111
Views
65
CrossRef citations to date
0
Altmetric
Research Article

Hirschsprung Disease and Other Enteric Dysganglionoses

Pages 225-273 | Published online: 29 Sep 2008

References

  • Cass D. Hirschsprung’s disease: an historical review. Prog Pediatr Surg 1986; 20: 199–214.
  • Ehrenpreis T. Hirschsprung’s disease. Chicago: Year Book Medical Publisher, 1970.
  • Holschneider AM, ed. Hirschsprung’s disease. Stuttgart: Hippokrates Verlag, 1982.
  • Madsen CM. Hirschsprung’s disease. Pp. 245. Copenhagen: Charles C Thomas, 1964.
  • Foster P, Cowan G Wrenn ELJ. Twenty-five years’ experience with Hirschsprung’s disease. J Pediatr Surg 1990; 25: 531–4.
  • Martin LW, Torres AM. Hirschsprung’s disease. Surg Clin N Am 1985; 65: 1171–80.
  • Kleinhaus S, Boley SJ, Sheran M, et al. Hirschsprung’s disease: a survey of the members of the surgical section of the American Academy of Pediatrics. J Pediatr Surg 1979; 14: 588–97.
  • Ikeda K, Goto S. Diagnosis of Hirschsprung’s disease in Japan. An analysis of 1628 patients. Ann Surg 1984; 199: 400–5.
  • Klein MD, Coran AG, Wesley JR, et al. Hirschsprung disease in the newborn. J Pediatr Surg 1984; 19: 370–4.
  • Crocker NL, Messmer JM. Adult Hirschsprung’s disease. Clin Radiol 1991; 44: 257–9.
  • Wu JS, Schoetz DJ, Coller JA, et al. Treatment of Hirschsprung’s disease in the adult. Report of five cases. Dis Colon Rectum 1995; 38: 655–9.
  • Blisard KS, Kleinman R. Hirschsprung’s disease: a clinical and pathologic overview. Hum Pathol 1986; 17: 1189–91.
  • O’Donovan AN, Habra G, Somers S, et al. Diagnosis of Hirschsprung’s disease. Am J Radiol 1996; 167: 517–20.
  • Fotter R. Imaging of constipation in infants and children. Eur Radiol 1998; 8: 248–58.
  • So HB, Becker JM, Schwartz DL, et al. Eighteen years’ experience with neonatal Hirschsprung’s disease treated by endorectal pull-through without colostomy. J Pediatr Surg 1998; 33: 673–5.
  • Agarwala S, Bhatnagar V Mitra DK. Long-term follow-up of Hirschsprung’s disease: review of early and late complications. Indian Pediatr 1996; 33: 382–6.
  • Marty TL, Seo T, Matlak ME, et al. Gastrointestinal function after surgical correction of Hirschsprung’s disease: long-term follow-up in 135 patients. J Pediatr Surg 1995; 30: 655–8.
  • Banani SA, Forootan HR Kumar PV. Intestinal neuronal dysplasia as a cause of surgical failure in Hirschsprung’s disease: a new modality for surgical management. J Pediatr Surg 1996; 31: 572–4.
  • Kobayashi H, Hirakawa H, Surana R, et al. Intestinal neuronal dysplasia is a possible cause of persistent bowel symptoms after pull-through operation for Hirschsprung disease. J Pediatr Surg 1995; 30: 253–9.
  • Swenson O, Sherman JO, Fisher JH, et al. The treatment and postoperative complications of congenital megacolon: a 25-year follow-up. Ann Surg 1975; 182: 266–73.
  • Elhalaby EA, Coran AG, Blane CE, et al. Enterocolitis associated with Hirschsprung’s disease: a clinical-radiological characterization based on 168 patients. J Pediatr Surg 1995; 30: 76–83.
  • Teitelbaum DH, Qualman SJ Caniano DA. Hirschsprung’s disease. Identification of risk factors for enterocolitis. Ann Surg 1989; 207: 240–4.
  • Turnock RR, Spitz L Strobel S. A study of mucosal gut immunity in infants who develop Hirschsprung’s-associated enterocolitis. J Pediatr Surg 1992; 27: 828–9.
  • Thomas DFM, Malone M, Fernie DS, et al. Association between Clostridium difficile and enterocolitis in Hirschsprung’s disease. Lancet 1982; 1: 78–9.
  • Quinn FMJ, Surana R Puri P. The influence of trisomy 21 on outcome in children with Hirschsprung’s disease. J Pediatr Surg 1994; 29: 781–3.
  • Aslam A, Spicer RD Corfield AP. Children with Hirschsprung’s disease have an abnormal colonic mucus defensive barrier independent of the bowel innervation status. J Pediatr Surg 1997; 32: 1206–12.
  • Badner JA, Sieber WK Garver KL, Chakravarti A. A genetic study of Hirschsprung disease. Am J Hum Genet 1990; 46: 568–80.
  • Levy M, Reynolds M. Morbidity associated with total colon Hirschsprung’s disease. J Pediatr Surg 1992; 27: 364–6.
  • Ziegler MM, Ross AJD Bishop HC. Total intestinal aganglionosis: a new technique for prolonged survival. J Pediatr Surg 1987; 22: 401–5.
  • Caniano DA, Ormsbee HSd, Polito W, et al. Total intestinal aganglionosis. J Pediatr Surg 1985; 20: 456–60.
  • Ziegler MM, Royal RE, Brandt J, et al. Extended myectomy-myotomy. A therapeutic alternative for total intestinal aganglionosis. Ann Surg 1993; 218: 504–9.
  • Zarella JT, Ingebo KR. A 3-year survivor of near-total intestinal aganglionosis. J Pediatr Surg 1993; 28: 1589–91.
  • Baumgarten HG, Holstein AF Stelzener F. Nervous elements in the human colon of Hirschsprung’s disease. Virchows Arch (Pathol Anat) 1973; 358: 113–36.
  • Howard ER, Garrett JR. Electron microscopy of myenteric nerves in Hirschsprung disease and in normal bowel. Gut 1970; 11: 1007–14.
  • Lowichik A, Weinberg AG. Eosinophilic infiltration of the enteric neural plexuses in Hirschsprung’s disease. Pediatr Pathol Lab Med 1997; 17: 885–91.
  • Garrett JR, Howard ER Nixon HH. Autonomic nerves in rectum and colon in Hirschsprung’s disease. Arch Dis Child 1969; 44: 405–17.
  • Mebis J, Penninckx F, Geboes K, et al. Neuropathology of Hirschsprung’s disease: en face study of microdissected intestine. Hepato-gastroenterol 1990; 37: 596–600.
  • Yamataka A, Kato Y, Tibboel D, et al. A lack of intestinal pacemaker (c-kit) in aganglionic bowel of patients with Hirschsprung’s disease. J Pediatr Surg 1995; 30: 441–4.
  • Vanderwinden J-M, Rumessen JJ, Liu H, et al. Interstitial cells of Cajal in human colon and in Hirschsprung’s disease. Gastroenterology 1996; 111: 901–10.
  • Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 1996; 111: 492–515.
  • Young HM, Ciampoli D Southwell BR, Newgreen DF. Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol 1996; 180: 97–107.
  • Lecoin L, Gabella G Le Douarin NM. Origin of the c-kit-positive interstitial cells of Cajal in the avian bowel. Development 1996; 122: 725–33.
  • Kluppel M, Huizinga J, Malysz J, et al. Developmental origin and kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine. Dev Dynam 1998; 211: 60–71.
  • Gherardi GJ. Pathology of the ganglionic-aganglionic junction in congenital megacolon. Arch Pathol 1960; 69: 520–8.
  • Wester T, O’Brian S Puri P. Morphometric aspects of the submucosal plexus in whole-mount preparations of normal human distal colon. J Pediatr Surg 1998; 33: 619–22.
  • Smith VV. Intestinal neuronal density in childhood: a baseline for the objective assessment of hypo- and hyperganglionosis. Pediatr Pathol 1993; 12: 225–37.
  • White MD, Langer JC. Circumferential distribution of ganglion cells in the transitional zone in Hirschsprung disease. Mod Pathol 1998; 11: 6P(abstract).
  • Moore SW, Millar AJ Cywes S. Long-term clinical, manometric, and histologi-cal evaluation of obstructive symptoms in the postoperative Hirschsprung’s patient. J Pediatr Surg 1994; 29: 106–11.
  • Moore SW, Laing D, Kaschula ROC, et al. A histological grading system for the evaluation of co-existing NID with Hirschsprung’s disease. Eur J Pediatr Surg 1994; 4: 293–7.
  • Weinberg AG. The anorectal myenteric plexus: its relation to hypoganglionosis of the colon. Am J Clin Pathol 1970; 54: 637–42.
  • Qualman SJ, Pysher T Schauer G. Hirschsprung disease: differential diagnosis and sequelae. Perspect Pediatr Pathol 1997; 20: 111–26.
  • Dobbins WO, Bill AH. Diagnosis of Hirschsprung’s disease excluded by suction rectal biopsy. N Engl J Med 1965; 272: 990–6.
  • Andrassy RJ, Isaacs H Weitzman JJ. Rectal suction biopsy for the diagnosis of Hirschsprung’s disease. Ann Surg 1981; 193: 419–24.
  • Ariel I, Vinograd I, Lernau OZ, et al. Rectal mucosal biopsy in aganglionosis and allied conditions. Hum Pathol 1983; 14: 991–5.
  • Robey SS, Kuhajda FP Yardley JH. Immunoperoxidase stains of ganglion cells and abnormal mucosal nerve proliferations in Hirschsprung disease. Hum Pathol 1988; 19: 432–7.
  • Monforte-Munoz H, Gonzales-Gomez I, Rowland JM, et al. Increased submu-cosal nerve trunk caliber in aganglionosis. A “positive” and objective finding in suction biopsies and segmental resections in Hirschsprung’s disease. Arch Pathol Lab Med 1998; 122: 721–5.
  • Adams CWM, Marples EA Trounce JR. Achalasia of the cardia and Hirschsprung’s disease: the amount and distribution of cholinesterases. Clin Sci 1960; 19: 473–81.
  • Lopez-Alonso M, Ribas J, Hernandez A, et al. Efficiency of the anorectal manometry for the diagnosis of Hirschsprung’s disease in the newborn period. Eur J Pediatr Surg 1995; 5: 160–3.
  • Boston VE, Scott JES. Anorectal manometry as a diagnostic method in the neonatal period. J Pediatr Surg 1976; 11: 9–15.
  • Tamate S, Shiokawa C, Yamada C, et al. Manometric diagnosis of Hirschsprung’s disease in the neonatal period. J Pediatr Surg 1984; 19: 285–8.
  • Aldridge RT, Cambell PE. Ganglion cell distribution in the normal rectum and anal canal: a basis for the diagnosis of Hirschsprung’s disease by anorectal biopsy. J Pediatr Surg 1968; 3: 475–89.
  • Sternberg S. Histology for pathologists. New York: Raven, 1992.
  • Ballard ET. Ultrashort segment Hirschsprung’s disease: a case report. Pediatr Pathol Lab Med 1996; 16: 319–25.
  • Venugopal S, Mancer K Shandling B. The validity of rectal biopsy in relation to morphology and distribution of ganglion cells. J Pediatr Surg 1981; 16: 433–7.
  • Puri P. Variant Hirschsprung’s disease. J Pediatr Surg 1997; 32: 149–57.
  • Meier-Ruge WA, Schmidt PC Stoss FS. Intestinal neuronal dysplasia and its morphometric evidences. Pediatr Surg Int. 1995; 10: 447–53.
  • Smith B. Pre- and postnatal development of ganglion cells of the rectum and its surgical implications. J Pediatr Surg 1967; 3: 386–91.
  • Yunis EJ, Dibbins AW Sherman FE. Rectal suction biopsy in the diagnosis of Hirschsprung’s disease. Arch Pathol Lab Med 1976; 100: 329–33.
  • Deguchi E, Iwai N, Goto Y, et al. An immunohistochemical study of neurofilament and microtubule-associated Tau protein in the enteric innervation in Hirschsprung’s disease. J Pediatr Surg 1993; 28: 886–90.
  • Hanani M, Udassin R, Ariel I, et al. A simple and rapid method for staining the enteric ganglia: application for Hirschsprung’s disease. J Pediatr Surg 1993; 28: 939–41.
  • Sarnat HB, Seagram GF, Trevenen CL, et al. A fluorochromic stain for nucleic acids to demonstrate submucosal and myenteric neurons in Hirschsprung’s disease. Am J Clin Pathol 1985; 83: 722–5.
  • Tam PKH, Owen G. An immunohistochemical study of neuronal microtubule-associated proteins in Hirschsprung’s disease. Hum Pathol 1993; 24: 424–431.
  • Meier-Ruge W, Lutterbeck PM, Herzog B, et al. Acetylcholinesterase activity in suction biopsies of the rectum in the diagnosis of Hirschsprung disease. J Pediatr Surg 1972; 7: 11–6.
  • Lake BD, Malone MT Risdon RA. Letter to the editor on the use of acetylcho-linesterase (AChE) in the diagnosis of Hirschsprung’s disease and intestinal neuronal dysplasia. Pediatr Pathol 1989; 9: 351–4.
  • Sun C-CJ, Caniano DA Hill JL. Intestinal aganglionosis: a histologic and ace-tylcholinesterase histochemical study. Pediatr Pathol 1987; 7: 421–35.
  • Tam PK. An immunochemical study with neuron-specific-enolase and substance P of human enteric innervation—the normal developmental pattern and abnormal deviations in Hirschsprung’s disease and pyloric stenosis. Gastroen-terology 1986; 90: 1901–6.
  • Yamataka A, Miyano T, Urao M, et al. Hirschsprung disease: diagnosis using monoclonal antibody 171B5. J Pediatr Surg 1992; 27: 820–22.
  • Kawana T, Nada O Ikeda K. An immunohistochemical study of glial fibrillary acidic (GFA) protein and S-100 protein in the colon affected by Hirschsprung’s disease. Dig Dis Sci 1988; 33: 1164–74.
  • Galvis DA, Yunis EJ. Comparison of neuropeptide Y, protein gene product 9.5, and acetylcholinesterase inthe diagnosis of Hirschsprung’s disease. Pediatr Pathol Lab Med 1997; 17: 413–25.
  • Le Douarin N. The neural crest. Cambridge: Cambridge University Press, 1982.
  • Kapur RP. Contemporary approaches toward understanding the pathogenesis of Hirschsprung disease. Pediatr Pathol 1993; 13: 83–100.
  • Gershon MD, Tennyson VM. Microenvironmental factors in the normal and abnormal development of the enteric nervous system. Prog Clin Biol Res 1991; 373: 257–76.
  • Waartiovaara K, Salo M Sariola H. Hirschsprung’s disease genes and the development of the enteric nervous system. Ann Med 1998; 30: 66–74.
  • Burns AJ, Le Douarin NM. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 1998; 125: 4335–47.
  • Le Douarin NM, Teillet M. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 1973; 30: 31–48.
  • Peters-van der Sanden MJH, Kirby ML, Gittenberger-de Groot A, et al. Ablation of various regions within the avian vagal neural crest has differential effects on ganglion formation in the fore-, mid- and hindgut. Dev Dynam 1993; 196: 183–94.
  • Yntema CL, Hammond WS. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 1954; 101: 515–42.
  • Epstein ML, Saffrey MJ Poulsen KT. Colonization characteristics of enteric neural crest cells: embryological aspects of Hirschsprung’s disease. J Pediatr Surg 1992; 27: 811–4.
  • Kapur RP, Yost C Palmiter RD. A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development 1992; 116: 167–75.
  • Baetge G, Gershon MD. Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev Biol 1988; 132: 189–211.
  • Baetge G, Pintar JE Gershon MD. Transiently catecholaminergic (TC) cells in the bowel of fetal rats and mice: precursors of non-catecholaminergic enteric neurons. Dev Biol 1990; 141: 353–80.
  • Webster W. Embryogenesis of the enteric ganglia in normal mice and mice that develop congenital aganglionic megacolon. J Embryol Exp Morph 1973; 30: 573–85.
  • Nishijima E, Meijers JH, Tibboel D, et al. Formation and malformation of the enteric nervous system in mice: an organ culture study. J Pediatr Surg 1990; 25: 627–31.
  • Okamoto E, Ueda T. Embryogenesis of intraneural ganglia of the gut and its relation to Hirschsprung’s disease. J Pediatr Surg 1967; 2: 437–43.
  • Pham TD, Gershon MD Rothman TP. Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J Comp Med 1991; 314: 789–98.
  • Yntema CL, Hammond WS. Experiments on the origin and development of the sacral autonomic nerves in the chick embryo. J Exp Zool 1955; 129: 375–414.
  • Pomeranz HD, Gershon MD. Colonization of the avian hindgut by cells derived from the sacral neural crest. Dev Biol 1990; 137: 378–94.
  • Pomeranz HD, Gershon MD. Colonization of the post-umbilical bowel by cells derived from the sacral neural crest: direct tracing of cell migration using an intercalating probe and replication-deficient retrovirus. Development 1991; 111: 647–55.
  • Serbedzija GN, Burgan S, Fraser SE, et al. Vital dye labelling demonstrates a sacral neural crest contribution to the enteric nervous system of chick and mouse embryos. Development 1991; 111: 857–66.
  • Pachnis V, Mankoo B Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 1993; 119: 1005–17.
  • Newgreen DF, Southwell B Hartley L, et al. Migration of enteric neural crest cells in relation to growth of the gut in avian embryos. Acta Anat 1996; 157: 105–15.
  • Epstein ML, Poulsen KT Thiboldeaux R. Formation of ganglia in the gut of the chick embryo. J Comp Neurol 1991; 307: 189–99.
  • Allan IJ, Newgreen DF. The origin and differentiation of enteric neurons in the intestine of the fowl embryo. Am J Anat 1980; 157: 137–54.
  • Meijers JHC, Peters van der Sanden M, Tibboel D, et al. Colonization characteristics of enteric neural crest cells: embryological aspects of Hirschsprung’s disease. J Pediatr Surg 1992; 27: 811–4.
  • Meijers JH, Tibboel D, van der Kamp AW, et al. A model for aganglionosis in the chicken embryo. J Pediatr Surg 1989; 24: 557–61.
  • Smith J, Cochard P Le Douarin NM. Development of choline acetyltransferase and cholinesterase activities in enteric ganglia derived from presumptive adren-ergic and cholinergic levels of the neural crest. Cell Diff 1977; 6: 199–216.
  • Newgreen DF, Jahnke I, Allan IJ, et al. Differentiation of sympathetic and enteric neurons of the fowl embryo in crafts to the chorio-allantoic membrane. Cell Tissue Res 1980; 208: 1–19.
  • Southard-Smith EM, Kos L Pavan WJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nature Genet 1998; 18: 60–4.
  • Herbarth B, Pingault V, Bondurand N, et al. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA 1998; 95: 5161–65.
  • Pingault V, Bondurand N, Kuhlbrodt K, et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nature Genet 1998; 18: 171–3.
  • Bewley CA, Gronenborn AM Clore GM. Minor groove-binding architectural proteins: structure, function, and DNA recognition. Annu Rev Biophys Biomol Struct 1998; 27: 105–31.
  • Reid K, Turnley AM, Maxwell GD, et al. Multiple roles for endothelin in melanocyte development: regulation of progenitor number and stimulation of differentiation. Development 1996; 122: 3911–19.
  • Nataf V, Lecoin L, Eichmann A, et al. Endothelin-B receptor is expressed by neural crest cells in the avian embryo. Proc Natl Acad Sci USA 1996; 93: 9645–50.
  • Sakurai T, Yanagisawa M Masaki T. Molecular characterization of endothelin receptors. Trends Pharmacol Sci 1992; 13: 103–8.
  • Goto K, Hama H Kasuya Y. Molecular pharmacology and pathophysiological significance of endothelin. Jpn J Pharmacol 1996; 72: 261–90.
  • Inoue A, Yanagisawa M, Kimura S, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acac Sci USA 1989; 86: 2863–7.
  • Yanagisawa H, Yanagisawa M, Kapur RP, et al. Dual genetic pathways of endothelin-mediated intercellular signalling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 1998; 125: 825–36.
  • Hofstra RMW, Osinga J, Tan-Sindjunata G, et al. A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome). Nature Genet 1996; 12: 445–7.
  • Hosoda K, Hammer RE, Richardson JA, et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce aganglionic megacolon associated with white-spotted coat color in mice. Cell 1994; 79: 1267–76.
  • Greenstein-Baynash A, Hosoda K, Giaid A, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of neural crest-derived melanocytes and enteric neurons: missense mutation of endothelin-3 gene in lethal spotting mice. Cell 1994; 79: 1277–85.
  • Puffenberger EG, Hosoda K, Washington SS, et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung disease. Cell 1994; 79: 1257–66.
  • Chakravarti A. Endothelin receptor-mediated signaling in Hirschsprung disease. Hum Mol Genet 1996; 5: 303–7.
  • Bidaud C, Amiel J, Pelet A, et al. Endothelin signaling pathway mutations in non-syndromic Hirschsprung disease (abstract). Am J Hum Genet 1996; 60(Suppl.): A24.
  • Kurihara Y, Kurihara H, Suzuki H, et al. Elevated blood pressure and craniofa-cial abnormalities in mice deficient in endothelin-1. Nature 1994; 368: 703–10.
  • Clouthier DE, Hosoda K, Richardson JA, et al. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 1998; 125: 813–24.
  • Takahashi M. The role of the ret proto-oncogene in human disease. Nagoya J Med Sci 1997; 60: 23–30.
  • Liu ZZ, Wada J, Kumar A, et al. Comparative role of phosphotyrosine kinase domains of c-ros and c-ret in metanephric development with respect to growth factors and matrix morphogens. Dev Biol 1996; 178: 133–48.
  • Tsuzuki T, Takahashi M, Asai N, et al. Spatial and temporal expresion of the ret-proto-oncogene product in embryonic, infant, and adult rat tissues. Oncogene 1995; 10: 191–8.
  • Durbec PL, Larsson-Blomberg LB, Schuchardt A, et al. Common origin and developmental dependence on c-ret subsets of enteric and sympathetic neuroblasts. Development 1996; 122: 349–58.
  • Lin L-FH, Doherty DH, Lile JD, et al. GDNF: A glial cell line-derived neu-rotrophic factor for midbrain dopaminergic neurons. Science 1993; 260: 1130–2.
  • Kotzbauer PT, Lampe PA, Heuckeroth RO, et al. Neurturin, a relative of glial-cell-line derived neurotrophic factor. Nature 1996; 384: 467–70.
  • Klein RD, Sherman D, Ho W-H, et al. A GPI-linked protein that interacts with Ret to form a candidate neurturin receptor. Nature 1997; 387: 717–21.
  • Buj-Bello A, Adu J, Pinon LGP, et al. Neurturin responsiveness requires a GPI-linked receptor and the Ret receptor tyrosine kinase. Nature 1997; 387: 721–4.
  • Baloh RH, Tansey MG, Golden JP, et al. TrnR2, a novel receptor that mediates neurturin and GNDF signaling through Ret. Neuron 1997; 18: 793–802.
  • Sanicola M, Hession C, Worley D, et al. Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins. Proc Natl Acad Sci USA 1997; 94: 6238–43.
  • Naveilhan P, Baudet C, Mikaels A, et al. Expression and regulation of GFRa 3, a glial cell line-derived neurotrophic factor family receptor. Proc Natl Acad Sci USA 1998; 95: 1295–300.
  • Worby CA, Vega QC, Chao HH, et al. Identification and characterization of GFRa3, a novel co-receptor belonging to the glial cell-line derived neurotrophic factor family. J Biol Chem 1998; 273: 3502–8.
  • Thompson J, Doxakis E, Pinon LGP, et al. GFRa4, a new GDNF family receptor. Mol Cell Neurosci 1998; 11: 117–26.
  • Jing SQ, Wen DZ, Yu YB, et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 1996; 85: 1113–24.
  • Treanor J, Goodman L, de Sauvage F, et al. Characterization of a multicompo-nent receptor for GDNF. Nature 1996; 382: 80–3.
  • Hellmich HL, Kos L, Cho ES, et al. Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentation and epithelial-mesenchymal interactions. Mech Dev 1996; 54: 95–105.
  • Suvanto P, Hiltunen JO, Arumae U, et al. Localization of glial cell line-derived neurotrophic factor (GDNF) mRNA in embryonic rat by in situ hybridization. Eur J Neurosci 1996; 8: 816–22.
  • Moore MW, Klein RD, Farinas I, et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 1996; 382: 76–9.
  • Sanchez MP, Silos-Santiago I, Frisen J, et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996; 382: 70–3.
  • Pichel JG, Shen L, Sheng HZ, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996; 382: 73–6.
  • Cacalano G, Farinas I, Wang L-C, et al. GFRa1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 1998; 21: 53–62.
  • Enomoto H, Araki T, Jackman A, et al. GFRa1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 1998; 21: 317–24.
  • Passarge E. Wither polygenic inheritance: mapping Hirschsprung disease. Nature Genet 1993; 4: 325–6.
  • Robertson K, Mason I Hall S. Hirschsprung ‘s disease: genetic mutations in mice and men. Gut 1997; 41: 436–41.
  • Kusafuka T, Wang Y Puri P. Mutation analysis of the RET, the endothelin-B receptor, and the endothelin-3 genes in sporadic cases of Hirschsprung’s disease. J Pediatr Surg 1997; 32: 501–4.
  • Seri M, Yin L, Barone V, et al. Frequency of RET mutations in long- and short-segment Hirschsprung disease. Hum Mutat 1997; 9: 243–9.
  • Eng C, Mulligan LM. Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumors, and Hirschsprung disease. Hum Mutat 1997; 9: 97–109.
  • Luo Y, Ceccherini I, Pasini B, et al. Close linkage with the RET proto-oncogene and boundaries of deletion mutations in autosomal dominant Hirschsprung disease. Hum Mol Genet 1993; 2: 1803–8.
  • Edery P, Pelet A, Mulligan LM, et al. Long segment and short segment familial Hirschsprung’s disease: variable clinical expression at the RET locus. J Med Genet 1994; 31: 602–6.
  • Pavan WJ, Mac S, Cheng M, et al. Quantitative trait loci that modify the severity of spotting in piebald mice. Genome Res 1995; 5: 29–41.
  • Puffenberger EG, Kauffman ER, Bolk S, et al. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum Mol Genet 1994.
  • Bidaud C, Salomon R, Van Camp G, et al. Endothelin-3 gene mutations in isolated and syndromic Hirschsprung disease. Eur J Hum Genet 1997; 5: 247–51.
  • Angrist M, Bolk S, Halushka M, et al. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nature Genet 1996; 14: 341–4.
  • Angrist M, Jing S, Bolk S, et al. Human GFRA1: cloning, mapping, genomic structure, and evaluation as a candidate gene for Hirschsprung disease. Genomics 1998; 48: 354–62.
  • Ivanchuk SM, Myers SM, Eng C, et al. De novo mutation of GDNF, ligand for the RET/GDNF-alpha receptor complex, in Hirschsprung disease. Hum Mol Genet 1996; 5: 2023–6.
  • Salomon R, Attie T, Pelet A, et al. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nature Genet 1996; 14: 345–7.
  • Amiel J, Attie T, Jan D, et al. Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung disease. Hum Mol Genet 1996; 5: 355–7.
  • Martucciello G. Hirschsprung’s disease as a neurocristopathy. Pediatr Surg Int 1997; 12: 2–10.
  • Hofstra RMW, Osinga J, Buys CHCM. Mutations in Hirschsprung disease: when does a mutation contribute to the phenotype. Eur J Hum Genet 1997; 5: 180–5.
  • Sarioglu A, Tanyel FC, Buyukpamukcu N, et al. Hirschsprung-associated congenital anomalies. Eur J Pediatr Surg 1997; 7: 331–7.
  • Cass D. Aganglionosis: associated anomalies. J Paediatr Child Health 1990; 26: 351–4.
  • Passarge E. The genetics of Hirschsprung’s disease. N Engl J Med 1967; 276: 138–42.
  • Ryan ET, Ecker JL, Christakis NA, et al. Hirschsprung’s disease: Associated abnormalities and demography. J Pediatr Surg 1992; 27: 76–81.
  • Bolande RP. The neurocristopathies. A unifying concept of disease arising in neural crest maldevelopment. Hum Pathol 1974; 5: 409–29.
  • Bolande RP. Neurocristopathy: its growth and development in 20 years. Pediatr Pathol Lab Med 1997; 17: 1–25.
  • Nakamura T. Genetic markers and animal models of neurocristopathy. Histol Histopathol 1995; 10: 747–59.
  • Read AP, Newton VE. Waardenburg syndrome. J Med Genet 1997; 34: 656–65.
  • Edery P, Attie T, Amiel J, et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nature Genet 1996; 12: 442–4.
  • Deol MS. The neural crest and the acoustic ganglion. J Embryol Exp Morphol 1967; 17: 533–41.
  • Lane PW. Association of megacolon with two recessive spotting genes in the mouse. J Hered 1966; 57: 28–31.
  • Attie T, Till M, Pelet A, et al. Exclusion of RET and Pax 3 loci in Waardenburg-Hirschsprung disease. J Med Genet 1995; 32: 312–13.
  • Amiel J, Salomon R, Attie T, et al. Mutations of the RET-GDNF signaling pathway in Ondines’s curse. Am J Hum Genet 1998; 62: 715–7.
  • Bolk S, Angrist M, Xie J, et al. Endothelin-3 frameshift mutation in congenital central hypoventilation syndrome. Nature Genet 1996; 13: 395–6.
  • Bolk S, Angrist M, Schwartz S, et al. Congenital central hypoventilation syndrome: mutation analysis of the receptor tyrosine kinase RET. Am J Med Genet 1996; 63: 603–9.
  • Sakai T, Wakizaka A, Matsuda H, et al. Point mutation in exon 12 of the receptor tyrosine kinase proto-oncogene RET in Ondine-Hirschsprung syndrome. Pediatrics 1998; 101: 924–6.
  • Burton MD, Kawashima A, Brayer JA, et al. RET proto-oncogene is important for the development of the respiratory CO2 sensitivity. J Auton Nerv Syst 1997; 63: 137–43.
  • Folgering H, Kuyper F Kille JF. Primary alveolar hypoventilation (Ondine’s curse syndrome) in an infant without external arcuate nucleus: case report. Bull Eur Physiopath Respir 1979; 15: 659–65.
  • Kinney HC, Filiano JJ, Sleeper LA, et al. Decreased muscarinic receptor binding in the arcuate nucleus in sudden infant death syndrome. Science 1995; 269: 1446–50.
  • Verdy M, et al. Hirschsprung’s disease in a family with multiple endocrine neoplasia type 2. J Pediatr Gastroenterol Nutr 1982; 1: 603–7.
  • Decker RA. Long-term follow-up of a large North American kindred with multiple endocrine neoplasia type 2A. Surgery 1992; 112: 1066–72.
  • Wick MJ. Clinical and molecular aspects of multiple endocrine neoplasia. Clin Lab Med 1997; 17: 39–57.
  • Santoro M, Melillo RM, Carlomagno F, et al. Molecular biology of the MEN2 gene. J Intern Med 1998; 243: 505–8.
  • Forster-Gibson CJ, Mulligan LM. Multiple endocrine neoplasia type 2. Eur J Cancer 1994; 30A: 1969–74.
  • Borst MJ, VanCamp JM, Peacock ML, et al. Mutational analysis of multiple endocrine neoplasia type 2A associated with Hirschsprung’s disease. Surgery 1995; 117: 386–91.
  • Peretz H, Luboshitsky R, Baron E, et al. Cys618Arg mutation in the RET proto-oncogene associated with familial medullary thyroid carcinoma and maternally transmitted Hirschsprung disease suggesting a role for imprinting. Hum Mutat 1997; 10: 155–9.
  • Chappuis-Flament S, Pasini A, De Vita G, et al. Dual effect on the RET receptor of MEN2 mutations affecting specific extracytoplasmic cysteines. Oncogene 1998; 17: 2851–61.
  • Sijmons RH, Hofstra RM, Wijburg FA, et al. Oncological implications of RET gene mutations in Hirschsprung’s disease. Gut 1998; 43: 542–7.
  • Levy J. Gastrointestinal concerns. In: Pueschel SM, Pueschel JK, eds. Biomedi-cal concerns in persons with Down syndrome. pp. 119—25. Baltimore: Paul H. Brookes Publishing Co., 1992.
  • Kim EH, Boutwell WC. Smith-Lemli-Opitz syndrome and Hirschsprung disease. J Pediatr 1985; 106: 861.
  • Lipson A, Hayes A. Smith-Lemli-Opitz syndrome and Hirschsprung disease. J Pediatr 1984; 105: 177.
  • Patterson K, Toomey KE Chandra RS. Hirschsprung disease in a 46, XY phenotypic girl with Smith-Lemli-Opitz syndrome. J Pediatr 1983; 103: 425–7.
  • Curry CJR, Carey JC Hollan JS. Smith-Lemli-Opitz syndrome-type II: multiple congenital anomalies with male pseudohermaphroditism and frequent early lethality. Am J Med Genet 1987; 26: 45–57.
  • Lowry RB, Miller JR, MacLean JR. Micrognathia, polydactyly, and cleft palate. J Pediatr 1968; 72: 859–61.
  • Wassif CA, Maslen C, Kachilele-Linjewile S, et al. Mutations in the human sterol D7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome. Am J Hum Genet 1998; 63: 55–62.
  • Bodian M, Carter CO. A family study of Hirschsprung’s disease. Ann Hum Genet 1963; 26: 261–77.
  • Fransen E, Van Camp G, Vits L, et al. L1-associated diseases: clinical geneticists divide, molecular geneticists unite. Hum Mol Genet 1997; 6: 1625–32.
  • Rosenthal A, Joulet M Kenwrick S. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nature Genet 1992; 2: 107–112.
  • Jouet M, Rosenthal A, Armstrong G, et al. X-linked spastic paraplegia (SPG1), MASA syndrome, and X-linked hydrocephalus result from mutations in the L1 gene. Nature Genet 1994; 7: 402–7.
  • Kaplan P. X linked recessive inheritance of agenesis of the corpus callosum. J Med Genet 1983; 20: 122–4.
  • Okamoto N, Wada Y Goto M. Hydrocephalus and Hirschsprung’s disease in a patient with a mutation of L1CAM. J Med Genet 1997; 34: 670–1.
  • Ikawa H, Kawano H, Takeda Y et al. Impaired expression of neural cell adhesion molecule L1 in the extrinsic nerve fibers in Hirschsprung’s disease. J Pediatr Surg 1997; 32: 542–5.
  • Auricchio A, Brancolini V, Casari G, et al. The locus for a novel syndromic form of neuronal intestinal pseudoobstruction maps to Xq28. Am J Hum Genet 1996; 58: 743–8.
  • Dahme M, Bartsch U, Martini R, et al. Disruption of the mouse L1 gene leads to malformations of the nervous system in mice. Nature Genet 1997; 17: 346–9.
  • Rothman TP, Gershon MD. Regionally defective colonization of the terminal bowel by the precursors of enteric neurons in lethal spotted mutant mice. Neuroscience 1984; 12: 1293–11.
  • Rothman TP, Goldowitz D Gershon MD. Inhibition of migration of neural crest-derived cells by the abnormal mesenchyme of the presumptive aganglionic bowel of ls/ls mice: analysis with aggregation and interspecies chimeras. Dev Biol 1993; 159: 559–73.
  • Kapur RP, Yost C Palmiter RD. Aggregation chimeras demonstrate that the primary defect responsible for aganglionic megacolon in lethal spotted mice is not neuroblast autonomous. Development 1993; 117: 993–9.
  • Lahav R, Ziller C, Dupin E, et al. Endothelin 3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc Natl Acad Sci USA 1996; 93: 3892–7.
  • Hearn CJ, Murphy M Newgreen D. GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev Biol 1998; 197: 93–105.
  • Gershon MD. Genes and lineages in the formation of the enteric nervous system. Curr Opin Neurobiol 1997; 7: 101–9.
  • Pomeranz HD, Sherman DL, Smalheiser NR, et al. Microenvironmental factors in the normal and abnormal development of the enteric nervous system. Prog Clin Biol Res 1991; 373: 257–76.
  • Tennyson VM, Payette RF, Rothman TP, et al. Distribution of hyaluronic acid and chondroitin sufate proteoglycans in the presumptive aganglionic terminal bowel of ls/ls fetal mice: an ultrastructural analysis. J Comp Neurol 1990; 291: 345–62.
  • Tennyson VM, Pham TD, Rothman TP, et al. Abnormalities of smooth muscle, basal laminae, and nerves in the aganglionic segments of the bowel of lethal spotted mutant mice. Anat Rec 1986; 215: 267–81.
  • Parikh DH, Tam PKH, Lloyd DA, et al. Quantitative and qualitative analysis of the extracellular matrix protein, laminin, in Hirschsprung’s disease. J Pediatr Surg 1992; 27: 991–6.
  • Pomeranz HD, Sherman DL, Smalheiser NR, et al. Expression of a neurally related laminin binding protein by neural crest-derived cells that colonize the gut: relationship to the formation of enteric ganglia. J Comp Neurol 1991; 313: 625–42.
  • Howard MJ, Gershon MD. Development of LBP110 expression by neural crest-derived precursors: migration and differentiation potential in ls/ls mutant mice. J Neurobiol 1998; 35: 341–54.
  • Chalazonitis A, Tennyson VM, Kibbey MC, et al. The a1 subunit of laminin-1 promotes the development of neurons by interacting with LBP110 expressed by neural crest-derived cells immunoselected from the fetal mouse gut. J Neurobiol 1997; 33: 118–38.
  • Pomeranz HD, Rothman TP, Chalazonitis A, et al. Neural crest-derived cells isolated from the gut by immunoselection develop neuronal and glial phenotypes when cultured on laminin. Dev Biol 1993; 156: 341–61.
  • Yoshinaga M, Chijiiwa Y, Misawa T, et al. Endothelin-B receptor on guinea pig small intestinal smooth muscle cells. Am J Physiol 1992; 262: G308–11.
  • Okabe H, Chijiiwa Y, Nakamura K, et al. Two endothelin receptors (ETA and ETB) expressed on circular smooth muscle cells of guinea pig cecum. Gastro-enterology 1995; 108: 51–7.
  • Gariepy CE, Cass DT Yanagisawa M. Null mutation of endothelin receptor type B gene in spotting lethal rats causes aganglionic megacolon and white coat color. Proc Natl Acad Sci USA 1996; 93: 867–72.
  • Rice J, Doggett B, Sweetser DA, et al. Targeted expression of preproendothelin-3 prevents aganglionosis and piebaldism in lethal spotted mice. submitted.
  • Pavan WJ, Tilghman SM. Piebald lethal (sl) acts early to disrupt the development of neural-crest derived melanocytes. Proc Natl Acad Sci USA 1994; 91: 7159–63.
  • Kapur RP. Early death of neural crest cells is responsible for total enteric aganglionosis in Sox10Dom/ Sox10Dom mouse embryos. submitted.
  • Lane PW, Liu HM. Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J Hered 1984; 75: 435–9.
  • Kapur RP, Livingston R, Doggett B, et al. Abnormal microenvironmental signals underlie intestinal aganglionosis in Dominant megacolon mutant mice. Dev Biol 1996; 174: 360–9.
  • Karaosmanoglu T, Aygun B, Wade PR, et al. Regional differences in the number of neurons in the myenteric plexus of guinea pig small intestine and colon: an evaluation of markers used to count neurons. Anat Rec 1996; 244: 470–80.
  • Krammer HJ, Karahan ST, Sigge W, et al. Immunohistochemistry of markers of the enteric nervous system in whole-mount preparations of the human colon. Eur J Pediatr Surg 1994; 4: 274–8.
  • Krishnamurthy S, Heng Y Schuffler MD. Chronic intestinal pseudo-obstruction in infants and children caused by diverse abnormalities of the myenteric plexus. Gastroenterology 1993; 104: 1398–1408.
  • Schuffler MD, Bird TD, Sumi M, et al. A familial neuronal disease presenting as intestinal pseudoobstruction. Gastroenterology 1978; 75: 889–98.
  • Navarro J, Sonsino E, Boige N, et al. Visceral neuropathies responsible for chronic intestinal pseudo-obstruction syndrome in pediatric practice: analysis of 26 cases. J Pediatr Gastroenterol Nutr 1990; 11: 221–8.
  • Yamataka A, Fujiwara T, Nishiye H, et al. Localization of intestinal pacemaker cells and synapses in the muscle layers of a patient with colonic hypoganglionosis. J Pediatr Surg 1996; 31: 584–7.
  • Shen L, Mayeli T, Pichel JG, et al. GDNF haplo-insufficiency in mutant mice: from constipation to intestinal obstruction (abstract). Keystone Symposium on Molecular and Cellular Biology: Enteric Nervous System; Santa Fe, New Mexico 1998.
  • Stannard VA, Fowler C, Robinson L, et al. Familial Hirschsprung’s disease: report of autosomal dominant and probable recessive X-linked kindreds. J Pediatr Surg 1991; 26: 591–4.
  • Krishnamurthy S, Schuffler MD, Rohrmann CA, et al. Severe idiopathic constipation is associated with a distinctive abnormality of the colonic myenteric plexus. Gastroenterology 1985; 88: 26–34.
  • Blaugrund E, Pham TD, Tennyson VM, et al. Distinct subpopulations of enteric neuronal progenitors defined by time and place of development, sympathoadrenal lineage markers and Mash-1-dependence. Development 1996; 122: 309–20.
  • Lo L, Anderson DJ. Postmigratory neural crest cells expressing c-RET display restricted developmental and proliferative capacities. Neuron 1995; 15: 527–39.
  • Guillemot F, Lo L-C, Johnson JE, et al. Mammalian achaete-scute homolog-1 is required for the early development of olfactory and autonomic neurons. Cell 1993; 75: 463–76.
  • Chalazonitis A, Rothman T, Chen J, et al. Promotion of the development of enteric neurons and glia by neuropoietic cytokines: interactions with neurotrophin-3. Dev Biol 1998; 198: 343–65.
  • Stemple DL, Mahanthappa NK. Neural stem cells are blasting off. Neuron 1997; 18: 1–4.
  • Sommer L, Shah N, Rao M, et al. The cellular function of MASH1 in autonomic neurogenesis. Neuron 1995; 15: 1245–58.
  • Lo L, Tiveron M-C Anderson DJ. MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 1998; 125: 609–20.
  • Pattyn A, Morin X, Cremer H, et al. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 1997; 124: 4065–75.
  • Hirsch M-R, Tiveron M-C, Guillemot F, et al. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 1998; 125: 599–608.
  • Yunis E, Sieber WK, Akers DR. Does zonal aganglionosis really exist? Report of a rare variety of Hirschsprung’s disease and review of the literature. Pediatr Pathol 1983; 1: 33–49.
  • Weinberg AG. Hirschsprung’s disease — a pathologist’s view. Perspect Pediatr Pathol 1975; 2: 207–39.
  • Sprinz A, Cohen A Heaton L. Hirschsprung’s disease with skip area. Ann Surg 1961; 146: 143–5.
  • Taguchi T, Tanaka K, Ikeda K, et al. Double zonal aganglionosis with a skipped oligoganglionic ascending colon. Z Kinderchir 1983; 38: 312–5.
  • Touloukian RJ, Duncan R. Acquired aganglionic megacolon in a premature infant: report of a case. Pediatrics 1975; 56: 459–62.
  • Smith VV, Gregson N, Foggensteiner L, et al. Acquired intestinal aganglionosis and circulating autoantibodies without neoplasia or other neural involvement. Gastroenterology 1997; 112: 1366–72.
  • Dimmick JE, Bove KE. Cytomegalovirus infection of the bowel in infancy: pathogenic and diagnostic significance. Pediatr Pathol 1984; 2: 95–102.
  • Hershlag A, Ariel I, Lernau OI, et al. Cytomegalic inclusion virus and Hirschsprung’s disease. Z Kinderchir 1984; 39: 253–4.
  • Tam PKH, Quint WGV Van Velzen D. Hirschsprung’s disease: a viral etiology? Pediatr Pathol 1992; 12: 807–10.
  • Anderson KD, Chandra R. Segmental aganglionosis of the appendix. J Pediatr Surg 1986; 21: 852–4.
  • Kapur RP. Hypothesis: pathogenesis of skip areas in long-segment Hirschsprung disease. Pediatr Pathol 1995; 15: 23–37.
  • Shih T-Y, Chuang J-H Huang C-C. Aganglionosis of the appendix: is it reliable for diagnosis of total colonic aganglionosis? J Pediatr Gastroenterol Nutr 1998; 27: 353–4.
  • Martin LW, Buchino JJ, LeCoultre C, et al. Hirschsprung’s disease with skip area (segmental aganglionosis). J Pediatr Surg 1979; 14: 686–7.
  • Coventry S, Yost C, Palmiter RD, et al. Migration of ganglion cell precursors in the ileoceca of normal and lethal spotted embryos, a murine model for Hirschsprung disease. Lab Invest 1994; 71: 82–93.
  • Neilson IR, Yazbeck S. Ultrashort Hirschsprung’s disease: myth or reality. J Pediatr Surg 1990; 25: 1135–8.
  • Davidson M, Bauer CH. Studies of distal colonic motility in children. IV. Achalasia of the distal rectal segment despite presence of ganglia in the myen-teric plexuses of this area. Pediatrics 1958; 21: 746–61.
  • Kapur RP. Hirschsprung disease: pathology and molecular pathogenesis. Adv Pathol Lab Med 1995; 8: 201–21.
  • Stebbing JF. Nitric oxide synthase neurones and neuromuscular behavior of the anorectum. Ann R Coll Surg Eng 1998; 80: 137–45.
  • Buntzen S, Nordgren S, Hult’en L, et al. The role of nitric oxide in the acetyl-choline-induced relaxation of the feline internal anal sphincter, in vitro. Scand J Gastroenterol 1996; 31: 1189–94.
  • Moore BG, Singaram C, Eckhoff DE, et al. Immunohistochemical evaluations of ultrashort-segment Hirschsprung’s disease. Report of three cases. Dis Colon Rectum 1996; 39: 817–22.
  • Krebs C, Acuna R. Transanal internal sphincter myomectomy: indications, operative procedure and results. Eur J Pediatr Surg 1994; 4: 151–7.
  • Meier-Ruge W. Ueber ein Erkarakungsbild des Kolons mit Hirschsprung Symptomatik. Verh Dtsch Ges Pathol 1971; 55: 506–11.
  • Schofield DE, Yunis EJ. What is intestinal neuronal dysplasia? Pathol Ann 1992; 27: 249–62.
  • Csury L, Pena A. Intestinal neuronal dysplasia: myth or reality? Literature review. Pediatr Surg Int 1995; 10: 441–6.
  • Lake BD. Intestinal neuronal dysplasia. Why does it only occur in parts of Europe? Virchows Arch 1995; 426: 537–9.
  • Cord-Udy CL, Smith VV, Ahmed S, et al. An evaluation of the role of suction rectal biopsy in the diagnosis of intestinal neuronal dysplasia. J Pediatr Gastroenterol Nutr 1997; 24: 1–6.
  • Sacher P, Briner J Hanimann B. Is neuronal intestinal dysplasia (NID) a primary disease of a secondary phenomenon. Eur J Pediatr Surg 1993; 3: 228–30.
  • Berry CL. Intestinal neuronal dysplasia: does it exist or has it been invented? Virchows Arch [A] 1993; 422: 183–4.
  • Meier-Ruge W. Epidemiology of congenital innervation defects of the distal colon. Virchows Arch [A] 1992; 420: 171–7.
  • Simpser E, Kahn E, Kenigsberg K, et al. Neuronal intestinal dysplasia: quantitative diagnostic criteria and clinical management. J Pediatr Gastroenterol Nutr 1991; 12: 61–4.
  • Kobayashi H, Hirakawa H Puri P. What are the diagnostic criteria for intestinal neuronal dysplasia? Pediatr Surg Int 1995; 10: 459–64.
  • Meier-Ruge WA, Bronnimann PB, Gambassi F, et al. Histopathological criteria for intestinal neuronal dysplasia of the submucosal plexus (type B). Virchows Arch 1995; 426: 549–56.
  • Borchard F, Meier-Ruge W, Wiebecke B, et al. Innervationsstorungen des Dickdarms — Klassifikation und Diagnostik. Pathologe 1991; 12: 171–4.
  • Lumb PD, Moore L. Are giant ganglia a reliable marker of intestinal neuronal dysplasia type B (IND B)? Virchows Arch 1998; 432: 103–6.
  • Lumb PD, Moore L. Back to the drawing board. Intestinal neuronal dysplasia type B: not a histological entity yet. Virchows Arch 1998; 432: 99–102.
  • Shirasawa S, Yunker AMR, Roth KA, et al. Enx (Hox11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon. Nature Med 1997; 3: 646–50.
  • Hatano M, Aoki T, Dezawa M, et al. A novel pathogenesis of megacolon in Ncx/ Hox11L.1 deficient mice. J Clin Invest 1997; 100: 795–801.
  • El-Halaby E, Coran AG. Hirschsprung’s disease associated with Ondine’s curse: report of three cases and review of the literature. J Pediatr Surg 1994; 29: 530–5.
  • Stovroff M, Dykes F Teague WG. The complete spectrum of neurocristopathy in an infant with congenital hypoventilation, Hirschsprung’s disease, and neu-roblastoma. J Pediatr Surg 1995; 30: 1218–21.
  • Verloes A, Elmer C, Lacombe D, et al. Ondine-Hirschsprung syndrome (Haddad syndrome). Further delineation in two cases and review of the literature. Eur J Pediatr 1993; 38: 87–9.
  • Le Merrer M, Briard ML, Girard S, et al. Lethal acrodysgenital dwarfism: a severe lethal condition resembling Smith-Lemli-Opitz syndrome. J Med Genet 1988; 25: 88–95.
  • Muller W, Peter HH, Wilken M, et al. The DiGeorge syndrome. I. Clinical evaluation and course of partial and complete forms of the syndrome. Eur J Pediatr 1988; 147: 496–502.
  • Reish O, Gorlin RJ, Hordinsky M, et al. Brain anomalies, retardation of mentality and growth, ectodermal dysplasia, skeletal malformations, Hirschsprung disease, ear deformity and deafness, eye hypoplasia, cleft palate, cryptorchid-ism, and kidney dysplasia/hypoplasia (BRESEK/BRESHECK): new X-linked syndrome? Am J Med Genet 1997; 68: 386–90.
  • Nowaczyk MJM, James AG, Superina R, et al. Hirschsprung disease, postaxial polydactyly, and atrial septal defect. Am J Med Genet 1997; 68: 74–5.
  • Laurence KM, Prosser R, Rocker I, et al. Hirschsprung’s disease associated with congenital heart malformations, broad big toes, and ulnar polydactyly in sibs: a case for fetoscopy. J Med Genet 1975; 12: 334–8.
  • Kumasaka K, Clarren SK. Familial patterns of central nervous system dysfunction, growth deficiency, facial clefts and congenital megacolon: a specific disorder? Am J Med Genet 1988; 31: 465–6.
  • Bruroni D, Joffe R, Farah LMS, et al. Syndrome identification case report 92: Hirschsprung megacolon, cleft lip and palate, mental retardation, and minor congenital malformations. J Clin Dysmorphol 1983; 1: 20–2.
  • Yomo A, Taira T Kondo I. Goldberg-Shprintzen syndrome: Hirschsprung disease, hypotonia, and ptosis in two sibs. Am J Med Genet 1991; 41: 188–91.
  • Goldberg RB, Shprintzen RJ. Hirschsprung megacolon and cleft palate in two sibs. J Craniofac Genet Dev Biol 1981; 1: 185–9.
  • Ohnuma K, Imaizumi K, Masuno M, et al. Magnetic resonance imaging abnormalities of the brain in Goldberg-Shprintzen syndrome (Hirschsprung disease, microcephaly, and iris coloboma). Am J Med Genet 1997; 73: 230–2.
  • Turkdogan-Sozuer D, Ozek MM, Sehiralti V, et al. Hemimegalencephaly and Hirschsprung’s disease: a unique association. Pediatr Neurol 1998; 18: 452–5.
  • Mandel H, Brik R, Ludatscher R, et al. Congenital muscular dystrophy with neurological abnormalities: association with Hirschsprung disease. Am J Med Genet 1993; 47: 37–40.
  • Hassinger DD, Mulvihill JJ Chandler JB. Aarskog’s syndrome with Hirschsprung’s disease, midgut malrotation, and dental anomalies. J Med Genet 1980; 17: 235–8.
  • Shockett E, Telok HA. Aganglionic megacolon, pheochromocytoma, megalureter, and neurofibroma: co-occurrence of several neural abnormalities. Am J Dis Child 1957; 94: 185–91.
  • Chatten J, Voorhess ML. Familial neuroblastoma. N Engl J Med 1967; 277: 1230–6.
  • Gaisie G, Kook SO Young LW. Coexistent neuroblastoma and Hirschsprung’s disease — another manifestation of neurocristopathy. Pediatr Radiol 1979; 8: 161–3.
  • Gaisie G. Hirschsprung’s disease, Ondine’s curse, and neuroblastoma — manifestations of neurocristopathy. Pediatr Radiol 1989; 20: 136.
  • Tennyson VM, Gershon MD, Sherman DL, et al. Structural abnormalities associated with congenital megacolon in transgenic mice that overexpress the Hoxa-4 gene. Dev Dynanl 1993; 198: 28–53.
  • Lipman NS, Wardrip CL, Yuan C-S, et al. Familial megacecum and colon in the rat: a new model of gastrointestinal neuromuscular dysfunction. Lab Anim Sci 1998; 48: 243–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.