64
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Phospholipase A2: Its Usefulness in Laboratory Diagnostics

Pages 65-163 | Published online: 29 Sep 2008

References

  • Bokay A. Ueber die Verdaulichkeit des Nucleins und Lecithins. Z Physiol Chem 1877/78; 1: 157–64.
  • Van den Bosch H. Phospholipases. In: Phospholipids. Hawthrone JN, Ansell GB, eds. Pp. 313. Elsevier, New York, 1982.
  • Dennis EA. Phospholipases. Methods Enzymol 1991; 197: 1–615.
  • Kaiser E, Chiba P Zaky K. Phospholipases in biology and medicine. Clin Biochem 1990, 23: 349–70.
  • Dennis EA. Diversity of group types, regulation and function of phospholipase A2. J Biol Chem 1994; 269: 13057–60.
  • Dennis EA. The growing phospholipase A2 superfamily of signal transduction systems. TIBS 1997; 22: 1–2.
  • Waite M. Phospholipases that share a substrate class. Adv Exp Med Biol 1990; 279: 1–22.
  • De Haas GH, Postema NM, Nieuwenhuizen W, et al. Purification and properties of phospholipase A from porcine pancreas. Biochim Biophys Acta 1968; 159: 103–17.
  • Dutilh CK, van Doren PJ, Verheul FEAM, et al. Isolation and properties of prophospholipase A2 from ox and sheep pancreas. Eur J Biochem 1975; 53: 91–7.
  • Evenberg A, Meyer H, Verheij HM, et al. Isolation and properties of phosphopholipase A2 and phospholipase A2 from horse pancreas and horse pancreatic juice. Biochim Biophys Acta 1977; 491: 265–74.
  • Magee WL, Gallai-Hatchard J, Sanders H, et al. The purification and properties of phospholipase A from pancreas. Biochem J 1962; 83: 17–25.
  • Grataroli R, De Caro A, Guy O, et al. Isolation and properties of phospholipase A2 from human pancreatic juice. Biochemie 1981, 63: 677–84.
  • Grataroli R, Dijkman R, Dutich CE, et al. Studies on prophospholipase A2 and its enzyme from human pancreatic juice. Catalytic properties and sequence of the N-terminal region. Eur J Biochem 1982, 122: 111–7.
  • Figarella C, Clemente F Guy O. A zymogen of phospholipase A in human pancreatic juice. Biochim Biophys Acta 1971; 227: 213–7.
  • Kerfelec B, La Forge KS, Puigserver A, et al. Primary structure of canine pancreatic lipase and phospholipase A2 messenger RNAs. Pancreas 1986, 1: 430–7.
  • Ohara O, Tamaki M, Nakamura E, et al. Dog and rat pancreatic phospholipase A2. Complete amino acid sequences deduced from complementary DNAs. J Biochem 1986; 99: 733–9.
  • Fleer EAM, Verheij HM, de Haas GH. The primary structure of bovine pancreatic phospholipase A2. Eur J Biochem 1978, 82: 261–9.
  • Verheij, HM, Westerman, J, Sternby, B, et al. The complete primary structure of phospholipase A2 from human pancreas. Biochim Biophys Acta 1983; 747: 93–9.
  • De Haas GH, Slotboom AJ, Bonsen PPM, et al. Studies on phospholipase A and its zymogen from porcine pancreas, the complete amino acid sequence. Biochim Biophys Acta 1970; 221: 31–53.
  • Ono T, Tojo H, Inoue K, et al. Rat pancreatic phospholipase A2: purification, characterization and N-terminal amino acid sequence. J Biochem 1984; 96: 785–92.
  • Dufton M, Eaker D Hider RC. Conformational properties of phospholipase A2. Secondary-structure prediction, circular dichroism and relative interface hydro-phobicity. Eur J Biochem 1983; 137: 537–44.
  • Dufton MJ, Hider RC. Classification of phospholipase A2 according to sequence. Eur J Biochem. 1983; 137: 545–51.
  • Eskola JU, Nevalainen TJ Aho HJ. Purification and characterization of human pancreatic phospholipase A2. Clin Chem 1983; 29: 1772–6.
  • Finzel BC, Weber PC, Ohlendorf DH, et al. Crystallographic refinement of bovine pro-phospholipase A2 at 1.6 Å resolution. Acta Crystallogr 1991; B47: 814–6.
  • Finzel BC, Ohlendorf DH, Weber PC, et al. An independent crystallographic refinement of porcine phospholipase A2 at 2.4 Å resolution. Acta Crystallogr 1991; B47: 558–9.
  • Verheij HM, Slotboom AJ De Haas GH et al. Structure and function of phospho-lipase A2. Rev Physiol Biochem Pharmacol 1981; 91: 91–203.
  • Verheij HM, Volwerk JJ, Jansen EHJM, et al. Methylation of histidine-48 in pancreatic phospholipase A2. Role of histidine and calcium ion in the catalytic mechanism. Biochemistry 1980; 19: 743–50.
  • Scott DL, Sigler PB. Structure and catalytic mechanisms of secretory phospho-lipase A2. Adv Prot Chem 1994; 45: 53–88.
  • Noel P, Tsai MD. Phospholipase A2 engineering. Design, synthesis and expression of a gene for bovine (pro) phospholipase A2. J Cell Biochem 1989; 40: 309–20.
  • Seilhamer TL, Randall TL, Miles Y, et al. Pancreatic phospholipase A2. Isolation of the human gene and cDNAs from porcine pancreas and human lung. DNA 1986; 5: 519–27.
  • Ohara O, Tamaki M, Nakamura E, et al. Dog and rat pancreatic phospholipase A2. Complete amino acid sequence deduced from complementary DNAs. J Biochem 1986, 99: 733–9.
  • Kuchler K, Gmachl M, Sippl MJ, et al. Analysis of the cDNA for phospholipase A2 from honey bee venom glands. The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur J Biochem 1989; 184: 249–54.
  • Puijk WC, Verheij HM de Haas GH. The primary structure of phospholipase A2 from porcine pancreas. Biochim Biophys Acta 1977; 492: 254–9.
  • De Geus P, Kuipers OP, van Heuvel M, et al. Expression of site-specifically altered pancreatic phospholipase A2 in COS cells provides a rapid screening of enzymatic activity. Chem Oggi 1987; 73.
  • Van den Bergh CJ, Bekkers ACAPA, de Geus P, et al. Secretion of biologically active porcine phospholipase A2 by Saccharomyces cerevisiae. Use of the prepro-sequence of the a-mating factor. Eur J Biochem 1987; 170: 241–6.
  • Davidson FF, Dennis EA. Evolutionary relationships and implication for regulation of phospholipase A2 from snake venoms to human secreted forms. J Mol Evol. 1990; 31: 228–38.
  • Kramer RM, Johansen B, Hession C, et al. Structure and properties of a secretable phospholipase A2 from human platelets. Adv Exp Med Biol 1990; 275: 35–54.
  • Sakata T, Nakamura E, Tsuruta Y, et al. Presence of pancreatic-type phospho-lipase A2 mRNA in rat gastric mucosa and lung. Biochim Biophys Acta 1989; 1007: 124–6.
  • Yasuda T, Hirohara J, Okumura T, et al. Purification and characterization of phospholipase A2 from rat stomach. Biochim Biophys Acta 1990; 1046: 189–94.
  • Gronich JH, Bonventre JV Nemennoff RA. Purification of a high-molecular-mass form of phospholipase A2 from rat kidney activated at physiological calcium concentrations. Biochem J 1990; 271: 37–43.
  • Cupillard L, Koumanov K Mattei MG. Cloning, chromosomal mapping, and expression of a novel secretory phospholipase A2. J Biol Chem 1997; 272: 15745–52.
  • Arita H, Hanasaki K, Nakano T, et al. Novel proliferative effect of phospholi-pase A2 in Swiss 3T3 cells via specific binding sites. J Biol Chem 1991; 266: 19139–41.
  • Nakajima M, Nanasaki K, Ueda M, et al. Effect of pancreatic type phospholipase A2 on isolated porcine cerebral arteries via its specific binding sites. FEBS Lett 1992; 309: 261–4.
  • Rae D, Sumar N, Beechey-Newman N, et al. Type l-prophospholipase A2 propeptide immunoreactivity is released from activated granulocytes. Clin Biochem 1995; 28: 71–8.
  • Wery JP, Schevitz RW, Clawson DK, et al. Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A2 at 2.2 Å resolution. Nature 1991; 352: 79–82.
  • Hackeng TM, Mounier CM, Bon C, et al. Total chemical synthesis of enzymati-cally active human type II secretory phospholipase A2. Proc Natl Acad Sci USA 1997; 94: 7845–50.
  • Seilhamer JJ, Pruzanski W, Vadas P, et al. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J Biol Chem 1989; 264: 5335–8.
  • Kramer RM, Hession C, Johansen B, et al. Structure and properties of a human non-pancreatic phospholipase A2. J Biol Chem 1989; 264: 5768–75.
  • Johansen B, Kramer RM, Hession C, et al. Expression, purification and biochemical comparison of natural and recombinant human non-pancreatic phos-pholipase A2. Biochem Biophys Res Commun 1992; 187: 544–51.
  • Kusunoki C, Satoh S, Kobayashi M, et al. Structure of genomic DNA for rat platelet phospholipase A2. Biochim Biophys Acta 1990; 1087: 95–7.
  • Ogawa M, Arakawa H, Yamashita S, et al. Postoperative elevations of serum interleukin 6 and group II phospholipase A2. Group II phospholipase is an acute phase reactant. Res Commun Chem Pathol Pharmacol 1992; 75: 109–15.
  • Gewurz H, Mold C, Siegel I, et al. C-reactive protein and the acute phase response. Adv Intern Med 1982; 27: 345–72.
  • Nakano T, Ohara O, Teraoka H, et al. Group II phospholipase A2 mRNA synthesis is stimulated by two distinct mechanisms in rat vascular smooth muscle cells. FEBS Lett 1990; 261: 171–4.
  • Kerr JS, Stevens TM, Davis GL, et al. Effects of recombinant interleukin-1 beta on phospholipase A2 activity, phospholipase A2 mRNA levels and eicosanoid formation in rabbit chondrocytes. Biochem Biophys Res Commun 1989; 165: 1079–84.
  • Crowl RM, Stroller TJ, Conroy RR, et al. Induction of PLA2 gene expression in human hepatoma cells by mediators of the acute phase response. J Biol Chem 1991; 266: 2647–51.
  • Vadas P, Browning J, Edelson J, et al. Extracellular phospholipase A2 expression and inflammation: the relationship with associated disease states. Lipid Mediat 1993; 8: 1–30.
  • Nevelainen TJ. Serum phospholipase A2 in inflammatory diseases. Clin Chem 1993; 39: 2453–9.
  • Mukherjee AB, Miele L Pattabiraman N. Phospholipase A2 enzymes: regulation and physiological role. Biochem Pharmacol 1994; 48: 1–10.
  • Mayer RJ, Marshall LA. New insights on mammalian phospholipase A2 (s); comparison of arachidonyl-selective and -nonselective enzymes. FASEB J 1993; 7: 339–48.
  • Lilja I, Smedh K, Olaison G, et al. Phospholipase A2 gene expression in histo-logically normal ileal mucosa and in Crohn’s ileitis. Gut 1995; 7: 380–5.
  • Ogawa M, Yamashita S, Sakamoto K, et al. Elevation of serum group II phospholipase A2 in patients with cancers of digestive organs. Res Commun Chem Pathol Pharmacol 1991; 74: 241–244.
  • Kiyohara H, Egami H, Kako H et al. Immunohistochemical localization of group II phospholipase A2 in human pancreatic carcinoma. Int J Pancreatol 1993; 13: 49–57.
  • Fourcade O, Simon MF, Viode C, et al. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 1995; 80: 919–27.
  • MacPhee M, Chepenik KP, Liddell RA, et al. The secretory phospholipase A2 gene is a candidate for the Moml locus, a major modifier of Apc Min-induced intestinal neoplasia. Cell 1995; 81: 957–66.
  • Leslie CC, Voelker DR, Channon JY, et al. Properties and purification of an arachidonoyl-hydrolysing phospholipase A2 from a macrophage cell line RAW 264.7. Biochim Biophys Acta 1988; 963: 476–92.
  • Clark JD, Milona N Knopf JL et al. Purification of a 110-kilodalton cytosolic phospholipase A2 from the human monocytic cell line 937. Proc Natl Acad Sci USA 1990; 87: 7708–12.
  • Gronich JH, Bonventre JV Nemenoff RA. Purification of a high-molecular mass form of phospholipase A2 from rat kidney activated at physiological calcium concentrations. Biochem J 1990; 271: 37–43.
  • Kramer RM, Roberts EF, Manetta J, et al. The Ca2+-sensitive cytosolic phospho-lipase A2 is a 100-kDa protein in human monoblast U937 cells. J Biol Chem 1991; 266: 5268–72.
  • Takayama K, Kudo I, Kim DK, et al. Purification and characterization of human platelet phospholipase A2 which preferentially hydrolyses an arachidonoyl residue. FEBS Lett 1991; 282: 326–30.
  • Kim DK, Kudo I, Inoue K. Purification and characterization of rabbit platelet cytosolic phospholipase A2. Biochim Biophys Acta 1991; 1083: 80–8.
  • Loeb LA, Gross RW. Identification and purification of sheep platelet phospho-lipase A2 isoforms. Activation by physiologic concentrations of calcium ion. J Biol Chem 1986; 261: 10467–70.
  • Clark JD, Schievella AR, Nalefski EA, et al. Cytosolic phospholipase A2. J Lipid Mediat Cell Signal 1995; 12: 83–117.
  • Clark JD, Milona N, Knopf JL. Purification of a 110-kilodalton cytosolic phos-pholipase A2 from the human monocytic cell line H 937. Proc Natl Acad Sci USA 1990; 87: 7708–12.
  • Mosior M, Six, DA Dennis EA. Group IV cytosolic phospholipase A2 binds with high affinity and specificity to phosphatidyl 4,5-bisphosphate resulting in dramatic increases in activity. J Biol Chem 1988; 273: 2184–91.
  • Leslie CC, Channon JY. Anionic phospholipids stimulate an arachidonoyl-hydrolyzing phospholipase A2 from macrophages and reduce the calcium requirement for activity. Biochim Biophys Acta 1990; 1045: 261–70.
  • Wolf RA, Gross RW. Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholi-pase A2 in canine myocardium. J Biol Chem 1985; 260: 7295–303.
  • Hazen SL, Stuppy RJ Gross RW. Purification and characterization af canine myocardial cytosolic PLA2. A calcium-independent phospholipase with absolute sn-2 regiospecificity for diradyl glycerophospholipids. J Biol Chem 1990; 265: 10622–30.
  • Scherrer LA, Gross RW. Subcellular distribution, molecular dynamics and catabolism of plasmalogens in myocardium. Mol Cell Biochem 1989; 88: 97–105.
  • Hazen SL, Gross RW. ATP-dependent regulation of rabbit myocardial cytosolic calcium-independent phospholipase A2. J Biol Chem 1991; 266: 14526–34.
  • Hazen SL, Gross RW. The specific association of a phosphofructokinase isoform with myocardial calcium-independent phospholipase A2. Implication for the coordinated regulation of phospholipolysis and glycolysis. J Biol Chem 1993; 268: 9892–900.
  • Wolf MJ, Gross RW. The calcium-dependent association and functional coupling of calmodulin with myocardial phospholipase A2. Implications for cardiac cycle-dependent alterations in phospholipolysis. J Biol Chem 1996; 271: 20989–92.
  • Clark JD, Lin LL, Kriz RW, et al. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 1991; 65: 1043–51.
  • Sharp JD., White DL, Chiou XG, et al. Molecular cloning and expression of human Ca2+-sensitive cytosolic phospholipase A2. J Biol Chem 1991; 266: 14850–3.
  • Leslie CC. Kinetic properties of a high-molecular-mass arachidonoyl-hydrolyz-ing phospholipase A2 that exhibits lysophospholipase activity. J Biol Chem 1991; 266: 11366–71.
  • Lin LL, Wartman M, Lin AY, et al. cPLA2 is phosphorylated and activated by MAP kinase. Cell 1993; 72: 269–78.
  • Wijkander J, Sundler R. An 100-kDa arachidonate mobilizing phospholipase A2 in mouse spleen and the macrophage cell line J774. Purification, substrate interaction and phosphorylation by protein kinase C. Eur J Biochem 1991; 202: 873–80.
  • Ackerman EJ, Kempner ES. Dennis EA. Ca2+-independent cytosolic phospholi-pase A2 from macrophage-like P388D1 cells. J Biol Chem 1994; 269: 9227–33.
  • Murakami ML, Kudo I, Umeda M, et al. Detection of three distinct phospholi-pase A2 in cultured mast cells. J Biochem 1992; 111: 175–81.
  • Ackermann EJ, Dennis EA. Mammalian calcium-independent phospholipase A2. Biochim Biophys Acta 1995; 1259: 125–36.
  • Balsinde J, Dennis EA. Function and inhibition of intracellular calcium-independent phospholipase A2. J Biol Chem 1997; 272: 16069–72.
  • Leslie CC. Properties and regulation of cytosolic phospholipase A2. J Biol Chem 1997; 272: 16709–12.
  • Smith W. The eicosanoids and their biochemical mechanism of action. Biochem J 1989; 259: 315–24.
  • Robertson B, van Golde LMG, Batenburg JJ. (eds). Pulmonary surfactant. Amsterdam: Elsevier, 1984.
  • Clements JA. Structure-function relationship in lung surfactant. In: Kaiser E, Lohninger A, eds. Carnitine — its role in heart and lung disorders. Pp. 44-54. Basel, Karger, 1987.
  • Kennedy EP. Biosynthesis of complex lipids. Fed Proc 1961; 20: 934–40.
  • Batenburg JJ. Biosynthesis and secretion of pulmonary surfactant. In: Robertson B, van Golde LMG Batenburg JJ, eds. Pulmonary surfactant. Pp. 237-270. Amsterdam, Elsevier, 1984.
  • Hook GER, Gilmore LB. Hydrolases of pulmonary lysosomes and lamellar bodies. J Biol Chem 1982; 257: 9211–20.
  • Hanahan DJ. Platelet activating factor: A biologically active phosphoglyceride. Annu Rev Biochem 1986; 55: 483–509.
  • Prescott SM Zimmerman GA McIntyre TM. Platelet-activating factor. J Biol Chem 1990; 265: 17381–84.
  • Nakagawa Y, Sugiura T Waku K. The molecular species composition of diacyl-, alkylacyl- and alkenylacyl glycerophospholipids in rabbit alveolar mac-rophages. High amount of 1-0-hexadecyl-2-arachidonyl molecular species in alkylacylglycero-phosphocholine. Biochim Biophys Acta 1985; 833: 323–9.
  • Braquet P, Touqui L, Shen TS, et al. Perspectives in platelet-activating factor research. Pharmacol Rev 1987; 39: 97–145.
  • Sturk A, Ten Cate JW, Hosford D, et al. Synthesis, catabolism, and pathophysi-ological role of platelet-activating factor. Adv Lipid Res 1989; 23: 219–76.
  • Tjoelker LW, Eberhardt C, Unger J, et al. Plasma platelet-activating factor acetylhydrolase is a secreted phospholipase A2 with a catalytic triad. J Biol Chem 1995; 270: 25481–7.
  • Tjoelker LW, Wilder C Eberhardt C. Antiinflammatory properties of a platelet-activating factor acetylhydrolase. Nature 1995; 374: 549–53.
  • Braquet P, Vargaftig BB. Pharmacology of platelet activating factor. Trans Proc 1986; 28: 10–9.
  • Humphrey DM, McManus LM, Satouchi K, et al. Vasoactive properties of acetylglyceryl ether phosphorylcholine and analogs. Lab Invest 1982; 46: 422–7.
  • Lidahl M, Ljungman A, Bruhn R, et al. Calcium ionophore-activated neutrophils prestimulated with endotoxin increase pulmonary pressure and vascular leakage in isolated perfused rat lungs: role of platelet-activating factor. Exp Lung Res 1991; 17: 77–89.
  • Vadas P, Pruzanski W. Biology of disease. Role of secretory phospholipase A2 in the pathobiology of disease. Lab Invest 1984; 55: 391–404.
  • Vadas P. Elevated plasma phospholipase A2 levels: correlation with the hemo-dynamic and pulmonary changes in Gram-negative septic shock. J Lab Clin Med 1984; 104: 873–81.
  • Sörensen J, Kald B, Tagesson C, et al. Platelet-activating factor and phospholi-pase A2 in patients with septic shock and trauma. Intensive Care Med 1994; 20: 555–61.
  • Kramer RM, Pritzker CR, Deykin D, et al. Coenzyme A-mediated arachidonic acid transacylation in human platelets. J Biol Chem 1984; 259: 2403–6.
  • Schlame M, Rüstow B. Lysocardiolipin formation and reacylation in isolated rat liver mitochondria. Biochem J 1990; 272: 589–95.
  • Sevanian A, Muakkassah-Kelly SF, Montestrugue S. The influence of phospho-lipase A2 and glutathione peroxidase on the elimination of membrane peroxides. Arch Biochem Biophys 1983; 223: 441–52.
  • Tan KH, Meyer DJ, Belin J, et al. Inhibition of microsomal lipid peroxidation by glutathione and glutathiontransferases B and A. Biochem J 1984; 220: 243–52.
  • Van Kuijk FJG, Sevanian A, Handelman GJ, et al. A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. TIBS 1987; 12: 31–4.
  • Niedel JE, Kahane I, Lachmann L, et al. Subpopulation of cultured human promyelocytic leukemia cells (HL-60) displays the formyl peptide chemotactic receptor. Proc Natl Acad Sci USA 1980; 77: 1000–4.
  • Bonser RW, Siegel MI, McConell RT, et al. The appearance of phospholipase and cyclo-oxygenase activities in the human promyelocytic leukemia cell line HL60 during dimethyl sulfoxide-induced differentiation. Biochem Biophys Res Commun 1981; 98: 614–20.
  • Bonser RW, Siegel MI, Chuang MI, et al. Esterification of an endogenously synthesized lipoxygenase product into granulocyte cellular lipids. Biochemistry 1981; 20: 5297–301.
  • Billah MM, Eckel S, Myers RF, et al. Metabolism of platelet-activating factor (1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) by human promyelocytic leu-kemic HL60 cells. J Biol Chem 1986; 261: 5824–31.
  • Billah MM, Siegel MI. Phospholipase A2 activation in chemotactic peptide-stimulated HL60 granulocytes. Synergism between diacylglycerol and Ca2+ in a protein kinase C-independent mechanism. Biochem Biophys Res Commun 1987; 144: 683–91.
  • Takagi K, Hotta H Suketa Y. Changes of phospholipase A2 inhibitor in K+-sensitive actin gelation factor during the differentiation of myeloid leukemia cells. Biochim Biophys Acta 1987; 930: 320–5.
  • Van den Bosch H, Aarsman A. A review on methods of phospholipase A determination. Agents Actions 1979; 9: 382–9.
  • Reynolds LJ, Washborn WN, Deems RA, et al. Assay strategies and methods for phospholipases. Methods Enzymol 1991; 197: 3–23.
  • Hoffmann GE, Schmidt D Bastian B. Bestimmung der Phospholipase A im Serum bei akuter Pankreatitis. J Clin Chem Clin Biochem 1985; 23: 582–3.
  • Hoffmann GE, Schmidt D, Bastian B, et al. Photometric determinationof phos-pholipase A. J Clin Chem Clin Biochem 1986; 24: 871–5.
  • Hoffmann GE, Kozumplik V, Beck R, et al. Rapid determination of phospholi-pase A in human serum and plasma. Clin Chem 1987; 33: 1259.
  • Hiefinger-Schinlbek RT, Dass C, Hübner-Parajsz C, et al. Differentiation of human phospholipase A2 isoenzymes in serum and other body fluids with use of monoclonal antibodies. Eur J Clin Chem Clin Biochem 1993; 31: 211–5.
  • Schädlich HR, Büchler M Beger HG. Improved method for the determination of phospholipase A2 catalytic activity concentration in human serum and ascites. J Clin Chem Clin Biochem 1987; 25: 505–9.
  • Eskola JU, Nevalainen TJ Kortesuo P. Immunoreactive pancreatic phospholi-pase A2 and catalytically active phospholipase A2 in serum from patients with acute pancreatitis. Clin Chem 1988; 34: 1052–4.
  • Maekelae A, Kuusi T, Somerhardu P, et al. A simple isotopic assay method for human serum phospholipase A2 activity. Scand J Clin Lab Invest 1987; 47: 529–34.
  • Miwa M, Kuboto I, Ichihashi T, et al. Studies on phospholipase A inhibitor in blood plasma. I. Purification and characterization of phospholipase A inhibitor in bovine plasma. J Biochem 1984; 96: 761–73.
  • Aufenanger J, Zimmer W, Püttmann M, et al. Determination of the catalytic activity of phospholipase A2: E. coli-based assay compared to a photometric micelle assay. Eur J Clin Chem Clin Biochem 1993; 31: 777–85.
  • Meyer T, Von Wichert P Weins D. A rapid phospholipase A2 bioassay using 14C-oleate-labelled E. coli bacterias. Klin Wochenschr 1989; 67: 113–8.
  • Thuren T, Virtanen JA, Lalla M, et al. Fluorometric assay for phospholipase A2 in serum. Clin Chem 1985; 31: 714–7.
  • Hendrickson HS, Rauk PN. Continous fluorometric assay of phospholipase A2 with pyrene-labeled lecithin as a substrate. Anal Biochem 1981; 116: 553–8.
  • Thuren T, Virtanen JA, Somerharju PJ, et al. Phospholipase A2 assay using an intramolecularly quenched pyrene-labeled phospholipid analog as a substrate. Anal Biochem 1988; 170: 248–55.
  • Radvanyi F, Jordan L, Russo-Marie F, et al. Sensitive and continuous fluoromet-ric assay for phospholipase A2 using pyrene-labeled phospholipids in the presence of serum albumin. Anal Biochem 1989; 177: 103–9.
  • Hendrickson HS, Hendrickson EK Rusted TJ. Synthesis of a naphthylvinyl-labeled glycerol ether analog of phosphatidycholine and its use in the assay of phospholipase A2. J Lipid Res 1987; 28: 864–72.
  • Wilton DC. A continuous fluorescence displacement assay for the measurement of phospholipase A2 and other lipases that release long-chain fatty acid. Biochem J 1990; 266: 435–9.
  • Nishijima J, Okamoto M, Ogawa M, et al. Purification and characterization of human pancreatic phospholipase A2 in development of a radioimmunoassay. J Biochem 1983; 94: 137–47.
  • Sternby B, Akerström B. Immunoreactive pancreatic colipase, lipase and phos-pholipase A2 in human plasma and urine from healthy individuals. Biochim Biophys Acta 1984; 789: 164–9.
  • Oka Y, Ogawa M, Matsuda, Y, et al. Serum immunoreactive pancreatic phospho-lipase A2 in patients with various malignant tumors. Enzyme 1990; 43: 80–8.
  • Eskola JU, Nevalainen TJ Lövgren TNE. Time resolved fluoroimmunoassay of human pancreatic phospholipase A2. Clin Chem 1983; 29: 1777–80.
  • Santavuori SA, Kortesuo PT, Eskola JU, et al. Application of a new monoclonal antibody for time-resolved fluoroimmunoassay of human pancreatic phospholi-pase A2. Eur J Clin Chem Clin Biochem 1991; 29: 819–26.
  • Nevalainen TJ, Eskola JU. Time resolved fluoroimmunoassay of pancreatic phospholipase A2. Klin Wochenschr 1989; 67: 103–5.
  • Matsuda Y, Ogawa M, Sakamoto K, et al. Development of a radioimmunoassay for human group II phospholipase A2 and demonstration of postoperative elevation. Enzyme 1991; 45: 200–8.
  • Green JA, Smith GM, Buchta R, et al. Circulating phospholipase A2 activity associated with sepsis and septic shock is indistinguishable from that associated with rheumatoid arthritis. Inflammation 1991; 15: 355–67.
  • Nevalainen TJ, Kortesuo PT, Rintala E, et al. Immunochemical detection of group II phospholipases A2 in human serum. Clin Chem 1992; 38: 1824–9.
  • Gudgeon AM, Patel G, Hermon-Taylor T, et al. Detection of human pancreatic pro-phospholipase A2 activation peptide using an immunoassay for free activation peptide DGISPR. Ann Clin Biochem 1991; 28: 497–503.
  • Pruzanski W, Vadas P. Phospholipase A2 a mediator between proximal and distal effectors of inflammation. Immunol Today 1991; 12: 143–6.
  • Lundy SR, Dowling RL, Mackin WM, et al. Large amounts of free arachidonic acid and other unsaturated fatty acids in a zymosan-induced model of inflammation. FASEB J 1988; 2: A411.
  • Gans KR, Lundy SR, Dowling RL, et al. Extracellular phospholipase A2 activity in cell free peritoneal lavage fluid from mice with zymosan peritonitis. Agents Actions 1989; 27: 341–3.
  • Marshall LA, Chang JY. Pharmacological control of phospholipase A2 activity in vitro and in vivo. In: Phospholipase A2, role and function in inflammation. Pp. 169-82. Wong PYK, Dennis EA, eds. Plenum Press, New York, 1990.
  • Pruzanski W, Vadas P, Fornasier V. Inflammatory effect of intradermal administration of soluble phospholipase A2 in rabbits. J Invest Dermatol 1986; 86: 380–3.
  • Cirino G, Cicala S, Sorrentino L, et al. Recombinant secreted nonpancreatic phospholipase A2 induces a synovitis-like inflammation in the rat air pouch. J Rheumatol 1994; 21: 824–9.
  • Edelson JD, Vadas P, Villar J, et al. Acute lung injury induced by phospholipase A2: structural and functional changes. Am Rev Respir Dis 1991; 143: 1102–9.
  • Vadas P, Pruzanski W, Stefanski E, et al. Phospholipase A2 in acute bacterial peritonitis in man. In: Dennis EA, Hubter T Berridge M, eds. Cell activation and signal initiation: receptor and phospholipase control of insitol phosphate. PAF and eicosanoid production. Pp. 311-6. Alan R Liss, New York, 1988.
  • Vadas P, Pruzanski W, Kim J, et al. The pro-inflammatory effect of intra-articular injections of soluble human and venom phospholipase A2. Am J Pathol 1989; 134: 807–11.
  • Vadas W, Pruzanski W. Phospholipase A2 activation is the pivotal step in the effector pathway of inflammation. Adv Exp Med Biol 1990; 275: 83–101.
  • Bomalaski JS, Lawton P Browning JL. Human extracellular recombinant phos-pholipase A2 induces an inflammatory response in rabbit joints. J Immunol 1991; 148: 3904–10.
  • Murakami M, Kudo I, Nakamura H, et al. Exacerbation of rat adjuvant arthritis by intradermal injection of purified mammalian 14-kDa group II phospholipase A2. FEBS Lett 1990; 268: 113–6.
  • Dinarello CA, Savage N. Interleukin-1 and its receptor. Crit Rev Immunol 1989; 9: 1–20.
  • Rosenblum MG, Donato NJ. Tumor necrosis factor a: a multifaceted pepide hormone. Crit Rev Immunol 1989; 9: 21–44.
  • Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 1987; 330: 338–43.
  • Wakabayashi G, Gelfand JA, Burke JF, et al. A specific receptor antagonist for interleukin 1 prevents Escherichia coli-induced shock in rabbits. FASEB J 1991; 5: 338–43.
  • Rintala EM, Nevalainen TJ. Group II phospholipase A2 in sera of febrile patients with microbiologically or clinically documented infections. Clin Infect Dis 1993; 17: 864–70.
  • Hoffmann GF, Hiefinger R Steinbrueckner B. Serum phospholipase A in hospitalized patients. Clin Chim Acta 1989; 183: 59–64.
  • Hoffmann GE, Guder WG. Serum phospholipase: regulatory and pathophysi-ological aspects. Klin Wochenschr 1989; 67: 144–8.
  • Elsbach P, Weiss J. Phagocytosis of bacteria and phospholipid degradation. Biochim Biophys Acta 1988; 947: 29–52.
  • Vadas P, Scott K, Smith G, et al. Serum phospholipase A2 enzyme activity and immunoreactivity in a prospective analysis of patients with septic shock. Life Sci 1992; 50: 807–11.
  • Pruzanski W, Vadas P Browning, J. Secretory non-pancreatic group II phospho-lipase A2: role in physiologic and inflammatory processes. J Lipid Mediat 1993; 8: 161–7.
  • Poste G, Allison AC. Membrane fusion. Biochim Biophys Acta 1973; 300: 421–65.
  • Suzuki Y, Matsumoto M. Release of lysosomal phospholipase A1 and A2 into cytosol and rapid turnover of newly formed lysophosphatidylcholine in FL cells during fusion-from-within induced by measles virus. J Biochem 1982; 92: 1683–92.
  • Vadas P, Keystone J, Stefanski E, et al. Induction of circulating group II phospholipase A2 expression in adults with malaria. Infect Immun 1992; 60: 3828–31.
  • Vadas P, Pruzanski W. Phospholipase A2 activation is the pivotal step in the effector pathway of inflammation. In: Wong PYK, Dennis EA, eds. Phospholi-pase A2. Role and function in inflammation. Pp. 83-101. New York, Plenum Press, 1990.
  • Pruzanski W, Vadas P. Soluble phospholipase A2 in human pathology: clinical laboratory interface. In: Biochemistry, molecular biology and physiology of phospholipase A2 and its regulatory factors. (Mukherjee AB, ed.) New York, Plenum Press, 1990.
  • Ono T, Tojo H, Kuramitsu S, et al. Purification and characterization of a membrane-associated phospholipase A2 from rat spleen. Its comparsion with a cytosolic phospholipase A2. J Biol Chem 1988; 263: 5732–8.
  • Tojo H., Ono T, Kuramitsu S, Kagamiyama H, et al. characterization of a membrane-associated phospholipase A2 in the supernatant fraction of rat spleen. Its similarity to rat pancreatic phospholipase A2. J Biol Chem 1988; 263: 5724–31.
  • Ishizaki J, Ohara O, Nakamura E, et al. cDNA cloning and sequence determination of rat membrane-associated phospholipase A2. Biochem Biophys Res Commun 1989; 162: 1030–6.
  • Kanda A, Ono T, Yoshida N, et al. The primary structure of a membrane-associated phospholipase A2 from human spleen. Biochem Biophys Res Commun 1989; 163: 42–8.
  • Laine VJO, Grönroos JM Nevalainen TJ. Serum phospholipase A2 in patients with splenectomy. Eur J Clin Chem Clin Biochem 1996; 34: 419–23.
  • Hatch GM, Vance DE Wilton DC. Rat liver mitochondrial phospholipase A2 is an endotoxin stimulated membrane-associated enzyme of Kupffer cells which is released during liver perfusion. Biochem J 1993; 293: 143–50.
  • Bayston KF, Cohen J. Baterial endotoxin and current concepts in the diagnosis and treatment of endotoxaemia. J Med Microbiol 1990; 311: 73–83.
  • Waage A, Steinshamm S. Cytokine mediators of septic infections in the normal and granulocytopenic host. Eur J Haematol 1993; 50: 243–9.
  • Rintala E, Nevalainen T. Synovial-type (group II) phospholipase A2 in serum in febrile patients with haematological malignancy. Eur J Haematol 1993; 50: 11–6.
  • Whicher J, Evans SW. Cytokines in disease. Clin Chem 1990; 36: 1269–81.
  • Coetzee GA, Strachan A, Van der Westhuzen DR, et al. Serum amyloid A-containing human high density lipoprotein 3. Density, size and apolipoprotein composition. J Biol Chem 1986; 261: 9644–51.
  • Kisilevsky R, Subrahmanyan L. Serum amyloid A changes high-density lipopro-teins cellular affinity. A clue to serum amyloid A’s principal function. Lab Invest 1992; 66: 778–85.
  • Shepard EG, De Beer FC, De Beer MC, et al. Neutrophil association and degradation of normal and acute-phase high-density lipoprotein 3. Biochem J 1987; 248: 919–26.
  • Godfrey RW, Manzi RM, Clark MA, et al. Stimulus-specific induction of phospholipid and arachidonic acid metabolism in human neutrophils. J Cell Biol 1987; 104: 925–32.
  • Walsh CE, DeChatelet LR, Chilton FH, et al. Mechanism of arachidonic acid release in human polymorphonulear leukocytes. Biochim Biophys Acta 1983; 750: 32–40.
  • Vadas P, Hay, J. The release of phospholipase A2 from aggregated platelets and stimulated macrophages of sheep. Life Sci. 1980; 26: 1721–9.
  • Victor M, Weiss J, Klempner MS, et al. Phospholipase A2 activity in the plasma membrane of human polymorphonuclear leukocytes. FEBS Lett 1981; 136: 298–300.
  • Traynor JR, Authi KS. Phospholipase A2 activity of lysosomal origin secreted by polymorphonuclear leukocytes during phagocytosis or on treatment with calcium. Biochim Biophys Acta 1981, 665: 571–7.
  • Lanni C, Becker EL. Release of phospholipase A2 activity from rabbit peritoneal neutrophils by f-Met-Leu-Phe. Am J Pathol 1983; 113: 90–4.
  • Balsinde J, Diez E, Schüller A, et al. Phospholipase A2 activity in resting and activated human neutrophils. J Biol Chem 1988; 263: 1929–36.
  • Bauldry SA, Wykle RL Bass DA. Differential actions of diacyl- and alkylacylglycerols in priming phospholipase A2, 5-lipoxygenase and acetyl-transferase activation in human neutrophils. Biochim Biophys Acta 1991; 1084: 178–84.
  • Beckerdite S, Mooney C, Weiss J, et al. Early and discrete changes in permeability of Escherichia coli and certain other Gram-negative bacteria during killing by granulocytes. J Exp Med 1974; 140: 396–409.
  • Franson R, Weiss J, Martin L, et al. Phospholipase A activity associated with the membranes of human polymorphonuclear leukocytes. Biochem J 1977; 167: 839–41.
  • Weiss J, Elsbach P, Olson I, et al. Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymor-phonuclear leukocytes. J Biol Chem 1978; 253: 2664–72.
  • Elsbach P, Weiss J, Franson RC, et al. Separation and purification of a potent bactericidal/permeability-increasing protein and a closely associated phospholi-pase A2 from rabbit polymorphonuclear leukocytes. Observation on their relationship. J Biol Chem 1979; 254: 11000–9.
  • Forst S, Weiss J Elsbach, P. Structural and functional properties of a phospho-lipase A2 purified from an inflammatory exudate. Biochemistry 1986; 25: 8381–5.
  • Märki F, Franson F. Endogenous suppression of calcium-dependent phospholi-pase A2 in human polymorphonuclear leukocytes. Biochim Biophys Acta 1986; 879: 149–56.
  • Wright GW, Ooi CE, Weiss J, et al. Purification of a cellular (granulocyte) and an extracellular (serum) phospholipase A2 that participate in the destruction of Escherichia coli in a rabbit inflammatory exudate. J Biol Chem 1990; 265: 6675–81.
  • Namba M, Suga M, Tanaka F, et al. Immunocytochemical demonstration of rabbit ribonuclease and phospholipase A2 by the peroxidase-antiperoxidase technique in professional phagocytes (pulmonary alveolar macrophages and granu-locytic and mononuclear peritoneal exudate cells) and in glycol methacrylate sections of dermal tuberculous (BCG) lesions. J Reticuloendothel Soc 1983; 34: 425–35.
  • Channon JY, Leslie CC. A calcium-dependent mechanism for associating a soluble arachidonoyl-hydrolyzing phospholipase A2 with membrane in the mac-rophage cell line RAW 264.7. J Biol Chem 1990; 265: 5409–13.
  • Alonso F, Henson PM Leslie, CC. A cytosolic phospholipase in human neutro-phils that hydrolyzes arachidonyl-containing phosphatidylcholine. Biochim Biophys Acta 1986; 878: 273–80.
  • Schatz-Munding M, Hatzelmann A. The involvement of extracellular calcium in the formation of 5-lipoxygenase metabolites by human polymorphonuclear leukocytes. Eur J Biochem 1991; 197: 487–93.
  • Lackie JM, Lawrence AJ. Signal response transduction in rabbit neutrophil leukocytes. The effect of exogenous phospholipase A2 suggest that two pathways exist. Biochem Pharmacol 1987; 36: 1941–5.
  • Nakashima S, Nagata K, Ueda K, et al. Stimulation of arachidonic acid release by guanine nucleotide in saponin-permeabilized neutrophils: evidence for involvement of GTP-binding protein in phospholipase A2 activation. Arch Biochem Biophys 1988; 261: 375–83.
  • Lam BK, Serhan CN, Samuelson B, et al. A phospholipase A2 isoenzyme provokes lipoxin B formation from endogenous sources of arachidonic acid in porcine leukocytes. Biochem Biophys Res Commun 1987; 144: 123–31.
  • Lam BK, Lee CY Wong PV. Phospholipase A2 (PLA2) releases lipoxins and leukotrienes from endogenous sources. Ann NY Acad Sci 1988; 524: 27–34.
  • Murakami M, Kudo I Inoue, K. Eicosanoid generation from antigen-primed mast cells by extracellular mammalian 14-kDa group II phospholipase A2. FEBS Lett 1991; 294: 247–51.
  • Murakami M, Kudo I Inoue K. Molecular nature of phospholipase A2 involved in prostaglandin I2 synthesis in human umbilical vein endothelial cells. Possible participation of cytosolic and extracellular type II phospholipase A2. J Biol Chem 1993; 268: 839–44.
  • Pruzanski W, Vadas P, Stefanski E, et al. Phospholipase A2 activity in sera and synovial fluids in rheumatoid arthritis and osteo arthritis. Its possible role as a proinflammatory enzyme. J Rheumatol 1985; 12: 211–6.
  • Kortesuo PT, Nevalainen TJ. Phospholipase A2 in human ascitic fluid. Biochem J 1991; 278: 263–7.
  • Loeser RF, Smith DM Turner RA. Phospholipase activity in synovial fluid from patients with rheumatoid arthritis, osteoarthritis and crystal-associated arthritis. Clin Exp Rheumatol 1990; 8: 379–86.
  • Vadas P, Pruzanski W. Role of extracellular phospholipase A2 in inflammation. Adv Inflamm Res 1984; 7: 51–68.
  • Franson R, Patriarca P Elsbach P. Phospholipid metabolism by phagocytic cells. Phospholipase A2 associated with rabbit polymorphonuclear leukocyte granules. J Lipid Res 1974; 15: 380–9.
  • Franson R, Dobrow R, Weiss J, et al. Isolation and characterization of a phos-pholipase A2 from an inflammatory exudate. J Lipid Res 1978; 19: 18–23.
  • Garcia-Gil M, Siraganian RP. Phospholipase A2 stimulation during cell secretion in rat basophilic leukemia cells. J Immunol 1986; 136: 259–63.
  • Toll JB, Andersson RG. Effects of mepacrine and p-bromophenacyl bromides on anti-IgE and phospholipase A2-induced histamine release from human baso-phils. Agents Actions 1986; 18: 518–23.
  • Goppelt-Struebe M, Kyas U Resch K. Phospholipase A2 activity in T-lympho-cytes. FEBS Lett 1986; 202: 45–8.
  • Russell JK, Torres BA Johnson HM. Phospholipase A2 treatment of lymphocytes provides helper signal for interferon-gamma induction. Evidence for second messenger role of endogenous arachidonic acid. J Immunol 1987; 139: 3443–6.
  • Ishizaka T, Ishizaka K. Triggering of histamine release from rat mast cells by divalent antibodies against IgE-receptors. J Immunol 1978; 12: 800–5.
  • Mencia-Huerta JM, Lewis RA, Razin E, et al. Antigen-initiated release of platelet-activating factor (PAF-acether) from mouse bone marrow-derived mast cells, sensitised with monoclonal IgE. J Immunol 1983; 131: 2958–64.
  • Chi EY, Henderson WR Klebanoff SJ. Phospholipase A2-induced rat mast cell secretion. Role of arachidonic acid metabolism. Lab Invest 1982; 47: 597–9.
  • Churcher Y, Allan D Gomperts D. Relationship between arachidonate generation and exocytosis in permeabilized mast cells. Biochem J 1990; 266: 157–63.
  • Humes JL, Bonney RJ, Pelus L, et al. Macrophages synthesize and release prostaglandins in response to inflammatory stimuli. Nature 1977; 269: 149–50.
  • Scott WA, Pawlowski NA, Mills JT, et al. The metabolism of exogenous arachidonic acid by resting macrophages. Adv Inflammation Res 1984; 7: 39–49.
  • Roubin R, Tence M, Mencia-Huerta JM, et al. A chemically defined monokine: macrophage-derived platelet-activation factor (PAF-acether). Lymphokines 1983; 8: 249–76.
  • Scott WA, Zrike JM., Hamil AL, et al. A. Regulation of arachidonic acid metabolites in macrophages. J Exp Med 1980; 152: 324–35.
  • Emilsson A, Sundler R. Evidence for a catalytic role of phospholipase A in phorbol-diester and zymosan induced mobilization of arachidonic acid in mouse peritoneal macrophages. Biochim Biophys Acta 1986; 876: 533–42.
  • Leslie CC, Detty DM. Arachidonic acid turnover in response to lipopolysaccha-ride and oppsonized zymosan in human monocyte-derived macrophages. Biochem J 1986; 236: 251–9.
  • Wightman PD, Humes JD, Davies P et al. Identification and characterization of two phospholipase A2 activities in resident mouse peritoneal macrophages. Biochem J 1981; 195: 427–33.
  • Wightman PD, Dahlgren ME, Hall JC, et al. Identification and characterization of a phospholipase C activity in mouse peritoneal macrophages. Biochem J 1981; 197: 523–6.
  • Scott WA, Pawlowski NA, Murray HW, et al. Regulation of arachidonic acid metabolism by macrophage activation. J Exp Med 1982; 155: 1148–60.
  • Meats JE, Steele L. Murine macrophage phospholipase A2. Biochim Soc Trans 1991; 19: 110S.
  • Lanni C, Franson RC. Localization and purification of a neutral-active phospho-lipase A2 from BCG-induced rabbit alveolar macrophages. Biochim Biophys Acta 1981; 658: 54–63.
  • Suzuki T, Saito-Taki T, Sadasivan R, et al. Biochemical signal transmitted by Fcy receptors. Phospholipase A2 activity of Fcy2b receptor of murine macroph-age cell line P388D1. Proc Natl Acad Sci USA 1982; 79: 591–5.
  • Ross MI, Deems RA, Jesaitis AJ, et al. Phospholipase activities of the P388D1 macrophage-like cell line. Arch Biochem Biophys 1985; 238: 247–58.
  • Ulevitch RJ, Watanabe Y, Sano M, et al. Solubilization, purification and characterization of a membrane-bound phospholipase A2 from P388D1 macrophage-like cell line. J Biol Chem 1988; 263: 3079–85.
  • Lister MD, Glaser KB, Ulevitch RJ, et al. Inhibition studies on the membrane-associated phospholipase A2 in vitro and prostaglandin E2 production in vivo in the macrophage-like P388D1 cell. J Biol Chem 1989; 264: 8520–8.
  • Glaser KB, Asmis R Dennis EA. Bacterial lipopolysaccaride priming of P388D1 macrophage-like cells for enhanced arachidonic acid metabolism. J Biol Chem 1990; 265: 8658–64.
  • Ackerman EJ, Kempner ES Dennis EA. Ca2+-independent cytosolic phospholi-pase A2 from macrophage like P388D1 cell. Isolation and characterization. J Biol Chem 1994; 269: 9227–33.
  • Zoeller RA, Wightman PD, Anderson MS, et al. Accumulation of lysophosphatidy-linositol in RAW 264.7 macrophage tumor cells stimulated by lipid A precursors. J Biol Chem 1987; 262: 17212–20.
  • Leslie CC, Voelker DR, Channon JY, et al. Properties and purification of an arachidonyl-hydrolyzing phospholipase A2 from a macrophage cell line RAW 264.7. Biochim Biophys Acta 1988; 963: 467–92.
  • Glaser KB, Lister MD, Ulevitch RJ, et al. Macrophage phospholipase A2 activity and eicosanoid production: Studies with phospholipase A2 inhibitors in P388D1 cells. In: Wong PYK, and Dennis EA, eds. Phospholipase A2. Role and function in inflammation. Pp. 1-16. New York, Plenum Press, 1990.
  • Ulevitch RJ, Sano M, Watanabe Y, et al. Solubilization and characterization of a membrane-bound phospholipase A2 from the P388D1 macrophage-like cell line. J Biol Chem 1988; 263: 3079–85.
  • Lister MD, Glaser KB, Ultevich RJ, et al. Inhibition studies on the membrane-associated phospholipase A2 in vitro and prostaglandin E2 production in vivo of the macrophage-like P388D1 cells: effects of monoalide 7,7-dimethyl-5,8-eicosadienoic acid and bromophenacyl bromide. J Biol Chem 1989; 264: 8520–8.
  • Flesch I, Schmidt B Ferber E. Acylchain specificity and kinetic properties of phospholipase A1 and A2 of bone marrow-derived macrophages. Z Naturforsch 1985; 40c: 356–63.
  • Kröner EF, Peskar BA, Fischer H, et al. Control of arachidonic acid accumulation in bone-marrow-derived macrophages by acyl-transferase. J Biol Chem 1981; 256: 3690–7.
  • Kröner CF, Hausmann G, Gemsa D, et al. Rate of prostaglandin synthesis in various cells is not contolled by phospholipase A activity but by reincorporation of released fatty acids into phospholipid. Naunyn-Schmiedeberg Arch Pharmacol 1983; 322: R115, 457.
  • Goppelt-Struebe M, Kröner CF, Hausmann G, et al. Control of prostanoid synthesis: role of reincorporation of released precursor fatty acids. Prostaglan-dins 1986; 32: 373–385.
  • De Carvalho MGS, Garritano J Leslie CC. Regulation of lysophospholipase activity of the 85-kDa phospholipase A2 and activation in mouse peritoneal macrophages. J Biol Chem 1995; 270: 20439–46.
  • Beutler B, Cerami A. Tumor necrosis factor cachexia, shock and inflammation. A common mediator. Annu Rev Biochem 1988; 57: 515–8.
  • Reid TR, Torti FM Ringold GM. Evidence for two mechanisms by which tumor necrosis factor kills cells. J Biol Chem 1989; 264: 4583–9.
  • Knauer MF, Longmuir KJ, Yamamoto RS, et al. Mechanism of human lymphotoxin and tumor necrosis factor induced destruction of cells in vitro: phospholipase activation and deacylation of specific-membrane phospholipids. J Cell Physiol 1990; 142: 469–79.
  • Suffys P, Beyaert R, De Valck D, et al. Tumor necrosis factor-mediated cytotoxity is correlated with phospholipase A2 activity, but not with arachidonic acid release per se. Eur J Biochem 1991; 195: 465–75.
  • Chang J, Gilman SC Lewis AJ. Interleukin-1 activates phospholipase A2 in rabbit chondrocytes: a possible sign for IL-1 action. J Immunol 1986; 136: 1283–7.
  • Gilman SC, Berner PR Chang J. Phospholipase A2 activation by interleukin-1: release and metabolism of arachidonic acid by IL-1 stimulated chondrocytes. Agents Actions 1987; 21: 345–7.
  • Kerr JK, Stevens TM, David GL, et al. Effects of recombinant interleukin-1 beta on phospholipase A2 activity. Phospholipase A2 in mRNA levels, and eicosanoid formation in rabbit chondrocytes. Biochem Biophys Res Commun 1989; 165: 1079–84.
  • Gilman SC, Chang J, Zeigler PR, et al. Interleukin-1 activates phospholipase A2 in human synovial cells. Arthritis Rheum 1988; 31: 126–30.
  • Clark MA, Chen MJ, Crooke ST, et al. Tumor necrosis factor (Cachectin) induces phospholipase A2 activity and synthesis of a phospholipase A2-activat-ing protein in endothelial cells. J Biol Chem 1988; 250: 125–32.
  • Locksley RM, Heinzel FP, Shepard HM, et al. Tumor necrosis factors a and b differ in their capacity to generate interleukin-1 release from human endothelial cells. J Immunol 1987; 139: 1891–5.
  • Pfeilshifter J, Pignat W, Märki F, et al. Release of phospholipase A2 activity from rat vascular smooth muscle cells mediated by cAMP. Eur J Biochem 1989; 181: 237–242.
  • Arita H, Nakao T, Ohara O, et al. Activation of group II phospholipase A2 gene via two distinct mechanisms in rat vascular smooth muscle cells. Adv Prostag-landin Thromboxane Leukot Res 1990; 21A: 277–80.
  • Pfeilschifter J, Pignat W, Leighton J, et al. Transforming growth factor b2 differentially modulates interleukin-1b- and tumor-necrosis-factor-a-stimulated phospholipase A2 and prostaglandin E2 synthesis in rat renal mesangial cells. Biochem J 1990; 270: 269–71.
  • Schalkwijk C, Pfeilschifter J, Märki F, et al. Interleukin-1b- and forskolin-induced synthesis and secretion of group II phospholipase A2 and prostaglandin E2 in rat mesangial cells is prevented by transforming growth factor-b2. J Biol Chem 1992; 267: 8846–51.
  • Muehl H, Geiger T, Pignat W, et al. PDGF suppresses the activation of group II phospholipase A2 gene expression by interleukin and forskolin in mesangial cells. FEBS Lett 1991; 291: 249–52.
  • Oka S, Arita H. Inflammatory factors stimulate expression of group II phospho-lipase A2 in rat cultured astrocytes. Two distinct pathways of the gene expression. J Biol Chem 1991; 266: 9956–60.
  • Lin LL, Lin AY DeWitt DL. Interleukin-1a induces the accumulation of cyto-solic phospholipase A2 and the accumulation of cytosolic phospholipase A2 and the release of prostaglandin E2 in human fibroblasts. J Biol Chem 1992; 267: 23451–4.
  • Goodman R, Stevens TM, Mantegna LR, et al. Phospholipase A2 (PLA2) activity in bovine pulmonary artery endothelial cells. Agents Actions 1991; 34: 113–6.
  • Nakano T, Ohara O, Teraoka H, et al. Glucocorticoids suppress group II phos-pholipase A2 production by blocking mRNA synthesis and posttranscriptional expression. J Biol Chem 1990; 265: 12745–8.
  • Murakami M, Kudo I Inoue K. In vivo release and clearance of rat platelet phospholipase A2. Biochim Biophys Acta 1990; 1005: 270–6.
  • Kramer RM, Roberts EF, Hyslop PA, et al. Differential activation of cytosolic phospholipase A2 (cPLA2) by thrombin and thrombin receptor agonist peptide in human platelets. Evidence for activation of cPLA2 independent of the mitogen-activated protein kinases ERK1/2. J Biol Chem 1995; 270: 14816–23.
  • Kramer RM, Roberts EF, Manetta JV, et al. Thrombin-induced phosphorylation and activation of Ca2+-sensitive cytosolic phospholipase A2 in human platelets. J Biol Chem 1993; 268: 26796–804.
  • Börsch-Haubold AG, Kramer RM Watson SP. Cytosolic phospholipase A2 is phosphorylated in collagen- and thrombin-stimulated human platelets independent of protein kinase C and mitogen-activated protein kinase. J Biol Chem 1995; 270: 25885–92.
  • Banga HS, Simons ER, Brass LF, et al. Activation of phospholipase A and C in human platelets exposed to epinephrine role of glycoproteins IIb/IIa and dual role of epinephrine. Proc Natl Acad Sci USA 1986; 83: 9097–201.
  • Yeh HI, Chen IJ Tenf CM. Cyclooxygenase-independent pathway of phospho-lipase activation in carrageenan-induced platelet aggregation. Thromb Res 1987; 45: 39–49.
  • Horigoma K, Hayakawa M, Inoue K, et al. Selective release of phospholipase A2 and lysophosphatidylserine-specific lysophospholipase from rat platelets. J Biochem 1987; 101: 53–61.
  • Horigoma K, Hayakawa M, Inoue K, et al. Purification and characterization of phospholipase A2 released from rat platelets. J Biochem 1987; 101: 625–31.
  • Hayakawa M, Kudo I, Tomita M, et al. Purification and characterization of membrane-bound phospholipase A2 from rat platelets. J Biochem 1988; 103: 263–6.
  • Hayakawa M, Kudo I, Tomita M, et al. The primary structure of rat platelet phospholipase A2. J Biochem 1988; 104: 767–72.
  • Mizushima H, Kudo I, Horigome K, et al. Purification of rabbit platelet secretory phospholipase A2 and its characteristics. J Biochem 1989; 105: 520–5.
  • Nalefski EA, Sultzman LA, Martin DM, et al. Delineation of two functionally distinct domains of cytosolic phospholipase A2 a regulatory Ca2+-dependent lipid-binding domain and Ca2+-independent catalytic domain. J Biol Chem 1994; 269: 19239–49.
  • Kiyohara H, Egami H, Kako H, et al. Immunohistochemical localization of group II phospholipase A2 in human pancreatic carcinoma. Int J Pancreatol 1993; 13: 49–57.
  • Yamashita S, Yamashita J, Sakamoto K, et al. Increased expression of membrane associated phospholipase A2 shows malignant potential of human breast cancer cells. Cancer 1993; 71: 3058–64.
  • Murata K, Egami H, Kiyohara H, et al. Expression of group II phospholipase A2 in malignant and non-malignant human gastric mucosa. Br J Cancer 1993; 68: 103–11.
  • Yamashita S, Ogawa M, Abe T, et al. Group II phospholipase A2 in invasive gastric cancer cell line is induced by interleukin 6. Biochem Biophys Res Commun 1994; 198: 878–84.
  • Kurizaki T, Egami H, Murata K, et al. Membrane-associated phospholipase A2 stimulates DNA synthesis in two murine fibroblasts. Res Commun Chem Pathol Pharmacol 1992; 78: 39–45.
  • Vadas P, Wasi S, Movat HZ, et al. A novel vasoactive product and plasminogen activator from afferent lymph cells draining chronic inflammatory lesions. Proc Soc Exp Biol Med 1979; 161: 82–5.
  • Vadas P, Wasi S, Movat H, et al. Extracellular phospholipase A2 mediates inflammatory hyperemia. Nature 1981; 293: 583–5.
  • Vadas P, Hay J. Involvement of circulating phospholipase A2 in the pathogenesis of the hemodynamic changes in endotoxin shock in rabbits. Can J Physiol Pharmacol 1983; 61: 561–6.
  • Vadas P, Pruzanski W Fornasier V. Acute inflammation induced by intradermal and intraarticular injection of soluble PLA2. Arthritis Rheum 1986; 29: S37.
  • Marshall L, Chang JY, Calhoun W, et al. Preliminary studies on phospholipase A2-induced mouse paw edema as a model to evaluate antiinflammatory agents. J Cell Biochem 1989; 40: 147–55.
  • Marshall LA, Chang JY, Calhoun W, et al. Preliminary studies on phospholipase A2-induced mouse paw edema as a model to evaluate anti-inflammatory agents. J Cell Biochem 1989; 39: 1–9.
  • Weichman BM, Berkenhoph TW Marshall LA. Phospholipase A2-induced pleu-ral inflammation in rats. Int J Tissue React 1989; 11: 129–36.
  • Pfeilschifter J, Leighton J, Pignat W, et al. Cyclic AMP mimics, but does not mediate, interleukin-1- and tumor-necrosis-factor-stimulated phospholipase A2 secretion from rat renal mesangial cells. Biochem J 1991; 273: 199–204.
  • Chang J, Gilman SC Lewis, AJ. Interleukin 1 activates phospholipase A2 in rabbit chondrocytes: a possible signal for IL-1 action. J Immunol 1986; 136: 1283–7.
  • Lyons-Giordano B, Davis GL, Galbraith W, et al. Interleukin-1 beta stimulates phospholipase A2 mRNA synthesis in rabbit articular chondrocytes. Biochem Biophys Res Commun 1989; 164: 488–95.
  • Suffys P, Van Roy F Fiers W. Tumor necrosis factor and interleukin I activate phospholipase in rat chondrocytes. FEBS Lett 1988; 232: 24–8.
  • Kurihara H, Nakano T, Takasu N, et al. Intracellular localization of group II phosopholipase A2 in rat vascular smooth cells and its possible relationship to eicosanoid formation. Biochim Biophys Acta 1991; 1082: 285–92.
  • Michie HR, Manogue KR, Spriggs DR, et al. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 1988; 318: 1481–6.
  • Shalaby MR, Waage A, Aarden L, et al. Endotoxin, tumor necrosis factor-alpha and interleukin-1 induce interleukin-6 production in vivo. Clin Immunol Immunopathol 1989; 53: 488–98.
  • Cannon JG, Tompkins RG, Gelfand JA, et al. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 1990; 161: 79–84.
  • Martich GD, Danner RL, Ceska M, et al. Detection of interleukin-8 and tumor necrosis factor in normal humans after intravenous endotoxin. The effect of antiinflammatory agents. J Exp Med 1991; 173: 1021–4.
  • Chang HW, Kudo I, Hara S, et al. Extracellular phospholipase A2 activity in peritoneal cavity of casein-treated rats. J Biochem 1986; 100: 1099–103.
  • Chang HW, Kudo I, Tomita M, et al. Purification and characterization of extracellular phospholipase A2 from peritoneal cavity of casein-treated rat. J Biochem 1987; 102: 147–54.
  • Chang J, Blazek E Lewis AJ. Phospholipase activity in the intact rat glycogen-elicited neutrophils. Agents Actions 1985; 17: 296–8.
  • Kennedy SP, Becker EL. Exophospholipase A2 activity of rabbit peritoneal neutrophils. Int Arch Allerg Appl Immunol 1987; 83: 238–46.
  • Marshall LA, Murphy J, Marianari L, et al. Characterization and pharmacological modulation of soluble phospholipase A2 generated during glycogen-induced rat peritonitis. Agents Actions 1992; 37: 60–9.
  • Stevens TM, McGowan M, Giammaras J, et al. The characterization of extracellular phospholipase A2 (PLA2) activity in fluid and peritoneal cells from casein-treated rats. Inflammation 1990; 14: 389–99.
  • Imai Y, Hayashi M Oh-ishi S. Involvement of platelet-activating factor in zymosan-induced rat pleurisy. Lipids 1991; 26: 1408–10.
  • Hara S, Imai S, Murakami M, et al. Dynamics and participation of type II phospholipase A2 in rat zymosan induced pleurisy. J Biochem 1993; 114: 509–12.
  • Gans KR, Lungy SR, Dowling, RL, et al. Extracellular phospholipase A2 activity in cell free peritoneal lavage fluid from mice with zymosan peritonitis. Agents Actions 1989; 27: 341–3.
  • Pruzanski W, Wilmore DW, Suffredini A, et al. Hyperphospholipasemia A2 in human volunteers challenged with intravenous endotoxin. Inflammation 1992; 16: 561–70.
  • Vadas P, Hay J. Involvement of circulating phospholipase A2 in the pathogenesis of the hemodynamic changes in endotoxin shock in rabbits. Can J Physiol Pharmacol 1983; 61: 561–5.
  • Pruzanski W Vadas, P. Soluble phospholipase A2 in human pathology: clinical-laboratory interface. In: Mukjerjee AA, ed. Biochemistry, molecular biology and physiology of phospholipase A2 and its regulatory factors. Pp. 239-51. New York, Plenum Press, 1990.
  • Vadas P, Pruzanski W, Stefanski E, et al. The pathogenesis of hypotension in septic shock. the contributary role of circulating phospholipase A2. Crit Care Med 1988; 16: 1–7.
  • Poole AR, Howell JI Lucy JA. Lysolecithin and cell fusion. Nature 1970; 227: 810–4.
  • Weltzien HU. Cytolytic and membrane-perturbing properties of lysophos-phatidylcholine. Biochim Biophys Acta 1979; 559: 259–87.
  • Quinn MT, Parthasarathy S Steinberg D. Lysophosphatidylcholine: a chemotac-tic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci USA 1988; 85: 2805–9.
  • Larsen GL, Henson PM. Mediators of inflammation. Annu Rev Immunol 1983; 1: 335–59.
  • Vadas P. Elevated plasma phospholipase A2 levels: correlation with the hemo-dynamic and pulmonary changes in gram-negative septic shock. J Lab Clin Med 1984; 104: 873–81.
  • Vadas P, Pruzanski W Stefanski E. Extracellular phospholipase A2 causative agent in circulatory collapse of septic shock? Agents Actions 1988; 24: 320–5.
  • Rintala EM, Nevalainen TJ. Group II phospholipase A2 of febrile patients with microbiologically or clinically documented infections. Clin Infect Dis 1993; 17: 864–70.
  • Vadas P, Pruzanski W, Stefanski E, et al. Phospholipase A2 in acute bacterial peritonitis in man. In: Dennis EA, Hunter T Berridge M, eds. Cell activation and signal initiation: receptor and phospholipase control of inositol phosphate, PAF and eicosanoid production. Pp. 311-6. New York, Allan R Liss, 1989.
  • Gijon MA, Perez C, Mendez E, et al. Phospholipase A2 from plasma of patients with septic shock is associated with high-density lipoproteins and C3 anaphyla-toxin: some implications for its functional role. Biochem J 1995; 306: 167–75.
  • Takakuwa T, Endo S, Nakae H, et al. Relationship between plasma levels of type-II phospholipase A2, PAF-acetyl-hydrolase, leukotriene B4, complements, endothelin-1 and thrombomodulin in patients with sepsis. Res Commun Chem Pathol Pharmacol 1994; 84: 271–81.
  • Endo S, Inada K, Yamashita H, et al. Platelet-activating factor (PAF) acetylhydrolase activity, type II phospholipase A2 and cytokine levels in patients with sepsis. Res Commun Chem Pathol Pharmacol 1994; 83: 289–95.
  • Nakae H, Endo S, Inada K, et al. Nitrite/nitrate (NOx) and type II phospholipase A2, leukotriene B4 and platelet-activating factor levels in patient with septic shock. Res Commun Mol Pathol Pharmacol 1996; 92: 131–9.
  • Bücherl M, Deller A, Malfertheimer P, et al. Serum phospholipase A2 in intensive care patients with peritonitis multiple injuries and necrotizing pancreatitis. Klin Wochenschr 1989; 67: 217–21.
  • Vadas P, Pruzanski W. Biology of disease. Role of secretory phospholipases A2 in the pathobiology of disease. Lab Invest 1986; 55: 391–404.
  • Hiefinger RT, Guder WG Hoffmann GE. Serum phospholipase A in hematologi-cal disorders. Klin Wochenschr 1989; 67: 222–4.
  • Goris RJA, Bockhorst TPA, Nuytinck JKS, et al. Multiple organ failure. Generalized autodestructive inflammation? Arch Surg 1985; 120: 1109–12.
  • Goris RJA, Bockholtz PHM, van Bebber IPT, et al. Multiple organ failure and sepsis without bacteremia. Arch Surg 1986; 121: 897–903.
  • Carrico CJ, Meakins JL, Marshall JC, Fry, D. et al. Multiple-organ-failure syndrome. Arch Surg 1986; 121: 196–201.
  • Anderson BO, Moore EE Banerjee A. Phospholipase A2 regulates critical inflammatory mediators of multiple organ failure. J Surg Res 1994; 56: 199–202.
  • Waydhas C, Nast-Kolb D Duswald KH. Prognostic value of serum phospholi-pase A in the multitraumatized patient. Klin Wochenschr 1989; 67: 203–6.
  • Sörensen J, Kald B, Tagesson C, et al. Platelet-activating factor and phospholi-pase A2 in patients with septic shock and trauma. Intensive Care Med 1994; 20: 555–61.
  • Nyman KM, Uhl W, Forsstrom J, et al. Serum phospholipase A2 in patients with multiple organ failure. J Surg Res 1996; 60: 7–14.
  • Grönroos JM, Kuttila K Nevalainen TJ. Group II phospholipase A2 in serum in critically ill surgical patients. Crit Care Med 1994; 22: 956–9.
  • Schmeling DJ, Caty MG, Oldham KT, et al. Evidence for neutrophil-related acute lung injury after intestinal ischemia-reperfusion. Surgery 1989; 106: 195–202.
  • Pogetti RS, Moore FA, Moore EE, et al. Liver injury is a reversible neutrophil-mediated event following gut ischemia. Arch Surg 1992; 127: 175–9.
  • Mansbach CM. Phospholipases: old enzymes with new meaning. Gastroenter-ology 1990; 98: 1360–2.
  • Dennis EA, Rhee SG, Billah MM, et al. Role of phospholipase in generating lipid second messengers in signal transduction. FASEB J 1991; 5: 2068–77.
  • Van Bebber IPT, Bockholz WKF, Goris RJA, et al. Neutrophil function and lipid peroxidation in a rat model of multiple organ failure. J Surg Res 1989; 47: 471–5.
  • Otamiri T, Tagesson C. Role of phospholipase A2 and oxygenated free radicals in mucosal damage after small intestinal ischemia and reperfusion. Am J Surg 1989; 157: 562–5.
  • Loffler BM, Bohn E, Hesse B, et al. Effects of antimalarial drugs on phospho-lipase A2 and lysophospholipase and cytosolic subcellular fractions of rat liver. Biochim Biophys Acta 1985; 835: 448–55.
  • Otamiri T, Lindahl M Tagesson C. Phospholipase A2 inhibition prevents mu-cosal damage associated with small intestinal ischemia in rats. Gut 1988; 29: 489–94.
  • Nakae H, Endo S, Inada K, et al. Plasma concentrations of type II phospholipase A2 cytokines and eicosanoids in patients with burns. Burns 1995; 21: 422–6.
  • Weglicky WB, Waite BM, Sissom P, et al. Mycocardial phospholipase A of microsomal and mitochondrial fractions. Biochim Biophys Acta 1971; 231: 512–9.
  • Weglicky WB, Low MG. Phospholipase of the mycocardium. Basic Res Cardiol 1987; 82(Suppl. 1): 107–12.
  • Oram J, Bennetch S Neely J. Regulation of fatty acid utilization in isolated perfused rat heart. J Biol Chem 1973; 248: 5299–309.
  • Chien K, Reeves J, Buja L, et al. Phospholipid alterations in canine ischemia mycocardium: temporal and topographical correlations with Tc-99 m Pi accumulation and in vitro sarcolemmal Ca2+ permeability defect. Circ Res 1981; 48: 711–9.
  • Sobel BE, Corr PB, Robinson AK, et al. Accumulation of lysophosphoglycerides with arrhythmogenic properites in ischemia myocardium. J Clin Invest 1978; 62: 546–53.
  • Shaik NA, Downar E. Time course of changes in porcine myocardial phosphlipid levels during ischemia. Circ Res 1981; 49: 316–25.
  • Chien KR, Han A, Sen A, et al. Accumulation of unesterified arachidonic acid in ischemic canine myocardium: relationship to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane phospholipids. Circ Res 1984; 54: 313–22.
  • Idell-Wenger J, Grotyohann L Neely J. Coenzyme A and carnitine distribution in normal and ischemia hearts. J Biol Chem 1978; 253: 4310–8.
  • Corr P, Witkowski F Sobel B. Mechanisms contributing to malignant dysrhythmias induced by ischemia in the cat. J Clin Invest 1978; 61: 109–19.
  • Corr PB, Snyder DW, Cain ME, et al. Electrophysiological effects of amphiphiles on canine Purkinje fibers. Implications for dysrhythmia secondary to ischemia. Circ Res 1981; 49: 354–63.
  • Corr PB, Gross RW Sobel BE. Amphipathic metabolites and membrane dysfunction in ischemic mycocardium. Circ Res 1984; 55: 135–154.
  • Katz AM, Messineo FC. Lipid membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 1981; 48: 1–16.
  • Hsueh W, Isakson PC Neeleman P. Hormone selective activation in the isolated rabbit heart. Prostaglandins 1977; 13: 1073–91.
  • Van der Vusse GJ, Roemen THM, Prinzen FW, et al. Uptake and tissue content of fatty acid in dog myocardium under normoxic and ischemic conditions. Circ Res 1982; 50: 538–46.
  • Aijoka M, Nagai S, Ogawa K, et al. The role of phospholipase in the genesis of reperfusion arrhythmia. J Electrocardiol 1986; 19: 165–72.
  • Bentham HM, Higgins AJ Woodward B. The effects of ischemia, lysophosphatidyl-choline and palmitoylcarnitine on rat heart phospholipase A2 activity. Basic Res Cardiol 1987; 82(Suppl): 127–35.
  • Kawaguchi H, Shoki M, Iizuka K, et al. Phospholipid metabolism and prostacyclin synthesis in hypoxic myococytes. Biochim Biophys Acta 1991; 1094: 161–7.
  • Franson RC, Pang DC Weglicki WB. Modulation of lipolytic activity in isolated canine cardiac sarcolemma by isoproterenol and propranolol. Biochem Biophys Res Commun 1979; 90: 956–62.
  • Hazen SL, Ford DA Gross RW. Activation of membrane-associated phospholi-pase A2 during rabbit myocardial ischemia which is highly selective for plas-malogen substrate. J Biol Chem 1991; 266: 5629–33.
  • Ford DA, Hazen SL, Saffitz JE, et al. The rapid and reversible activation of a calcium-independent plasmalogen-selective phospholipase A2 during myocar-dial ischemia. J Clin Invest 1991; 88: 331–5.
  • Gross RW, Sobel BE. Lysophosphatidylcholine metabolism in the rabbit heart. Characterization of metabolic pathways and partial purification of myocardial lysophospholipase-transacylase. J Biol Chem 1982; 257: 6702–8.
  • Gross RW, Sobel BE. Rabbit myocardial cytosolic lysophospholipase: Purification, characterization and competitive inhibition by l-palmitoyl-carnitine. J Biol Chem 1983; 258: 5221–6.
  • Gross RW. Purification of rabbit myocardial cytosolic acyl-CoA hydrolase, identity with lysophospholipase and modulation of enzymic activity by endogenous cardiac amphiphiles. Biochemistry 1983; 22: 5641–6.
  • Mock T, Man RYK. Mechanism of lysophosphatidylcholine accumulation in the ischemic canine heart. Lipids 1990; 25: 357–62.
  • Gross RW, Sobel BE. Inhibition of myocardial lysophosphatidylcholine transacylase by palmitoyl-carnitine. Implication for arrhythmogenesis. Trans Assoc Am Phys 1981; 94: 115–25.
  • Gross RW, Drisdel RC Sobel BE. Rabbit myocardial lysophospholipase-transacylase. J Biol Chem 1983; 258: 15165–72.
  • Needleman P, Wyche A, Sprecher H, et al. A unique cardiac cytosolic acyltransferase with preferential selectivity for fatty acids that form cyclooxygenase/lipoxygenase metabolites and reverse essential fatty acid deficiency. Biochim Biophys Acta 1985; 836: 267–73.
  • Arthur G, Choy PC. Acylation of 1-alkenylglycerophosphocholine and 1-acyl-glycerophosphocholine in guinea pig heart. Biochem J 1986; 236: 481–7.
  • Deka N, Sun GY MacQuarrie R. Purification and properties of acyl-CoA: sn-glycero-3-phosphocholine-0-acyltransferase from bovine brain microsomes. Arch Biochem Biophys 1986; 246: 554–63.
  • Kroner EE, Peskar BA, Fisher H, et al. Control of arachidonic acid accumulation in bone-marrow derived macrophages by acyltransferase. J Biol Chem 1981; 256: 3690–97.
  • Kroner CF, Hausmann G, Gemsa D, et al. Role of prostaglandin synthesis is not controlled by phospholipase A activity but by reincorporation of released fatty acids into phospholipids. Agents Actions 1984; 15: 29–31.
  • Langton SR, Jarnicki A. Serum phospholipase A2 and lysolecithin changes following myocardial infarction. Clin Chim Acta 1992; 205: 223–31.
  • Leong LLL, Strurm MJ, Ismail Y, et al. Plasma phospholipase A2 activity in clinical acute myocardial infarction. Clin Exp Pharmacol Physiol 1992; 19: 113–8.
  • Davies GC, Sobel CM Saltzman EW. Elevated plasma fibrinopeptide A and thromboxane B2 levels during cardiopulmonary bypass. Circulation 1980; 61: 808–14.
  • Ylikorkala O, Saarela E Viinikka L. Increased prostacyclin and thromboxane production in man during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1981; 82: 245–7.
  • Nakamura H, Kim DK, Philbin DM, et al. Heparin-enhanced plasma phospho-lipase A2 activity and prostacyclin synthesis in patients undergoing cardiac surgery. J Clin Invest 1995; 95: 1062–70.
  • Minow RA, Benjamin RS Gottlieb JA. Adriamycin (NC-123127) cardiomyopa-thy — an overview with determination of risk factors. Cancer Chemother Rep 1975; 3: 195–201.
  • Robinson TW, Giri SN. Effects of chronic administration of doxorubicin on heart phospholipase A2 activity and in vitro synthesis and degradation of pros-taglandins in rats. Prostaglandins Leukot Med 1987; 26: 59–74.
  • Myers CE, McGuire WP, Liss R, et al. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 1977; 197: 165–7.
  • Ogawa Y, Kondo T, Sugiyama S, et al. Role of phospholipase in the genesis of doxorubicin-induced cardiomyopathy in rats. Cancer Res 1987; 47: 1239–43.
  • Franson RC, Weir DL. Isolation and characterization of a membrane-associated calcium-dependent phospholipase A2 from rabbit. Lung 1982; 160: 275–84.
  • Lindahl M, Von Schenck H Tagesson C. Isolation and characterization of phospholipase A2 from rat lung with affinity chromatography and two-dimensional gel-electrophoresis. Biochim Biophys Acta 1989; 1003: 282–8.
  • Ohta M, Hasegawa H Ohno K. Calcium independent phospholipase A2 activity in rat lung supernatant. Biochim Biophys Acta 1972; 280: 552–8.
  • Filgueiras OMO, Possmayer F. Characterization of phospholipase A2 from rabbit lung microsomes. Lipids 1987; 22: 731–5.
  • Filgueiras OMO, Possmayer F. Purification and characterization of a phospho-lipase A2 associated with rabbit lung microsomes: some evidence for its mito-chondrial origin. Biochim Biophys Acta 1990; 1046: 258–66.
  • Nijssen JG, Roosenboom CFP Van den Bosch H. Identification of a calcium-independent phospholipase acethylhydrolase for 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF-acether). Biochim Biophys Acta 1986; 876: 611–8.
  • Kuhn C. The cells of the lung and their organelles. In: Crystal RG, ed. The biochemical basis of pulmonary function. New York, Marcel Dekker, 1976.
  • Singh G, Katyal SL, Brown WE, et al. Amino acid and cDNA nucleotide sequences of human Clara cell 10 kDa protein. Biochim Biophys Acta 1988; 950: 329–37.
  • Miele C, Coradella-Miele E, Facchiano A, et al. Novel anti-inflammatory pep-tides from the region of highest similarity between uteroglobin and lipocortin I. Nature 1988; 335: 726–30.
  • Singh G, Katyal SL, Brown WE, et al. Clara cell 10-kDa protein (CC10). Comparison of stucture and function to uteroglobin. Biochim Biophys Acta 1990; 1039: 348–55.
  • Chen SF, Li SH, Fei X, et al. Phospholipase A2-induced lung edema and its mechanism in isolated perfused guinea pig lungs. Inflammation 1990; 14: 267–73.
  • Holtzman MJ. Arachidonic acid metabolism. Implications of biological chemistry for lung function and disease. Am Rev Respir Dis 1991; 143: 188–203.
  • Hallman M, Spragg R, Harrell JH, et al. Evidence of lung surfactant abnormality in respiratory failure. J Clin Invest 1982; 70: 673–83.
  • Pauser G, Lohninger A, Linhart L, et al. Carnitine and lung lavage dipalmitoyl phosphatidylcholine in war gas injured patients. In: Kaiser E, Lohninger A, eds. Carnitine — its role in lung and heart disorders. Pp. 55-65. Basel, Karger, 1987.
  • Kaiser E, Lohninger A. (eds). Carnitine — its role in lung and heart disorders. Basel, Karger, 1987.
  • Romaschin AD, Walker M Da Costa M. Biochemical and enzyme markers of adult respiratory distress syndrome (ARDS). Clin Biochem 1989; 22: 415.
  • Holm BA, Keicher L, Liu M, et al. Inhibition of pulmonary surfactant function by phospholipases. J Appl Physiol 1991; 71: 317–21.
  • Pepe PE, Potkin RT, Reus DH, et al. Clinical predictors of the adult respiratory distress syndrome. Am J Surg 1983; 144: 124–8.
  • Kellerman W, Frentzel-Beyme R, Welte M, et al. Phospholipase A in acute lung injury after trauma and sepsis: its relation to the inflammatory mediators PMN-elastase, C3a and neopterin. Klin Wochenschr 1989; 67: 190–5.
  • Baur M, Schmid T-O Landauer B. Role of phospholipase A in multiorgan failure with special reference to ARDS and acute renal failure (ARF). Klin Wochenschr 1989; 67: 196–202.
  • Romaschin AD, De Majo WC, Winton T, et al. Systemic phospholipase A2 and cachectin levels in adult respiratory distress syndrome and multiple-organ failure. Clin Biochem 1992; 25: 55–60.
  • Fujiwara T, Adams FH Seto K. Lipids and surface tension of extracts of normal and oxygen-treated guinea pigs. J Pediatr 1964; 65: 45–52.
  • Välimäki M, Pelliniemi TT Niinikoski J. Oxygen-induced changes in pulmonary phospholipids in the rat. J Appl Physiol 1975; 39: 780–7.
  • Clark JM, Lambertsen CJ. Pulmonary oxygen toxicity. A review. Pharmacol Rev 1971; 23: 37–133.
  • Cross CE, De Lucia AJ, Reddy AK, et al. Ozone interactions with lung tissue: biochemical approaches. Am J Med 1976; 60: 929–35.
  • Sahu S, Lynn WS. Characterization of phospholipase A from pulmonary secretions of patients with alveolar proteinosis. Biochim Biophys Acta 1977; 489: 307–17.
  • Sheenan PM, Stokes DC, Yeh YY, et al. Surfactant phospholipids and lavage phospholipase A2 in experimental Pneumocystis carinii pneumonia. Am Rev Respir Dis 1986; 134: 526–31.
  • Baek SH, Takayama K, Kudo I, et al. Detection and characterization of extracellular phospholipase A2 in pleural effusion of patients with tuberculosis. Life Sci 1991; 49: 1095–102.
  • Marchliniski FE, Gansler TS, Waxman HL, et al. Amiodarone pulmonary tox-icity. Ann Intern Med 1982; 97: 839–45.
  • Poncell S, Ireton I, Valencia-Mayoral P, et al. Amiodarone-associated phospholipidosis and fibrosis of the liver. Gastroenterology 1984; 86: 926–36.
  • Heath MF, Costa-Jusa FR, Jacobs JM, et al. The induction of pulmonary phospholipidosis and the inhibition of lysosomal phosopholipases by amiodarone. Br J Exp Pathol 1985; 66: 391–7.
  • Kodavanti UP, Mehendale HM. Amiodarone- and desethylamiodarone-induced pulmonary phospholipidosis, inhibition of phospholipases in vivo and alteration of (14C) amiodarone uptake by perfused lungs. Am J Respir Cell Mol Biol 1991; 4: 369–78.
  • Weiland JE, Davis B, Holter JF, et al. Lung neutrophils in the adult respiratory distress syndrome. Am Rev Respir Dis 1986; 133: 218–25.
  • Heffner JE, Sahn SS Repine JE. The role of platelets in the adult respiratory distress syndrome. Am Rev Respir Dis 1987; 135: 482–92.
  • Weinberg PF, Matthay MA, Webster RO, et al. Biologically active products of complement and acute lung injury in patients with the sepsis syndrome. Am Rev Resp Dis 1984; 130: 791–6.
  • Rae D, Porter J, Beechey-Newman N, et al. Type 1 prophospholipase A2 propeptide in acute lung injury. Lancet 1994; 344: 1472–3.
  • Stadel JM, Hoyle K, Naclerio RM, et al. Characterization of phospholipase A2 from human nasal lavage. Am J Respir Cell Mol Biol 1994; 11: 108–13.
  • Aho HJ, Grenman R, Sipila J, et al. Group II phospholipase A2 in nasal fluid mucosa and paranasal sinuses. Acta Otolaryngol (Stockh) 1977; 117: 860–4.
  • Gronich JH, Bonventre JV Nemenoff RA. Identification and characterization of a hormonally regulated form of phospholipase A2 in rat renal mesangial cells. J Biol Chem 1988; 263: 16645–51.
  • Aarsman AJ, Schalkwijk CG, Neys FW, et al. Purification and characterization of Ca2+-dependent phospholipase A2 from rat kidney. Arch Biochem Biophys 1996; 331: 95–103.
  • Nakasato Y, Simonson MS, Herman WH, et al. Interleukin-1a stimulates pros-taglandin biosythesis in serum activated mesangial cells by induction of a non-pancreatic (type II) phospolipase A2. J Biol Chem 1991; 266: 14119–27.
  • Topley N, Floege J, Wessel K, et al. Prostaglandin E2 production is synergisti-cally increased in cultured human glomerular mesangial cells by combinations of IL-1 and tumor necrosis factor. J Immunol 1989; 143: 1989–95.
  • Schlondorf D, De Candido S Sariano JA. Angiotensin II stimulates phospholi-pase C and A2 in cultured rat mesangial cells. Am J Physiol 1987; 253: C113–20.
  • Kawaguchi H, Saito H Yasuda H. Renal prostaglandins and phospholipase A2 in spontaneously hypertensive rats. J Hypertension 1987; 5: 299–304.
  • Kawaguchi H, Okamoto H, Saito H, et al. Renal phospholipase C and diglyceride lipase activity in spontaneously hypertensive rats. Hypertension 1987; 10: 100–6.
  • Yanagisawa M, Morissey J Klahr S. Mechanism of enhanced eicosanoid production by isolated glomeruli from rats with bilateral urethral obstruction. Am J Physiol 1991; 261: F248–55.
  • Maach T, Johnson V, Kan ST, et al. Renal filtration, transport, and metabolism of low-molecular weight proteins (review). Kidney Int 1979; 16: 251–70.
  • Royse VL, Jensen DM Corwin HL. Pancreatic enzymes in chronic renal failure. Arch Intern Med 1987; 147: 537–9.
  • Vaziri ND, Chang D, Malekpour A, et al. Pancreatic enzymes in patients with end-stage renal disease maintained on hemodialysis. Am J Gastroenterol 1987: 83: 410–2.
  • Costello J, Franson RC, Landwehr K, et al. Activity of phospholipase A2 in plasma increases in uremia. Clin Chem 1990; 36: 198–200.
  • Kitakawa M, Hayakawa T, Kondo T, et al. Elevation of serum phospholipase A2 in patients at an intensive care unit. Int J Pancreatol 1991; 10: 279–86.
  • Funakoshi A, Yamada Y, Ito T, et al. Clinical usefulness of serum phospholipase A2 determinations in patients with pancreatic diseases. Pancreas 1991; 6: 588–94.
  • Peuravuori HJ, Funatatomi H Nevalainen TJ. Group I and group II phospholi-pase A2 in serum in uremia. Eur J Clin Chem Clin Biochem 1993; 31: 491–4.
  • Dorsam G, Harris L, Payne M, et al. Development and use of ELISA to quantify type II phospholipase A2 in normal and uremic serum. Clin Chem 1995; 41: 862–6.
  • Sternby B, Akerstrom B. Immunoreactive pancreatic colipase, lipase and phos-pholipase A2 in human plasma und urine from healthy individuals. Biochim Biophys Acta 1984; 789: 164–9.
  • Fabris C, Basso D, Panozzo MP, et al. Urinary phospholipase A2 excretion in chronic pancreatic diseases. Int J Pancreatol 1992; 11: 178–84.
  • Fabris C, Basso D, Del Favero G, et al. Renal tubular dysfunction in pancreatic cancer and chronic pancreatitis. Nephron 1989; 51: 56–60.
  • Rossi CR, Sartorelli L, Tato L, et al. Phospholipase A activity of rat liver mitochondria. Biochim Biophys Acta 1965; 98: 207–9.
  • Zurini M, Hugentobler G Gazzotti P. Activity of phospholipase A2 in the inner membrane of rat-liver mitochondria. Eur J Biochem 1981; 119: 517–21.
  • De Winter JM, Vianen GM Van den Bosch H. Purification of rat liver mitochon-drial phospholipase A2. Biochim Biophys Acta 1982; 712: 332–41.
  • Natori Y, Karasawa K, Arai H, et al. Partial purification and properties of phospholipase A2 from rat liver mitochondria. J Biochem 1983; 93: 631–7.
  • Aarsman AJ, De Jong JGN, Arnoldussen E, et al. Immunoaffinity purification, partial sequence and subcellular localization of rat liver phospholipase A2. J Biol Chem 1989; 264: 10008–14.
  • Newkirk JD, Waite M. Phosopholipid hydrolysis by phospholipase A1 and A2 in plasma membranes and microsomes of rat liver. Biochim Biophys Acta 1973; 298: 562–76.
  • Van Golde LMG, Fleischer B Fleischer S. Some studies on the metabolism of phospholipids in Golgi complex from bovine and rat liver in comparison to other subcellular fractions. Biochim Biophys Acta 1971; 249: 318–30.
  • Neitcheva T, Peeva D. Phospholipid composition, phospholipase A2 and sphingomyelinase activities in rat liver nuclear membrane and matrix. Int J Biochem Cell Biol 1995; 27: 995–1001.
  • Franson R, Waite M La Via M. Identification of phospholipase A1 and A2 in the soluble fraction of rat liver lysosomes. Biochemistry 1971; 10: 1942–6.
  • Wiswedel I, Barnstorf U, Augustin W, et al. Involvement of periodic deacylation-acylation cycles of mitochondrial phospholipids during Sr2+-induced ion transport in rat liver mitochondria. Biochim Biophys Acta 1982; 688: 597–604.
  • Broekemeier KM, Schmid PC, Schmid HHO, et al. Effects of phospholipase A2 inhibitors on ruthenium red-induced Ca2+ release from mitochondria. J Biol Chem 1985; 260: 105–13.
  • Krause H, Dieter P, Schulze-Specking A, et al. Ca2+-induced reversible translo-cation of phospholipase A2 between the cytosol and the membrane fraction of rat liver macrophages. Eur J Biochem 1991; 199: 355–9.
  • Gerhard F, Treusch H, Hofmann GE et al. Phospholipase A2 — acute phase protein after liver surgery? Z Gastroeterol 1997; 35: 247.
  • Funakoshi Y, Yamada Y, Ito T, et al. Clinical usefulness of serum phospholipase A2 determination in patients with pancreatic diseases. Pancreas 1991; 6: 588–94.
  • Pirisi M, Fabris C, Panozzo MP, et al. Increased serum phospholipase A2 activity in advanced chronic liver disease as an expression of the acute phase response. Dis Markers 1993; 11: 103–11.
  • Shoda J, Ueda T, Ikegami T, et al. Increased biliary group II phospholipase A2 and altered gallbladder bile in patients with multiple cholesterol stones. Gastro-enterology 1997; 112: 1036–2047.
  • Elman R, Arneson N Graham E. Value of blood amylase estimations in the diagnosis of pancreatic disease. A clinical study. Arch Surg 1929; 19: 934–65.
  • Vogel WC, Zieve L. A rapid and sensitive turbidimetric method for serum lipase based upon differences between the lipase of normal and pancreatic serum. Clin Chem 1963; 9: 168–81.
  • Weaver DW, Bouwman DL, Walt AJ, et al. A correlation between clinical pancreatitis and isoenzyme patterns of amylase. Surgery 1982; 92: 576–80.
  • Arzoglou PL, Ferard G Metais P. Differentiating two forms of plasma lipase by use of media with different ionic stregth. Clin Chem 1984; 30: 360–3.
  • Temler RS, Felber JP. Radioimmunoassay of human plasma trypsin. Biochim Biophys Acta 1975; 445: 720–8.
  • Geokas MC, Largman C, Brodrick JW, et al. Immunoreactive forms of human pancreatic chymotrypsin in normal plasma. J Biol Chem 1979; 254: 2775–81.
  • Geokas MC, Brodrick JW, Johnson JH, et al. Pancreatic elastase in human serum. Determination by radioimmunoassay. J Biol Chem 1977; 252: 61–7.
  • Kurihara M, Ogawa M, Ohta T, et al. Purification and immunological characterization of human pancreatic ribonuclease. Cancer Res 1982; 42: 4836–41.
  • Schmidt H, Creutzfeld W. The possible role of phospholipase A in the pathogen-esis of acute pancreatitis. Scand J Gastroenterol 1969; 4: 39–48.
  • Creutzfeld W, Schmidt H. Etiology and pathogenesis of pancreatitis. Current concepts. Scand J Gastroenterol 1970; 6(Suppl.): 47–62.
  • Nevalainen TJ. Phospholipase A2 in acute pancreatitits. A review. Scand J Gastroenterol 1980; 15: 641–50.
  • Nevalainen TJ. Phospholipase A2 in acute pancreatitis. A review. Scand J Gastroenterol 1988; 23: 897–904.
  • Nevalainen TJ. The role of phosphoslipase A2 in human acute pancreatitis. Klin Wochenschr 1989; 67: 180–2.
  • Hietaranta AJ, Laszik ZG, Aho HJ, et al. The role of phsopholipase A2 in pancreatic acinar cell injury. Int J Pancreatol 1991; 8: 187–200.
  • Nevalainen TJ, Aho HJ, Eskola JU, et al. Immunohistochemical localization of phospholipase A2 in human pancreas in acute and chronic pancreatitis. Acta Pathol Microbiol Scand 1983; 91: 97–102.
  • Puolakkainen P, Paananen A, Kaarne M, et al. Aprotinin and Na2 CaEDTA in experimental hemorrhagic pancreatitis in pigs. Scand J Gastroenterol 1987; 22: 35–41.
  • Schröder T. The effect of early pancreatectomy and peritoneal lavage on the development of experimental hemorrhagic pancreatitis (EHP) in pigs. Scand J Gastroenterol 1982; 17: 167–71.
  • Chen S, Ding Z, Wu Z, et al. Phospholipase A2 and its relationship with acute lung injury in acute pancreatitis in dogs. J Med Coll PLA 1989; 4: 129–34.
  • Raemoe OJ, Schröder T, Kuusi T, et al. Long-term ethanol ingestion causes an increase of phospholipase A2 activity in acute experimental pancreatitis rats. J Surg Res 1986; 41: 362–6.
  • Uhl W, Schrag HJ Schmitter N. Pathophysiological role of secretory type I and II phospholipase A2 in acute pancreatitis: an experimental study in rats. Gut 1997; 40: 386–392.
  • Zieve L, Vogel WC. Measurement of lecithinase A in serum and other body fluids. J Lab Clin Med 1961; 57: 586–99.
  • Schröder T, Kivilaakso E, Kinnunen PKJ, et al. Serum phospholipase A2 in human acute pancreatitis. Scand J Gastroenterol 1980; 15: 633–6.
  • Schröder T, Lempinen M, Kivilaakso E, et al. Serum phospholipase A2 and pulmonary changes in acute fulminant pancreatitis. Resuscitation 1982; 10: 79–87.
  • Matsuda Y, Ogawa M, Nishijima J, et al. Usefulness of determination of serum immunoreactive pancreatic phospholipase A2 content for early identification of severe acute pancreatitis. Hepatogastroenterology 1986; 33: 214–6.
  • Schmidt D, Hoffmann GE. Activity of phospholipase A compared wth serum of patients with pancreatic and non-pancreatic diseases. Clin Chem 1987; 33: 594–6.
  • El-Kalak M, Kaiser E. unpublished results 1990.
  • Sternby B, O’Brien JF, Zinsmeister AR, et al. What is the best biochemical test to diagnose acute pancreatitis? A prospective clinical study. Mayo Clin Proc 1996; 71: 1138–44.
  • Kazmierczak SC, Van Lente F Hodges ED. Diagnostic and prognostic utility of phospholipase A in patients with acute pancreatitis. Comparison with amylase and lipase. Clin Chem 1991; 37: 356–60.
  • Clave P, Guillaumes S, Blanco I, et al. Amylase, lipase, pancreatic isoamylase and phospholipase A in diagnosis of acute pancreatitis. Clin Chem 1995; 41: 1129–34.
  • Winslet MC, Hall C, Hendricks C, et al. Serum phospholipase A2 and free fatty acid space levels in acute pancreatitis. Biochem Soc Trans 1991; 19: 2255.
  • Nevalainen TJ, Eskola JU, Aho AJ, et al. Immunoreactive phospholipase A2 in serum in acute pancreatitis and pancreatic cancer. Clin Chem 1985; 31: 1116–20.
  • Büchler M, Malfertheiner P, Schädlich H, et al. Prognostic value of serum phospholipase A in acute pancreatitis. Klin Wochenschr 1989; 67: 186–9.
  • Heath DI, Cruickshank A, Gudgeon AM et al. The relationship between pancreatic enzyme release and activation and the acute-phase protein response in patients with acute pancreatitis. Pancreas 1995; 10: 347–53.
  • Nevalainen TJ, Grönroos JM Kortesuo PT. Pancreatic and synovial type phos-pholipase A2 in serum from patients with severe acute pancreatitis. Gut 1993; 34: 1133–6.
  • Morohoshi T, Held G Klöppel G. Exocrine pancreatic tumors and their histologi-cal classification. A study based on 167 autopsy and 97 surgical cases. Histopa-thology 1983; 7: 645–61.
  • Closa D, Bardaji M, Hotter G, et al. Hepatic involvement in pancreatitis-induced lung damage. Am J Physiol 1996; 270: G6–13.
  • Grönroos JM, Nevalainen TJ. Increased concentration of synovial-type phos-pholipase A2 in serum and pulmonary and renal complications in acute pancreatitis. Digestion 1992; 52: 232–6.
  • Beger HG, Bittner R, Block S, et al. Bacterial contamination of pancreatic necrosis. Gastroenterology 1986; 91: 433–8.
  • Roulis AK, Murray WR, Galloway D, et al. Endotoxaemia and complement activation in acute pancreatitis in man. Gut 1982; 213: 656–61.
  • Block S, Büchler M, Bittner R, et al. Sepsis indicators in acute pancreatitis. Pancreas 1987; 2: 499–505.
  • Marks WH, Borgström A, Sollinger HW et al. serum immunoreactive anodal trypsinogen and urinary amylase as biochemical markers for resection of clinical whole-organ pancreas allografts having exocrine drainage into the urinary bladder. Transplantation 1990; 49: 112–5.
  • Suzuki T, Kuroda Y Saitoh Y. Plasma pancreatic phospholipase A2 as a marker for clinical pancreas graft rejection. Pancreas 1994; 9: 391–3.
  • Suzuki Y, Kuroda Y, Sollinger et al. Plasma phospholipase A2 and pancreatic trypsin inhibitor as markers for pancreas graft rejection. Transplantation Proc 1994; 26: 538–40.
  • Metz SA. Glucose increases the synthesis of lipoxygenase mediated metabolism of arachidonic acid in intact rat islets. Proc Natl Acad Sci USA 1985; 82: 198–202.
  • Loweth AC, Scarpello JH Morgan NG. Phospholipase A2 expression in human and rodent insulin-secreting cells. Mol Cell Endocrinol 1995; 112: 177–83.
  • Metz SA. Ether-linked lysophospholipids initiate insulin secretion. Lysophospholipids may mediate effects of phospholipase A2 activation on hormone release. Diabetes 1986; 808–17.
  • Metz SA. Is phospholipase A2 a ‘glucose sensor’ responsible for the phasic pattern of insulin release? Prostaglandins 1984; 27: 147–58.
  • Shakir KM, Reel HL O’Brien JT. Decreased phospholipase A2 activity in plasma and liver in uncontrolled diabetes mellitus. A defect in the early steps of prostaglandin synthesis? Diabetes 1986; 35: 403–10.
  • Hirohara J, Sugatani J, Okumura J, et al. Properties and localization of phospho-lipase A2 activity in rat stomach. Biochim Biophys Acta 1987; 919: 231–8.
  • Grataroli R, Charbonnier M, Leonardi J, et al. Phospholipase A2 activity of rat stomach. Arch Biochem Biophys 1987; 258: 77–84.
  • Tojo H, Ono T Okamoto M. A pancreatic-type phospholipase A2 in rat gastric mucosa. Biochem Biophys Res Commun 1988; 151: 1188–93.
  • Grataroli R, Termine E, Portugal H, et al. Subcellular localization of rat gastric phospholipase A2. Biochim Biophys Acta 1991; 1082: 130–4.
  • Pind S, Kuksis A. Isolation of purified brush-border membranes from rat jejunum containing a Ca-independent phospholipase A2 activity. Biochim Biophys Acta 1987; 901: 78–87.
  • Pind S, Kuksis A. Solubilization and assay of phospholipase A2 activity from rat jejunal brush-border membranes. Biochim Biophys Acta 1988; 938: 211–21.
  • Johnson AG, McDermott SJ. Lysolecithin: a factor in the pathogenesis of gastric ulceration. Gut 1974; 15: 710–3.
  • Ritchie WP, Shearburn EW. Acute gastric mucosal ulcerogenesis is dependent on the concentration of bile salts. Surgery 1976; 80: 98–105.
  • Clemencon GH, Finger J Fehr HF. The role of taurocholic acid, glycocholic acid and lysolecithin in experimental stress ulcer in the rat. Scand J Gastroenterol 1981: 16(Suppl. 67): 137–40.
  • Orchard R, Reynolds K, Fox B, et al. Effect of lysolecithin on gastric mucosal structure and potential difference. Gut 1977; 18: 457–61.
  • Dewar P, King R Johnston D. Bile acid and lysolecithin concentrations in the stomach of patients with gastric ulcer before and after treatment by highly selective vagotomy and pyloroplasty. Br J Surg 1983; 70: 401–5.
  • Otamiri T, Franzen T, Lindmark L, et al. Increased phospholipase A2 and decreased lysophospholipase activity in the small intestinal mucosa after ischemia and revascularisation. Gut 1987; 28: 1445–53.
  • Otamiri T, Lindahl M Tagesson G. Phospholipase A2 inhibition prevents mu-cosal damage associated with small intestinal ischemia in rats. Gut 1988; 29: 489–94.
  • Minami T, Tojo H, Shinomura Y, et al. Raised serum activity of phospholipase A2 immunochemically related to group II enzyme in inflammatory bowel disease: its correlation with disease activity of Crohn’s disease and ulcerative colitis. Gut 1992; 33: 914–21.
  • Haapamaki MM, Gronroos JM, Nurmi H, et al. Gene expression of group II phospholipase A2 in intestine in ulcerative colitis. Gut 1997; 40: 95–101.
  • Peterson JW, Dickey WD, Saini SS, et al. Phospholipase A2 activating protein and idiopathic inflammatory bowel disease. Gut 1996; 39: 698–704.
  • Kunze H, Bohn E. Phospholipase A2 and prostaglandins in human seminal plasma. Adv Prostaglandin Thrombox Res 1978; 3: 159–65.
  • Wurl M, Kunze H. Purification and properties of phospholipase A2 from human seminal plasma. Biochim Biophys Acta 1985; 834: 411–8.
  • Takayama K, Hara S, Kudo J, et al. Detection of 14 kDa group II phospholipase A2 in human seminal plasma. Biochem Biophys Res Commun 1991; 178: 1505–11.
  • Lindahl M, Tagesson C Ronquist G. Phospholipase A2 activity in prostasomes from human seminal plasma. Urol Int 1987; 42: 385–9.
  • Rönkko S, Räsänen M. Studies on phospholipase A2 in human seminal plasma. Int J Biochem 1992; 24: 987–92.
  • Nevalainen TJ, Haaspanen TJ. Distribution of pancreatic (group I) and synovial-type (group II) phospholipase A2 in human tissues. Inflammation 1993; 17: 453–64.
  • Langlais J, Chafouleas JG, Ingraham R, et al. The phospholipase A2 of human spermatozoa. Purification and partial sequence. Biochem Biophys Res Commun 1992; 182: 208–14.
  • Soubeyrand S, Khadir A, Brindle Y et al. Purification of a novel phospholipase A2 from bovine seminal plasma. J Biol Chem 1997; 272: 222–7.
  • Soubeyrand S, Manjunath P. Novel seminal phospholipase A2 is inhibited by the major protein of bovine seminal plasma. Biochim Biophys Acta 1997; 1341: 183–8.
  • Morton BE, Sagadraca R Frazer C. Sperm motility within the mammalian epidydimis. Species variation and correlation with free calcium levels in epidydimal plasma. Fertil Steril 1978; 29: 695–8.
  • Morton B, Harrigian-Lum J, Albagli L, et al. The activation of motility in quiescent hamster sperm from the epidydimis by calcium and cyclic nucleotides. Biochem Biophys Res Commun 1984; 56: 372–9.
  • Singh JP, Babcock DF Lardy HA. Increased calcium-ion influx is a component of capacitation of spermatozoa. Biochem J 1978; 172: 549–56.
  • Breitbart H, Rubinstein S Nass-Arden T. The role of calcium and Ca-ATPase in maintaining motility in rat spermatozoa. J Biol Chem 1985; 260: 11548–53.
  • Wassarman PM. Early events in mammalian fertilization. Annu Rev Cell Biol 1987; 3: 109–42.
  • Garbers DL. Molecular basis of fertilization. Annu Rev Biochem 1989; 58: 719–42.
  • Fleming AD, Yamagimachi R. Effects of various lipids on the acrosome reaction and fertilizing capacity of guinea pig spermatozoa with special reference to the possible involvement of lysophospholipids in the acrosome reaction. Gamete Res 1981; 4: 253–73.
  • Bennet PJ, Moatti JP, Mansat A, et al. Evidence for the activation of phospho-lipases during acrosome reaction of human sperm elicited by calcium ionophose A23187. Biochim Biophys Acta 1987; 919: 255–65.
  • Roldan ERS, Fragio C. Phospholipase A2 activation and subsequent exocytosis in the Ca2+ ionophore-induced acrosome reaction of ram spermatozoa. J Biol Chem 1993; 268: 13962–70.
  • Roldan ERS, Harrison RAP. Polyphosphoinositide breakdown and subsequent exocytosis in the Ca2+ ionophore-induced acrosome reaction of mammalian spermatozoa. Biochem J 1989; 259: 397–406.
  • Thomas P, Meizel S. Phosphatidylinositol-4,5-biphosphate hydrolysis in human sperm stimulated with follicular fluid of progesterone is dependent upon Ca2+ influx. Biochem J 1989; 264: 539–46.
  • Harrison RAP, Roldan ERS. Phosphoinositides and their products in the mammalian sperm acrosome reaction. J Reprod Fertil 1990; 42(Suppl.): 51–67.
  • Moskowitz N, Andreas A, Silva W, et al. Calcium-dependent binding of calmodulin to phospholipase A2 subunits induces enzymatic activation. Arch Biochem Biophys 1985; 241: 413–7.
  • Weinman S, Ores-Carton C, Rainteau D, et al. Immunoelectron microscopic localization of calmodulin and phospholipase A2 in spermatozoa. J Histochem Cytochem 1986; 34: 1171–9.
  • Manyak MJ, Kikukawa T Mukherjee AB. Expression of uteroglobin-like protein in human prostate. J Urol 1988; 140: 176–82.
  • Marcus ZH, Nebel L, Soffe Y, et al. Studies on sperm antigenicity. II. In vivo and in vitro cellular reactivity in guinea pigs sensitized to homologous and heterologous spermatozoal autoantigens. Fertil Steril 1975; 26: 1024–8.
  • Stites DP, Erickson RP. Suppressive effect of seminal plasma on lymphocytes activation. Nature 1975; 253: 727–29.
  • Marcus ZH, Hess EV, Herman JH, et al. In vitro studies in reproductive immunology. II. Demonstration of the inhibitory effect of male genital tract constituents on PHA-stimulated mitogenesis and E rosette formation of human lymphocytes. J Reprod Immunol 1979; 1: 97–100.
  • Chandra T, Bullock DW Woo SLC. Hormonally regulated mammalian gene expression: Steady state level and nucleotide sequence of rabbit uteroglobin mRNA. DNA 1981; 1: 19–26.
  • Mukherjee DC, Agrawal AK, Manjunath R, et al. Suppression of epidydimal sperm antigenicity in the rabbit by uteroglobin and transglutaminase in vitro. Science 1983; 219: 989–91.
  • Mukherjee AB, Ulane RE Agrawal AK. Role of uteroglobin and transglutaminase in masking the antigenicity of implanting rabbit embryos. Am J Reprod Immunol 1982; 2: 135–41.
  • Manjunath R, Chung SI Mukherjee AB. Crosslinking of uteroglobin by transglutaminase. Biochem Biophys Res Commun 1984; 121: 400–7.
  • Bonney RC, Franks S. Modulation of phospholipase A2 activity in human endometrium and amniotic membrane by steroid hormones. J Steroid Biochem 1987; 26: 467–72.
  • Bonney RC, Franks S. Phospholipase C activity in human endometrium: its significance in endometrial pathology. Clin Endocrinol 1987; 27: 307–20.
  • Bonney RC, Franks S. Hydrolysis of phosphatidylinositol by human endometrium: Modulating effects of steroids on arachidonic acid and 1,2-diacylglycerol release. J Endocrinol 1988; 117: 309–14.
  • Poyser NL. Effects of various factors on prostaglandin synthesis by the guinea-pig uterus. J Reprod Fertil 1987; 81: 269–76.
  • Riley JC, Carlson JC. Involvement of phospholipase A activity in the plasma membrane of the rat corpus luteum during luteolysis. Endocrinology 1987; 121: 776–81.
  • Krishnan RS, Daniel JC Jr. Blastokinin: Inducer and regulator of blastocyst development in the rabbit uterus. Science 1967; 158: 490–2.
  • Beier HM. Uteroglobin: a hormone-sensitive endometrial protein involved in blastocyst development. Biochim Biophys Acta 1968; 160: 289–91.
  • Mukherjee AB, Laki K Agrawal AK. Possible mechanism of success of an allotransplantation in nature: mammalian pregnancy. Med Hypothesis 1980; 6: 1043–55.
  • Cowan DB, North DH, Whitworth NS, et al. Identification of uteroglobin-like antigen in human uterine washings. Fertil Steril 1986; 45: 820–5.
  • Levin SW, Butler JD, Schumacher UK, et al. Uteroglobin inhibits phospholipase A2 activity. Life Sci 1986; 38: 1813–9.
  • Kozuka M, Ito T, Hirose S, et al. Endothelin action on rat uterus is inhibited by an inhibitor of protein kinase C and by inhibitors of the phospholipase A2-arachidonic acid-lipoxygenase pathway. Biomed Res 1990; 11: 287–9.
  • Lai CY, Wada K. Phospholipase A2 from human synovial fluid: purification and structural homology to the placental enzyme. Biochem Biophys Res Commun 1988; 157: 488–93.
  • Garcia MT, Zipfel M, Buhl WJ. Lipocortins and phospholipase A2 regulation. Biochem Soc Trans 1990; 18: 1231–2.
  • Crowl R, Stoner C, Stoller T, et al. Isolation and characterization of cDNA clones from human placenta coding for phospholipase A2. Mukherjee AB, ed. Biochemistry, molecular, biology and physiology of phospholipase A2 and its regulatory factors. Pp. 173-84. New York, Plenum Press 1990.
  • Walsh SW, Parisi VM. The role of arachidonic acid metabolites in preeclampsia. Semin Perinatol. 1986; 10: 334–55.
  • Walsh SW, Parisi VM. Arachidonic acid metabolism and the regulation of placental and other vascular tone during pregnancy. Semin Perinatol 1986; 10: 288–94.
  • Huang KS, Wallner BP, Mattaliano RJ, et al. Two human 35 kd inhibitors of phospholipase A2 are related to substrates of pp6ov-scr and of the epidermal growth factor receptor/kinase. Cell 1986; 46: 191–9.
  • Schwarz BE, Schultz FM, MacDonald PC, et al. Initiation of human parturition. IV. Demonstration of phospholipase A2 in the lysosomes of human fetal membranes. Am J Obstet Gynecol 1976; 125: 1089–92.
  • Mitchell MD, Flint APF. Prostaglandin production by uterine tissues from periparturient sheep. J Endocrinol 1978; 76: 111–21.
  • Skinner KA, Challis JRG. Changes in the synthesis and metabolism of prostag-landins by human fetal membranes and decidua at labor. Am J Obstet Gynecol 1985; 151: 519–23.
  • Pepinsky RB, Sinclair LK, Chow EP, et al. A dimeric form of lipocortin 1 in human placenta. Biochem J 1989; 263: 97–103.
  • Bygdeman M. The effects of different prostaglandins of human myometrium in vitro. Acta Physiol Scand 1964; 63(Suppl. 242): 1–78.
  • Carsten ME. Prostaglandins and cellular calcium transport in the pregnant human uterus. Am J Obstet Gynecol 1973; 117: 824–32.
  • Gustavii B. Release of lysosomal acid phosphatase into the cytoplasm of de-cidual cells before the onset of labor in humans. Br J Obstet Gynecol 1975; 82: 177–81.
  • Akesson B. Work in Progress. Occurrence of phospholipase A1 and A2 in human decidua. Prostaglandins 1975; 9: 667–73.
  • Wilson T, Liggins GC Joe L. Purification and characterization of a uterine phospholipase inhibitor that loses activity after onset of labor in women. Am J Obstet Gynecol 1989; 160: 602–6.
  • Lopez BA, Newman GE, Phizackerley PJR, et al. Human placental phospholi-pase A2 activity in term and preterm labour. Eur J Obstet Gynecol Reprod Biol 1992; 43: 185–92.
  • Rice GE, Brennecke SP, Scott KF, et al. Elevated maternal phospholipase A2 in human preterm and term labour. Eicosanoids 1992; 5: 9–12.
  • Aitken MA, Rice G Brennecke S. Relative abundance of human placental phospholipase A2 messenger RNA in late pregnancy. Prostaglandins 1992; 43: 361–70.
  • Pulkkinen MO, Kivikoski AI Nevalainen TJ. Group I and group II phospholi-pase A2 in serum during normal and pathological pregancy. Gynecol Obstet Invest 1993; 35: 96–101.
  • Knogler W, Enzelsberger H, Schurz B, et al. Phospholipase A2-Konzentration während der Geburt. Zbl Gynäkol 1988; 110: 41–2.
  • Aitken MA, Rice GE Brennecke SP. Gestational tissue phospholipase A2 messenger RNA content and the onset of spontaneous labour in the human. Reprod Fertil Dev 1990; 2: 575–80.
  • Romero R, Mazor M, Wu YK, et al. Infection in the pathogenesis of preterm labour. Semin Perinatol 1988; 12: 262–79.
  • Bennet RP, Rose MR, Myatt L, et al. Preterm labor: stimulation of arachidonic acid metabolism in human amnion cells by bacterial products. Am J Obstet Gynecol 1987; 156: 649–55.
  • Romero R, Quintero R Emamian M, et al. Prostaglandin concentration in amni-otic fluid of women with intra-amniotic infection and preterm labor. Am J Obstet Gynecol 1987; 157: 1461–7.
  • Romero R, Hobbins JC Mitchell MD. Endotoxin stimulates prostaglandin E2 production by human amnion. Obstet Gynecol 1988; 71: 227–8.
  • Lumb MR, Roseblade CK, Helmig R, et al. Use of a new simplified assay for phospholipase A2 to measure bacterial enzyme levels. Clin Chim Acta 1990; 189: 39–46.
  • Takahashi T, Imai A Tamaya T. Preterm labor and bacterial intra-amniotic infection: arachidonic acid liberation by the action of phospholipase A2. Arch Gynecol Obstet 1988; 244: 1–6.
  • Woelk H, Arienti G, Gaiti A, et al. Action of phospholipase A2 of rabbit neuronal and glial cells on 1,2-diacyl-2-acyl-1-alk-P-en and 2-acyl-1-alkyl-glycero-phos-phatides. Neurochem Res 1981; 6: 23–32.
  • Erin AN, Tyurin VA, Brusivanik VI, et al. Changes in the physicochemical parameters of the synaptosomal membranes under the action of phospholipase A2. Biochemistry 1985; 50: 431–6.
  • Yoshihara Y, Watanabe Y. Translocation of phospholipase A2 from cytosol to membranes in rat brain induced by calcium ions. Biochem Biophys Res Commun 1990; 170: 484–90.
  • Ciccarelli R, Di Iorio P, Ballerini P, et al. A possible link between phospholipase A2-prostaglandin system and purines in the control of glial cell differentiation. Pharmacol Res 1990; 22(Suppl. 1): 33–4.
  • Mallorga P, Tallman J, Henneberry R, et al. Mepacrine blocks beta-adrenergic agonist-induced desensitization in astrocytoma cells. Proc Natl Acad Sci USA 1980; 77: 1341–5.
  • Anand-Scrivastra MB, Johnson RA. Role of phospholipids in coupling of ad-enosine and dopamine receptors to striatal adenylate cyclase. J Neurochem 1981; 36: 1819–28.
  • Oliveira CR, Duarte EP, Carvalho AP. Effect of phospholipase digestion and lysophosphatidylcholine on dopamine receptor binding. J Neurochem 1984; 43: 455–65.
  • Yawo H, Kuno M. How a nerve fiber repairs its cut end: involvement of phospholipase A2. Science 1983; 222: 1351–3.
  • Gaudet RJ, Alam I Levine L. Accumulation of cyclooxygenase products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid artery occlusion. J Neurochem 1980; 35: 653–8.
  • Trotter J, Smith ME. The role of phospholipases from inflammatory macroph-ages in demyelination. Neurochem Res 1986; 11: 349–61.
  • Bazan NG. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta 1970; 218: 1–10.
  • Marion J, Wolfe LS. Origin of the arachidonic acid released post-mortem in rat forebrain. Biochim Biophys Acta 1979; 574: 25–32.
  • Bazan NG. Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Adv Exp Med Biol 1976; 72: 317–35.
  • Kunievsky B, Bazan NG Yavin E. Generation of arachidonic acid and diacylglycerol second messengers from polyphosphoinositides in ischemia fetal brain. J Neurochem 1992; 59: 1812–9.
  • Abe K, Kongure K, Yamamoto H, et al. Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex. J Neurochem 1987; 48: 503–9.
  • Strosznajder J, Goracci G Gaiti A. Synaptic vesicle-bound phospholipase(s) acting on phosphatidylinositol exhibit(s) high susceptibility to brain ischemia. Neurosci Lett 1990; 114: 329–32.
  • Hirashima Y, Koshu K, Kamiyama K et al. The activities of phospholipase A1, A2, lysophospholipase and acyl-CoA: lysophospholipidacyltransferase in ischemia dog brain. In: Go KG, Baethmann A, eds., Recent progress in the study and therapy of brain edema. Pp. 213-21. New York, Plenum Press, 1984.
  • Rordorf G, Uemura Y Bonventre J. Characterization of phospholipase A2 (PLA2) activity in gerbil brain: enhanced activities of cytosolic, mitochondrial and microsomal forms after ischemia and reperfusion. J Neurosci 1991; 11: 1829–36.
  • Goracci G, Horrocks LA Porcellati G. Reversibility of ethanolamine and choline phosophotransferases (EC 2.7.8.1 and EC 2.7.8.2.) in rat brain microsomes with labeled alkyl-acylglycerols. FEBS Lett 1977; 80: 41–4.
  • Mazzari S, Finesso M. Effect of ischemia on energy metabolism and catechola-mine levels in the gerbil brain and in vitro. In: Neuhoff V, ed. Proceedings of the European Society for Neurochemistry. Pp. 310-2. Weinheim, Verlag Chemie, 1978.
  • Farroqui AA, Taylor WA Horrocks LA. Characterization and solubilization of membrane bound diacylglycerol lipases from bovine brain. Int J Biochem 1986; 18: 991–7.
  • Edgar AD, Strosznajder J Horrocks LA. Activation of ethanolamine phospholi-pase A2 in brain during ischemia. J Neurochem 1982; 39: 1111–6.
  • Arrigoni E, Averet N Cohadon F. Effects of CDP-choline on phospholipase A2 and cholinephosphotransferase activites following cryogenic brain injury in the rabbit. Biochem Pharmacol 1987; 36: 3697–700.
  • Rotrosen J, Wolkin A. Phospholipid and prostaglandin hypothesis of schizophrenia. In: Meltzer HY, ed. Psychopharmalogy: the third generation of progress. Pp. 759-64. New York, Raven Press, 1987.
  • Gattaz WF, Köllisch M, Thuren T, et al. Increased plasma phospholipase A2 activity in schizophrenic patients. Reduction after neuroleptic therapy. Biol Psychiatry 1987; 22: 421–6.
  • Gattaz WF, Hübner CK, Nevalainen TJ, et al. Increased serum phospholipase A2 activity in schizophrenia: a replicate study. Biol Psychiatry 1990; 28: 495–501.
  • Noponen M, Sanfilipo M, Samanich K, et al. Elevated PLA2 activity in schizophrenics and other psychiatric patients. Biol Psychiatry 1993; 34: 641–9.
  • Albers M, Meurer H, Märki F, et al. Phospholipase A2 activity in serum of neuroleptic psychiatric in patients. Pharmacopsychiatry 1993; 26: 94–8.
  • Merrill JE, Gerner RH, Myers LW, et al. Regulation of natural killer cell cytotoxicity by prostaglandin E in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis and other neurological diseases. Part I. Association between amount of prostaglandin produced, natural killer, and endogenous interferon. J Neuroimmunol 1983; 4: 223–37.
  • Dayer JM, Robinson DR Krane SM. Prostaglandin production by rheumatoid synovial cells: Stimulation by a factor from human mononuclear cells. J Exp Med 1977; 145: 1399–1405.
  • Krane SM, Golring SR Dayer JM. Interactions among lymphocytes, monocytes and other synovial cells in the rheumatoid synovium. Lymphokines 1982; 7: 75–136.
  • Kirkpatrick CJ, Mohr W Haferkamp C. Prostaglandins and their precursors in rheumatoid arthritis: progress and problems. Z Rheumatol 1982; 41: 89–99.
  • Bomalaski JS, Williamson PK Zurier RB. Prostaglandins and the inflammatory response. Clin Lab Invest 1983; 3: 695–717.
  • Bomalaski JS, Clark MA. Phospholipase A2 and arthritis. Arthritis Rheum 1993; 36: 190–8.
  • Brodie MJ, Hensby CN, Parks A, et al. Is prostacyclin the major proinflammatory prostanoid in joint fluids? Life Sci 1980; 27: 603–8.
  • Klickstein LB, Shapleigh C Goetzl EJ. Lipoxygenation of arachidonic acid as a source of polymorphonuclear leukocyte chemotactic factors in synovial fluid and tissue in rheumatoid arthritis and spondyloarthritis. J Clin Invest 1980; 66: 1166–70.
  • Bombardier S, Cattani P, Ciabattoni G, et al. The synovial prostaglandin system in chronic inflammatory arthritis. Differential effects of steroidal and nonsteroi-dal anti-inflammatory drugs. Br J Pharmacol 1981; 73: 893–901.
  • Robinson DR, Tashjian AH Levine L. Prostaglandin stimulated bone resorption by rheumatoid synovia: a possible mechanism for bone destruction in rheumatoid arthritis. J Clin Invest 1975; 50: 1181–8.
  • Dayer JM, Krane SM, Russell RGG, et al. Production of collagenase and prostaglandins by isolated adherent rheumatoid synovial cells. Proc Natl Acad Sci USA 1976; 73: 946–9.
  • Salmon JA, Higgs GA, Vane JR, et al. Synthesis of arachidonate cyclooxygenase products by rheumatoid synovial lining in nonproliferative organ culture. Ann Rheum Dis 1983; 42: 36–9.
  • Mochan E, Uhl J Newton R. Interleukin 1 stimulation of synovial cell plasmi-nogen activator production. J Rheumatol 1986; 13: 15–9.
  • Mochan E, Uhl J Newton R. Evidence that interleukin-1 induction of synovial cell plasminogen activator is mediated via prostaglandin E2 and cAMP. Arthrits Rheum 1986; 29: 1078–84.
  • Nolan JC, Pickett W, English K, et al. Stimulation of prostaglandin E2 synthesis in chondrocytes by a factor derived from activated macrophages. Prostaglandins 1982; 24: 443–50.
  • Stefanski E, Pruzanski W, Sternby B, et al. Purification of soluble phospholipase A2 from synovial fluid in rheumatoid arthritis. J Biochem 1986; 100: 1297–1303.
  • Pruzanski W, Bogoch E, Wloch M, et al. The role of phospholipase A2 in the physiopathology of osteoarthritis. J Rheumatol 1991; 18(Suppl. 27): 117–9.
  • Stoner CR, Reik LM, Donohue M, et al. Human group II phospholipase A2. Characterization of monoclonal antibodies and immunochemical quantitation of the protein in synovial fluid. J Immunol Methods 1991; 145: 127–36.
  • Scott DL, White SP, Browning JL, et al. Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science 1991; 254: 1007–9.
  • Pruzanski W, Scott K, Smith G, et al. Enzymatic activity and immunoreactivity of extracellular phospholipase A2 in inflammatory synovial fluids. Inflammation 1992; 16: 451–7.
  • Pruzanski W, Bogoch E, Katz A, et al. Induction of release of secretory nonpancreatic phospholipase A2 from human articular chondrocytes. J Rheumatol 1995; 22: 2114–9.
  • Vadas, P, Stefanski F Pruzanski W. Characterization of extracellular phospho-lipase A2 in rheumatoid synovial fluid. Life Sci 1985; 36: 579–83.
  • Hara S, Kudo I, Matsuda K, et al. Amino acid composition and NH2-terminal amino acid sequence of human phospholipase A2 purified from rheumatoid synovial fluid. J Biochem 1988; 104: 326–8.
  • Hara S, Kudo I, Chang HW, et al. Purification and characterization of extracellular phospholipase A2 from human synovial fluid in rheumatic arthritis. J Biochem 1989; 105: 395–9.
  • Seilhammer JJ, Plant S, Pruzanski W, et al. Multiple forms of phospholipase A2 in arthritic synovial fluid. J Biochem 1989; 106: 38–42.
  • Fawzi AA, Dobrow R Franson RC. Modulation of phospholipase A2 activity in human synovial fluid by cations. Inflammation 1987; 11: 389–400.
  • Parks TP, Lukas S Hoffman AF. Purification and characterization of a phospho-lipase A from human osteoarthritic synovial fluid. Adv Exp Med Biol 1990; 275: 55–81.
  • Levin W, Daniel RF, Stoner CR, et al. Purification of recombinant human secretory phospholipase A2 (group II) produced in long-term immobilized cell culture. Protein Expression Purification 1992; 3: 27–35.
  • Chu R, Cooke TD Aston WP. Experimental evidence for a proinflammatory effect of phospholipase A2 on joint tissues. J Rheumatol 1986; 13: 990–1.
  • Vishwanath BS, Fawzy AA Franson RC. Edema-inducing activity of phospho-lipase A2 purified from human synovial fluid and inhibition by aristolochic acid. Inflammation 1988; 12: 549–61.
  • Skamoto K, Arakawa H, Yamashita S, et al. Membrane-associated phospholi-pase A2 detected by a radioimmunoassay is a sensitive marker of inflammation in rheumatoid arthritis. Res Commun Chem Pathol Pharmacol 1992; 76: 279–85.
  • Smith GM, Ward RC, McGuigan L, et al. Measurement of human phospholipase A2 in arthritis plasma using a newly developed sandwich ELISA. Br J Rheumatol 1992; 31: 175–8.
  • Komatsubara T, Tojo H, Ying Z, et al. Serum phospholipase A2 activity and immunoreactive group II phospholipase A2 in rheumatoid arthritis. Clin Chim Acta 1995; 236: 109–12.
  • Pruzanski W, Keystone EC, Sternby B, et al. Serum phospholipase A2 correlates with disease activity in rheumatoid arthritis. J Rheumatol 1988; 15: 1351–5.
  • Michaels RM, Reading JC, Beezhold DH, et al. Serum phospholipase A2 activity in patients with rheumatoid arthritis before and after treatment with methotrex-ate, auranofin, or combination of the two. J Rheumatol 1996; 23: 226–9.
  • Lin MKS, Farewell V, Vadas P, et al. Secretory phospholipase A2 is an index of disease activity in rheumatoid arthritis. Prospective double blind study of 212 patients. J Rheumatol 1996; 23: 1162–6.
  • Bomalaski JS, Clark MA. Activation of phospholipase A2 in rheumatoid arthritis. Adv Exp Med Biol 1990; 279: 231–8.
  • Pruzanski W, Bogoch E, Stefanski E, et al. Synthesis and release of phospholi-pase A2 by unstimulated human articular chondrocytes. J Rheumatol 1990; 17: 1386–91.
  • Pruzanski W, Bogoch E, Stefanski E, et al. Enzymic activity and distribution of phospholipase A2 in human cartilage. Life Sci 1991; 48: 2457–62.
  • Vignon E, Mathieu P, Louisot P, et al. Phospholipase A2 activity in human osteoarthritic cartilage. J Rheumatol 1989; 16(Suppl. 18): 35–8.
  • Nevalainen TJ, Märki F, Kortesuo PT, et al. Synovial type (group II) phospho-lipase A2 in cartilage. J Rheumatol 1993; 20: 325–30.
  • Recklies AD, White C. Phospholipase A2 is a major component of the salt-extractable pool of matrix proteins in adult human articular cartilage. Arthritis Rheum 1991; 34: 1106–15.
  • Gilman SC. Activation of rabbit articular chondrocytes by recombinant human cytokines. J Rheumatol 1987; 14: 1002–7.
  • Gilman SC, Berner PR, Mochan E, et al. Interleukin-1 induces secretion of phospholipase A2 by human synovial cells in vitro. Arthritis Rheum 1986; 29: S42.
  • Gilman SC, Chang J, Zeigler PR, et al. Interleukin-1 activates phospholipase A2 in human synovial cells. Arthritis Rheum 1988; 31: 126–30.
  • Bomalaski JS, Baker D, Resurreccion NV, et al. Rheumatoid arthritis synovial fluid phospholipase A2 activating protein (PLAP) stimulates human neutrophil degranulation and superoxide ion production. Agents Actions 1989; 27: 425–7.
  • Bomalaski JS, Clark MA, Douglas ST, et al. Enhanced phospholipase A2 and C activities of peripheral blood polymorphonuclear leukocytes from patients with rheumatoid arthritis. Arthritis Rheum 1986; 29: 312–8.
  • Gonzales-Buritica H, Smith DM Turner RA. Characterization of soluble and cell associated phospholipase A2 from rheumatoid synovial fluid. Ann Rheum Dis 1989; 48: 557–64.
  • Dayer JM, Trentham DE, David JR, et al. Collagen stimulates the production of mononuclear cell factor and prostaglandins (PGE2) by human monocytes. Trans Assoc Am Physicians 1981; 93: 326–35.
  • Seitz M, Deichmann W, Gram N, et al. Characterization of blood mononuclear cells of rheumatoid arthritis patients. I. Depressed lymphocyte proliferation and enhanced prostanoid release from monocytes. Clin Immunol Immunpathol 1982; 25: 405–16.
  • Bomalaski JS, Clark MA Zurier RB. Enhanced phospholipase activity in peripheral monocytes from patients with rheumatoid arthritis. Arthritis Rheum 1986; 29: 312–8.
  • Van Furth R. The orgin of phagocytic cells in the joint and bone. Scand J Rheumatol 1981; 40: 13–20.
  • Meijer CJLM, Van de Putte LBA, Eulderink F, et al. Characteristics of mono-nuclear cell populations in chronically inflamed synovial membranes. J Pathol 1977; 121: 1–8.
  • Bomalaski JS, Hirata JS Clark MA. Aspirin inhibits phospholipase C. Biochem Biophys Res Commun 1986; 139: 115–21.
  • Hirata F, Schiffmann E, Venkatasubraman K, et al. A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci USA 1980; 77: 2533–6.
  • Hirata F, Del Carmine R, Nelson CA, et al. Presence of autoantibody for phospholipase inhibitory protein, lipomodulin in patients with rheumatic diseases. Proc Natl Acad Sci USA 1981; 78: 3190–4.
  • Bergers M, Verhagen DR, Jongerius M, et al. A unique phospholipase A2 in human epidermis: its physiological function and its level in certain dermatoses. J Invest Dermatol 1988; 90: 23–5.
  • Finnen MJ, Lovell CR. Purification and characterization of phospholipase A2 from human epidermis. Biochem Soc Trans 1991; 19: 91S.
  • Hammerstrom S, Hamber M, Samuelsson B, et al. Increased concentration of nonesterified arachidonic acid, 12-l-hydroxy-5,5,10,14-eicosatetraenoic acid, prostaglandin E2 and prostaglandin F2a in epidermis of psoriasis. Proc Natl Acad Sci USA 1975; 72: 5130–6.
  • Forster S, Ilderton E, Summerly R, et al. The level of phospholipase A2 activity is raised in the uninvolved epidermis of psoriasis. Br J Dermatol 1983; 108: 103–5.
  • Forster S, Ilderton E, Summerly R, et al. Epidermal phospholipase A2 activity is raised in the uninvolved skin of psoriasis. Br J Dermatol 1983; 109(Suppl.): 30–5.
  • Forster S, Ilderton E, Norris JFB, et al. Characterization and activity of phospho-lipase A2 in normal human epidermis and in lesion-free epidermis of patients with psoriasis or eczema. Br J Dermatol 1985; 112: 135–47.
  • Tucker WFG, MacNeil S, Bleehen SS, et al. Biologically active calmodulin levels are elevated in both involved and uninvolved epidermis in psoriasis. J Invest Dermatol 1984; 82: 298–9.
  • Moskowitz N, Shapiro L, Schook W, et al. Phospholipase A2 modulation by calmodulin, prostaglandins and cyclic nucleotides. Biochem Biophys Res Commun 1983; 115: 94–9.
  • Gresham A, Masferrer J, Chen X, et al. Increased synthesis of high-molecular-weight cPLA2 mediates early UV-induced PGE2 in human skin. Am J Physiol 1996; 270: C1037–50.
  • Hermansky F, Pudlak P. Albinismus associated with haemorrhagic diathesis and unusual pigmented reticular cells in bone marrow. Report of two cases with histochemical studies. Blood 1959; 4: 163–9.
  • Rendu F, Breton-Gorius J, Trugnan G, et al. Studies on a new variant of the Hermansky-Pudlak syndrome. Qualitative, ultrastructural and functional abnormalities of the platelet-dense bodies associated with a phospholipase A defect. Am J Hematol 1978; 4: 387–99.
  • Holmquist L, Carlson LA. Alpha-lecithin: cholesterol acyltransferase deficiency. Lack of both phospholipase A2 and acyltransferase activities characteristic of high density lipoprotein lecithin: cholesterol acyltransferase in fish eye disease. Acta Med Scand 1987; 222: 23–6.
  • Peterson PL, Martens M Lee CP. The treatment of mitochondrial disease. Neurology 1986; 36(Suppl.): 95.
  • Yamashita S, Yamashita J, Sakamoto K, et al. Increased expression of membrane associated phospholipase A2 shows maliganant potential of human breast cancer cells. Cancer 1993; 71: 3058–64.
  • Murata K, Egami H, Kiyohara H et al. Expression of group II phospholipase A2 in malignant and non-malignant human gastric mucosa. Br J Cancer 1993; 68: 103–11.
  • Yamashita A, Ogawa M, Abe T et al. Group II phospholipase A2 in invasive gastric cancer cell line is induced by interleukin 6. Biochem Biophys Res Commun 1994; 198: 878–84.
  • Yamashita W, Ogawa M, Sakamoto K, et al. Evaluation of serum group II phospholipase A2 levels in patients with advanced cancer. Clin Chim Acta 1994; 228: 91–9.
  • Abe T, Sakamoto K, Kamohara H, et al. Group II phospholipase A2 is increased in peritoneal and pleural effusions in patients with various types of cancer. Int J Cancer 1997; 74: 245–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.