Dixon CL, Jacobson L, et al. Glycine receptor autoantibodies disrupt inhibitory neurotransmission. Brain. 2019;142(11):3398–3410. doi: 10.1093/brain/awz297.
  • Piepgras J, Höltje M, Michel K, et al. Anti-DPPX encephalitis: pathogenic effects of antibodies on gut and brain neurons. Neurology. 2015;85(10):890–897. doi: 10.1212/WNL.0000000000001907.
  • Ryding M, Gamre M, Nissen MS, et al. Neurodegeneration induced by anti-IgLON5 antibodies studied in induced pluripotent stem cell-derived human neurons. Cells. 2021;10:837. doi: 10.3390/cells10040837.
  • Giannoccaro MP, Wright SK, Vincent A. In vivo mechanisms of antibody-mediated neurological disorders: animal models and potential implications. Front Neurol. 2019;10:1394. doi: 10.3389/fneur.2019.01394.
  • Blome R, Bach W, Guli X, et al. Differentially altered NMDAR dependent and independent long-term potentiation in the CA3 subfield in a model of anti-NMDAR encephalitis. Front Synaptic Neurosci. 2018;10:26. doi: 10.3389/fnsyn.2018.00026.
  • Würdemann T, Kersten M, Tokay T, et al. Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function. Brain Res. 2016;1633:10–18. doi: 10.1016/j.brainres.2015.12.027.
  • Kersten M, Rabbe T, Blome R, et al. Novel object recognition in rats with NMDAR dysfunction in CA1 after stereotactic injection of anti-NMDAR encephalitis cerebrospinal fluid. Front Neurol. 2019;10:586. doi: 10.3389/fneur.2019.00586.
  • Radosevic M, Planagumà J, Mannara F, et al. Allosteric modulation of NMDARs reverses patients’ autoantibody effects in mice. Neurol Neuroimmunol Neuroinflamm. 2022;9:e1122. doi: 10.1212/NXI.0000000000001122.
  • Petit-Pedrol M, Sell J, Planagumà J, et al. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain [Internet]. 2018 [cited 2023 Mar 20]. doi: 10.1093/brain/awy253
  • Giannoccaro MP, Menassa DA, Jacobson L, et al. Behaviour and neuropathology in mice injected with human contactin-associated protein 2 antibodies. Brain. 2019;142(7):2000–2012. doi: 10.1093/brain/awz119.
  • Pan H, Oliveira B, Saher G, et al. Uncoupling the widespread occurrence of anti-NMDAR1 autoantibodies from neuropsychiatric disease in a novel autoimmune model. Mol Psychiatry. 2019;24(10):1489–1501. doi: 10.1038/s41380-017-0011-3.
  • Jones BE, Tovar KR, Goehring A, et al. Autoimmune receptor encephalitis in mice induced by active immunization with conformationally stabilized holoreceptors. Sci Transl Med. 2019;11:eaaw0044. doi: 10.1126/scitranslmed.aaw0044.
  • Duong SL, Prüss H. Molecular disease mechanisms of human antineuronal monoclonal autoantibodies. Trends Mol Med. 2023;29(1):20–34. doi: 10.1016/j.molmed.2022.09.011.
  • Sharma R, Al-Saleem FH, Panzer J, et al. Monoclonal antibodies from a patient with anti-NMDA receptor encephalitis. Ann Clin Transl Neurol. 2018;5(8):935–951. doi: 10.1002/acn3.592.
  • Parray HA, Shukla S, Samal S, et al. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol. 2020;85:106639. doi: 10.1016/j.intimp.2020.106639.
  • Kreye J, Wright SK, van Casteren A, et al. Encephalitis patient-derived monoclonal GABAA receptor antibodies cause epileptic seizures. J Exp Med. 2021; 218(11):e20210012. doi: 10.1084/jem.20210012.
  • Ly L-T, Kreye J, Jurek B, et al. Affinities of human NMDA receptor autoantibodies: implications for disease mechanisms and clinical diagnostics. J Neurol. 2018;265(11):2625–2632. doi: 10.1007/s00415-018-9042-1.
  • Ramberger M, Berretta A, Tan JMM, et al. Distinctive binding properties of human monoclonal LGI1 autoantibodies determine pathogenic mechanisms. Brain. 2020;143(6):1731–1745. doi: 10.1093/brain/awaa104.
  • Graus F, Ilia I, Agusti M, et al. Effect of intraventricular injection of an anti-Purkinjc cell antibody (anti-Yo) in a Guinea pig model. J Neurol Sci. 1991;106(1):82–87. doi: 10.1016/0022-510x(91)90198-g.
  • Darnell RB. Onconeural antigens and the paraneoplastic neurologic disorders: at the intersection of cancer, immunity, and the brain. Proc Natl Acad Sci U S A. 1996;93(10):4529–4536. doi: 10.1073/pnas.93.10.4529.
  • Benyahia B, Liblau R, Merle-Bé Ral H, et al. Cell-mediated autoimmunity in paraneoplastic neurological syndromes with anti-Hu antibodies. Ann Neurol. 1999;45(2):162–167. doi: 10.1002/1531-8249(199902)45:2<162::AID-ANA5>3.0.CO;2-R.
  • Albert ML, Austin LM, Darnell RB. Detection and treatment of activated T cells in the cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann Neurol. 2000;47(1):9–17. doi: 10.1002/1531-8249(200001)47:1<9::AID-ANA5>3.0.CO;2-I.
  • Roberts WK, Deluca IJ, Thomas A, et al. Patients with lung cancer and paraneoplastic Hu syndrome harbor HuD-specific type 2 CD8+ T cells. J Clin Invest. 2009;119(7):2042–2051. doi: 10.1172/JCI36131.
  • Rousseau A, Benyahia B, Dalmau J, et al. T cell response to Hu-D peptides in patients with anti-Hu syndrome. J Neurooncol. 2005;71(3):231–236. doi: 10.1007/s11060-004-1723-1.
  • McKeon A, Pittock SJ. Paraneoplastic encephalomyelopathies: pathology and mechanisms. Acta Neuropathol. 2011;122(4):381–400. doi: 10.1007/s00401-011-0876-1.
  • Bauer J, Bien CG. Neuropathology of autoimmune encephalitides. Handb Clin Neurol. 2016;133:107–120. doi: 10.1016/B978-0-444-63432-0.00007-4.
  • Pellkofer H, Schubart AS, Höftberger R, et al. Modelling paraneoplastic CNS disease: t -cells specific for the onconeuronal antigen PNMA1 mediate autoimmune encephalomyelitis in the rat. Brain. 2004;127(Pt 8):1822–1830. doi: 10.1093/brain/awh205.
  • Blachère NE, Orange DE, Santomasso BD, et al. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation: cellular immune response. Eur J Immunol. 2014;44(11):3240–3251. doi: 10.1002/eji.201444624.
  • Gebauer C, Pignolet B, Yshii L, et al. CD4+ and CD8+ T cells are both needed to induce paraneoplastic neurological disease in a mouse model. OncoImmunology. 2017;6(2):e1260212. doi: 10.1080/2162402X.2016.1260212.
  • Werner C, Pauli M, Doose S, et al. Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics and composition. Brain. 2016;139(Pt 2):365–379. doi: 10.1093/brain/awv324.
  • Saiz A, Dalmau J, Butler MH, et al. Anti-amphiphysin I antibodies in patients with paraneoplastic neurological disorders associated with small cell lung carcinoma. J Neurol Neurosurg Psychiatry. 1999;66(2):214–217. doi: 10.1136/jnnp.66.2.214.
  • Geis C, Weishaupt A, Hallermann S, et al. Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition. Brain. 2010;133(11):3166–3180. doi: 10.1093/brain/awq253.
  • Sommer C, Weishaupt A, Brinkhoff J, et al. Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet. 2005;365(9468):1406–1411. doi: 10.1016/S0140-6736(05)66376-3.
  • Irani SR. ‘Moonlighting’ surface antigens: a paradigm for autoantibody pathogenicity in neurology? Brain. 2016;139(Pt 2):304–306. doi: 10.1093/brain/awv364.
  • Dinkel K, Meinck H-M, Jury KM, et al. Inhibition of ?-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann Neurol. 1998;44(2):194–201. doi: 10.1002/ana.410440209.
  • Raju R, Foote J, Banga JP, et al. Analysis of GAD65 autoantibodies in Stiff-Person syndrome patients. J Immunol. 2005;175(11):7755–7762. doi: 10.4049/jimmunol.175.11.7755.
  • Ishida K, Mitoma H, Song S-Y, et al. Selective suppression of cerebellar GABAergic transmission by an autoantibody to glutamic acid decarboxylase. Ann Neurol. 1999;46(2):263–267. doi: 10.1002/1531-8249(199908)46:2<263::AID-ANA19>3.0.CO;2-0.
  • Takenoshita H, Shizuka-Ikeda M, Mitoma H, et al. Presynaptic inhibition of cerebellar GABAergic transmission by glutamate decarboxylase autoantibodies in progressive cerebellar ataxia. J Neurol Neurosurg Psychiatry. 2001;70(3):386–389. doi: 10.1136/jnnp.70.3.386.
  • Vianello M, Vianello M, Bisson G, et al. Increased spontaneous activity of a network of hippocampal neurons in culture caused by suppression of inhibitory potentials mediated by anti-gad antibodies. Autoimmunity. 2008;41(1):66–73. doi: 10.1080/08916930701619565.
  • Stemmler N, Rohleder K, Malter MP, et al. Serum from a patient with GAD65 antibody-associated limbic encephalitis did not alter GABAergic neurotransmission in cultured hippocampal networks. Front Neurol. 2015 [cited 2023 Mar 20];6:189. doi: 10.3389/fneur.2015.00189.
  • Mitoma H, Ishida K, Shizuka-Ikeda M, et al. Dual impairment of GABAA- and GABAB-receptor-mediated synaptic responses by autoantibodies to glutamic acid decarboxylase. J Neurol Sci. 2003;208(1-2):51–56. doi: 10.1016/s0022-510x(02)00423-9.
  • Manto MU, Hampe CS, Rogemond V, et al. Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia. Orphanet J Rare Dis. 2011[cited 2023 Mar 20];6:3. doi: 10.1186/1750-1172-6-3.
  • Manto M, Honnorat J, Hampe CS, et al. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions. Front Behav Neurosci. 2015;9:78. doi: 10.3389/fnbeh.2015.00078.
  • Geis C, Weishaupt A, Grünewald B, et al. Human Stiff-Person syndrome IgG induces anxious behavior in rats. Meuth S, editor. PLoS One. 2011;6(2):e16775. doi: 10.1371/journal.pone.0016775.
  • Hansen N, Grünewald B, Weishaupt A, et al. Human stiff person syndrome IgG-containing high-titer anti-GAD65 autoantibodies induce motor dysfunction in rats. Exp Neurol. 2013;239:202–209. doi: 10.1016/j.expneurol.2012.10.013.
  • Chuquisana O, Strippel C, Tröscher AM, et al. Complement activation contributes to GAD antibody-associated encephalitis. Acta Neuropathol. 2022;144(2):381–383. doi: 10.1007/s00401-022-02448-x.
  • Tröscher AR, Mair KM, Verdú de Juan L, et al. Temporal lobe epilepsy with GAD antibodies: neurons killed by T cells not by complement membrane attack complex. Brain. 2023;146(4):1436–1452. doi: 10.1093/brain/awac404.
  • Rocchi A, Sacchetti S, De Fusco A, et al. Autoantibodies to synapsin I sequestrate synapsin I and alter synaptic function. Cell Death Dis. 2019;10(11):864. doi: 10.1038/s41419-019-2106-z.
  • Höltje M, Mertens R, Schou MB, et al. Synapsin-antibodies in psychiatric and neurological disorders: prevalence and clinical findings. Brain Behav Immun. 2017;66:125–134. doi: 10.1016/j.bbi.2017.07.011.
  • Ricken G, Schwaiger C, De Simoni D, et al. Detection methods for autoantibodies in suspected autoimmune encephalitis. Front Neurol. 2018;9:841. doi: 10.3389/fneur.2018.00841.
  • Waters P, Pettingill P, Lang B. Detection methods for neural autoantibodies. Handb Clin Neurol. 2016;133:147–163. doi: 10.1016/B978-0-444-63432-0.00009-8.
  • Budhram A, Dubey D, Sechi E, et al. Neural antibody testing in patients with suspected autoimmune encephalitis. Clin Chem. 2020;66(12):1496–1509. doi: 10.1093/clinchem/hvaa254.
  • Flanagan EP, Geschwind MD, Lopez-Chiriboga AS, et al. Autoimmune encephalitis misdiagnosis in adults. JAMA Neurol. 2023;80(1):30–39. doi: 10.1001/jamaneurol.2022.4251.
  • Infantino M, Tampoia M, Fabris M, et al. Combining immunofluorescence with immunoblot assay improves the specificity of autoantibody testing for myositis. Rheumatology. 2019;58(7):1239–1244. doi: 10.1093/rheumatology/key451.
  • Chen JJ, McKeon A, Greenwood TM, et al. Clinical utility of antiretinal antibody testing. JAMA Ophthalmol. 2021;139(6):658–662. doi: 10.1001/jamaophthalmol.2021.0651.
  • Ruiz-García R, Martínez-Hernández E, Saiz A, et al. The diagnostic value of onconeural antibodies depends on how they are tested. Front Immunol. 2020;11:1482. doi: 10.3389/fimmu.2020.01482.
  • Zuliani L, Nosadini M, Gastaldi M, et al. Management of antibody-mediated autoimmune encephalitis in adults and children: literature review and consensus-based practical recommendations. Neurol Sci. 2019;40(10):2017–2030. doi: 10.1007/s10072-019-03930-3.
  • Tan EM, Feltkamp TEW, Smolen JS, et al. Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum. 1997;40(9):1601–1611. doi: 10.1002/art.1780400909.
  • Gastaldi M, Zardini E, Scaranzin S, et al. Autoantibody diagnostics in neuroimmunology: experience from the 2018 Italian neuroimmunology association external quality assessment program. Front Neurol. 2019;10:1385. doi: 10.3389/fneur.2019.01385.
  • Masi G, Spagni G, Campetella L, et al. Assessing the role of a tissue-based assay in the diagnostic algorithm of autoimmune encephalitis. J Neuroimmunol. 2021;356:577601. doi: 10.1016/j.jneuroim.2021.577601.
  • Gastaldi M, Mariotto S, Giannoccaro MP, et al. Subgroup comparison according to clinical phenotype and serostatus in autoimmune encephalitis: a multicenter retrospective study. Eur J Neurol. 2020;27(4):633–643. doi: 10.1111/ene.14139.
  • Woodhall M, Mgbachi V, Fox H, et al. Utility of live cell-based assays for autoimmune neurology diagnostics. J Appl Lab Med. 2022;7(1):391–393. doi: 10.1093/jalm/jfab133.
  • van Coevorden-Hameete MH, de Bruijn MAAM, de Graaff E, et al. The expanded clinical spectrum of anti-GABABR encephalitis and added value of KCTD16 autoantibodies. Brain. 2019;142(6):1631–1643. doi: 10.1093/brain/awz094.
  • Thouin A, Gastaldi M, Woodhall M, et al. Comparison of N-methyl-d-aspartate receptor antibody assays using live or fixed substrates. J Neurol. 2021;268(5):1818–1826. doi: 10.1007/s00415-020-10329-0.
  • Cullen AE, Palmer-Cooper EC, Hardwick M, et al. Influence of methodological and patient factors on serum NMDAR IgG antibody detection in psychotic disorders: a meta-analysis of cross-sectional and case-control studies. Lancet Psychiatry. 2021;8(2):109–120. doi: 10.1016/S2215-0366(20)30432-6.
  • Lopez JA, Houston SD, Tea F, et al. Validation of a flow cytometry live Cell-Based assay to detect myelin oligodendrocyte glycoprotein antibodies for clinical diagnostics. J Appl Lab Med. 2022;7(1):12–25. doi: 10.1093/jalm/jfab101.
  • Waters PJ, Pittock SJ, Bennett JL, et al. Evaluation of aquaporin-4 antibody assays. Clin Exp Neuroimmunol. 2014;5(3):290–303. doi: 10.1111/cen3.12107.
  • Ramberger M, Peschl P, Schanda K, et al. Comparison of diagnostic accuracy of microscopy and flow cytometry in evaluating N-Methyl-D-Aspartate receptor antibodies in serum using a live Cell-Based assay. Gelderblom M, editor. PLoS One. 2015;10(3):e0122037. doi: 10.1371/journal.pone.0122037.
  • Bien CG, Mirzadjanova Z, Baumgartner C, et al. Anti-contactin-associated protein-2 encephalitis: relevance of antibody titres, presentation and outcome. Eur J Neurol. 2017;24(1):175–186. doi: 10.1111/ene.13180.
  • Dahm L, Ott C, Steiner J, et al. Seroprevalence of autoantibodies against brain antigens in health and disease: brain-Targeting autoantibodies. Ann Neurol. 2014;76(1):82–94. doi: 10.1002/ana.24189.
  • Gastaldi M, Thouin A, Franciotta D, et al. Pitfalls in the detection of N-methyl- d -aspartate-receptor (NMDA-R) antibodies. Clin Biochem. 2017;50(6):354–355. doi: 10.1016/j.clinbiochem.2016.11.023.
  • Ruiz-García R, Martínez-Hernández E, Joubert B, et al. Paraneoplastic cerebellar ataxia and antibodies to metabotropic glutamate receptor 2. Neurol Neuroimmunol Neuroinflamm. 2020;7:e658. doi: 10.1212/NXI.0000000000000658.
  • Muñoz-Lopetegi A, de Bruijn MAAM, Boukhrissi S, et al. Neurologic syndromes related to anti-GAD65: clinical and serologic response to treatment. Neurol Neuroimmunol Neuroinflamm. 2020;7:e696. doi: 10.1212/NXI.0000000000000696.
  • Liu M, Ren H, Fan S, et al. Neurological autoimmunity associated with homer-3 antibody: a case series from China. Neurol Neuroimmunol Neuroinflamm. 2021;8(6):e1077. doi: 10.1212/NXI.0000000000001077.
  • Höftberger R, Sabater L, Velasco F, et al. Carbonic anhydrase-related protein VIII antibodies and paraneoplastic cerebellar degeneration. Neuropathol Appl Neurobiol. 2014;40(5):650–653. doi: 10.1111/nan.12118.
  • Tampoia M, Zucano A, Antico A, et al. Diagnostic accuracy of different immunological methods for the detection of antineuronal antibodies in paraneoplastic neurological syndromes. Immunol Invest. 2010;39(2):186–195. doi: 10.3109/08820130903513431.
  • Cunquero M, Aguilar E, Loza-Alvarez P, et al. Hippocampal neuronal cultures to detect and study new pathogenic antibodies involved in autoimmune encephalitis. J Vis Exp. 2022;184:e63829. doi: 10.3791/63829-v.
  • Tsiortou P, Alexopoulos H, Dalakas MC. GAD antibody-spectrum disorders: progress in clinical phenotypes, immunopathogenesis and therapeutic interventions. Ther Adv Neurol Disord. 2021;14:17562864211003486. doi: 10.1177/17562864211003486.
  • Petit-Pedrol M, Armangue T, Peng X, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 2014;13(3):276–286. doi: 10.1016/S1474-4422(13)70299-0.
  • Dalakas MC, Li M, Fujii M, et al. Stiff person syndrome: quantification, specificity, and intrathecal synthesis of GAD65 antibodies. Neurology. 2001;57(5):780–784. doi: 10.1212/wnl.57.5.780.
  • Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci. 2001;184(2):101–122. doi: 10.1016/s0022-510x(00)00501-3.
  • Gadoth A, Zekeridou A, Klein CJ, et al. Elevated LGI1-IgG CSF index predicts worse neurological outcome. Ann Clin Transl Neurol. 2018;5(5):646–650. doi: 10.1002/acn3.561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.