3,998
Views
252
CrossRef citations to date
0
Altmetric
Original Articles

The Bioactivity and Toxicological Actions of Carvacrol

, &

REFERENCES

  • Aeschbach, R., Loliger, J., Scott, B.C., Murcia, A., Butler, J., Halliwell, B. and Aruoma, O.I. (1994). Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 32:31–36.
  • Ahmad, A., Khan, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L.A. and Manzoor, N. (2011). Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect. Dis. 30:41–50.
  • Alma, M.H., Mavi, A., Yildirim, A., Digrak, M. and Hirata, T. (2003). Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biol. Pharm. Bull. 26:1725–1729.
  • Andersen, A. (2006). Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. Int. J. Toxicol. 25(Suppl 1):29–127.
  • Aristatile, B., Al-Numair, K.S., Al-Assaf, A.H. and Pugalendi, K.V. (2011). Pharmacological effect of carvacrol on D: -galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis. J. Nat. Med. 65:568–577.
  • Aristatile, B., Al-Numair, K.S., Veeramani, C. and Pugalendi, K.V. (2009a). Antihyperlipidemic effect of carvacrol on D-galactosamine-induced hepatotoxic rats. J. Basic. Clin. Physiol. Pharmacol. 20:15–27.
  • Aristatile, B., Al-Numair, K.S., Veeramani, C. and Pugalendi, K.V. (2009b). Effect of carvacrol on hepatic marker enzymes and antioxidant status in D-galactosamine-induced hepatotoxicity in rats. Fundam. Clin. Pharmacol. 23:757–765.
  • Arunasree, K.M. (2010). Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine 17:581–588.
  • Austgulen, L.T., Solheim, E. and Scheline, R.R. (1987). Metabolism in rats of p-cymene derivatives: carvacrol and thymol. Pharmacol. Toxicol. 61:98–102.
  • Aydin, S., Basaran, A.A. and Basaran, N. (2005a). The effects of thyme volatiles on the induction of DNA damage by the heterocyclic amine IQ and mitomycin C. Mutat. Res. 581:43–53.
  • Aydin, S., Basaran, A.A. and Basaran, N. (2005b). Modulating effects of thyme and its major ingredients on oxidative DNA damage in human lymphocytes. J. Agric. Food Chem. 53:1299–1305.
  • Barrett-Bee, K. and Dixon, G. (1995). Ergosterol biosynthesis inhibition: a target for antifungal agents. Acta. Biochim. Pol. 42:465–479.
  • Bimczok, D., Rau, H., Sewekow, E., Janczyk, P., Souffrant, W.B. and Rothkotter, H.J. (2008). Influence of carvacrol on proliferation and survival of porcine lymphocytes and intestinal epithelial cells in vitro. Toxicol. In Vitro 22:652–658.
  • Borbiro, I., Lisztes, E., Toth, B.I., Czifra, G., Olah, A., Szollosi, A.G., Szentandrassy, N., Nanasi, P.P., Peter, Z., Paus, R., Kovacs, L. and Biro, T. (2011). Activation of transient receptor potential vanilloid-3 inhibits human hair growth. J. Invest Dermatol. 131:1605–1614.
  • Boskabady, M.H., Jafari, Z. and Pouraboli, I. (2011). The effect of carvacrol on muscarinic receptors of guinea-pig tracheal chains. Phytother. Res. 25:530–535.
  • Boskabady, M.H. and Jandaghi, P. (2003). Relaxant effects of carvacrol on guinea pig tracheal chains and its possible mechanisms. Pharmazie 58:661–663.
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods–a review. Int. J. Food. Microbiol. 94:223–253.
  • Canbek, M., Uyanoglu, M., Bayramoglu, G., Senturk, H., Erkasap, N., Koken, T., Uslu, S., Demirustu, C., Aral, E. and Husnu Can Baser, K. (2008). Effects of carvacrol on defects of ischemia-reperfusion in the rat liver. Phytomedicine 15:447–452.
  • Cavalcanti, S.C., Niculau Edos, S., Blank, A.F., Camara, C.A., Araujo, I.N. and Alves, P.B. (2010). Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresour. Technol. 101:829–832.
  • Cepeda-Valery, B., Pressman, G.S., Figueredo, V.M. and Romero-Corral, A. (2011). Impact of obesity on total and cardiovascular mortality–fat or fiction? Nat. Rev. Cardiol. 8:233–237.
  • Chami, F., Chami, N., Bennis, S., Trouillas, J. and Remmal, A. (2004). Evaluation of carvacrol and eugenol as prophylaxis and treatment of vaginal candidiasis in an immunosuppressed rat model. J. Antimicrob. Chemother. 54:909–914.
  • Chami, N., Bennis, S., Chami, F., Aboussekhra, A. and Remmal, A. (2005). Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral. Microbiol. Immunol. 20:106–111.
  • Chen, F., Shi, Z., Neoh, K.G. and Kang, E.T. (2009). Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol. Bioeng. 104:30–39.
  • Cho, S., Choi, Y., Park, S. and Park, T. (2012). Carvacrol prevents diet-induced obesity by modulating gene expressions involved in adipogenesis and inflammation in mice fed with high-fat diet. J. Nutr. Biochem. 23:192–201.
  • Coimbra, M., Isacchi, B., van Bloois, L., Torano, J.S., Ket, A., Wu, X., Broere, F., Metselaar, J.M., Rijcken, C.J., Storm, G., Bilia, R. and Schiffelers, R.M. (2011). Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int. J. Pharm. 416:433–442.
  • Conner, D.E. and Beuchat, L.R. (1984). Sensitivity of heat-stressed yeasts to essential oils of plants. Appl. Environ. Microbiol. 47:229–233.
  • Coujolle, F. and Franck, C. (1944). Comparative toxicity of thymol and carvacrol. Bull. Soc. Chim. Biol. 26:334–342.
  • Cox, S.D. and Markham, J.L. (2007). Susceptibility and intrinsic tolerance of Pseudomonas aeruginosa to selected plant volatile compounds. J. Appl. Microbiol. 103:930–936.
  • Cristani, M., D’Arrigo, M., Mandalari, G., Castelli, F., Sarpietro, M.G., Micieli, D., Venuti, V., Bisignano, G., Saija, A. and Trombetta, D. (2007). Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J. Agric. Food Chem. 55:6300–6308.
  • Cukierman, E. and Khan, D.R. (2010). The benefits and challenges associated with the use of drug delivery systems in cancer therapy. Biochem. Pharmacol. 80:762–770.
  • Dalleau, S., Cateau, E., Berges, T., Berjeaud, J.M. and Imbert, C. (2008). In vitro activity of terpenes against Candida biofilms. Int. J. Antimicrob. Agents. 31:572–576.
  • De Vincenzi, M., Stammati, A., De Vincenzi, A. and Silano, M. (2004). Constituents of aromatic plants: carvacrol. Fitoterapia 75:801–804.
  • de Wildt, S.N., Kearns, G.L., Leeder, J.S. and van den Anker, J.N. (1999). Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin. Pharmacokinet. 36:439–452.
  • Decker, K. and Keppler, D. (1972). Galactosamine induced liver injury. Prog. Liver. Dis. 4:183–199.
  • Di Pasqua, R., Hoskins, N., Betts, G. and Mauriello, G. (2006). Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J. Agric. Food Chem. 54:2745–2749.
  • Doerner, J.F., Hatt, H. and Ramsey, I.S. (2011). Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J. Gen. Physiol. 137:271–288.
  • Dong, R.H., Fang, Z.Z., Zhu, L.L., Liang, S.C., Ge, G.B. and Liu, Z.Y. (2012). Investigation of UDP-glucuronosyltransferases (UGTs) inhibitory properties of carvacrol. Phytother. Res. 26:86–90.
  • Earley, S., Gonzales, A.L. and Garcia, Z.I. (2010). A dietary agonist of transient receptor potential cation channel V3 elicits endothelium-dependent vasodilation. Mol. Pharmacol. 77:612–620.
  • Ellepola, A.N. and Samaranayake, L.P. (1998). The effect of limited exposure to antifungal agents on the germ tube formation of oral Candida albicans. J. Oral. Pathol. Med. 27:213–219.
  • Epstein, W. (2003). The roles and regulation of potassium in bacteria. Prog. Nucleic. Acid. Res. Mol. Biol. 75:293–320.
  • Fehrenbacher, J.C., LoVerme, J., Clarke, W., Hargreaves, K.M., Piomelli, D. and Taylor, B.K. (2009). Rapid pain modulation with nuclear receptor ligands. Brain. Res. Rev. 60:114–124.
  • Ferguson, L.R. (2001). Role of plant polyphenols in genomic stability. Mutat. Res. 475:89–111.
  • Freichel, M. and Flockerzi, V. (2007). Biological functions of TRPs unravelled by spontaneous mutations and transgenic animals. Biochem. Soc. Trans. 35:120–123.
  • Friedman, M., Henika, P.R. and Mandrell, R.E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 65:1545–1560.
  • Gaysinsky, S., Davidson, P.M., Bruce, B.D. and Weiss, J. (2005). Growth inhibition of Escherichia coli O157:H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles. J. Food Prot. 68:2559–2566.
  • Gill, A.O. and Holley, R.A. (2006). Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int. J. Food Microbiol. 108:1–9.
  • Gozzi, C., Convard, A. and Husset, M. (2009). Heterogeneous acid-catalysed isomerization of carvone to carvacrol. React. Kinet. Catal. Lett. 97:301–306.
  • Griffin, S.G., Wyllie, S.G., Markham, J.L. and Leach, D.N. (1999). The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour. Frag. J. 14:322–332.
  • Guarda, A., Rubilar, J.F., Miltz, J. and Galotto, M.J. (2011). The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food. Microbiol. 146:144–150.
  • Guillen, F., Zapata, P.J., Martinez-Romero, D., Castillo, S., Serrano, M. and Valero, D. (2007). Improvement of the overall quality of table grapes stored under modified atmosphere packaging in combination with natural antimicrobial compounds. J. Food Sci. 72:S185–190.
  • Guimaraes, A.G., Oliveira, G.F., Melo, M.S., Cavalcanti, S.C., Antoniolli, A.R., Bonjardim, L.R., Silva, F.A., Santos, J.P., Rocha, R.F., Moreira, J.C., Araujo, A.A., Gelain, D.P. and Quintans-Junior, L.J. (2010). Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic. Clin. Pharmacol. Toxicol. 107:949–957.
  • Guimaraes, A.G., Xavier, M.A., de Santana, M.T., Camargo, E.A., Santos, C.A., Brito, F.A., Barreto, E.O., Cavalcanti, S.C., Antoniolli, A.R., Oliveira, R.C. and Quintans-Junior, L.J. (2011). Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn. Schmiedebergs Arch. Pharmacol.
  • Hagan, E.C., Hansen, W.H., Fitzhugh, O.G., Jenner, P.M., Jones, W.I., Taylor, J.M., Long, E.L., Nelson, A.A. and Brouwer, J.B. (1967). Food flavourings and compounds of related structure. II. Subacute and chronic toxicity. Food Cosmet. Toxicol. 5:141–157.
  • He, L., Mo, H., Hadisusilo, S., Qureshi, A.A. and Elson, C.E. (1997). Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J. Nutr. 127:668–674.
  • Hoiby, N., Ciofu, O., Johansen, H.K., Song, Z.J., Moser, C., Jensen, P.O., Molin, S., Givskov, M., Tolker-Nielsen, T. and Bjarnsholt, T. (2011). The clinical impact of bacterial biofilms. Int. J. Oral. Sci. 3:55–65.
  • Horvathova, E., Turcaniova, V. and Slamenova, D. (2007). Comparative study of DNA-damaging and DNA-protective effects of selected components of essential plant oils in human leukemic cells K562. Neoplasma 54:478–483.
  • Hotta, M., Nakata, R., Katsukawa, M., Hori, K., Takahashi, S. and Inoue, H. (2010). Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression. J. Lipid. Res. 51:132–139.
  • Iannitelli, A., Grande, R., Di Stefano, A., Di Giulio, M., Sozio, P., Bessa, L.J., Laserra, S., Paolini, C., Protasi, F. and Cellini, L. (2011). Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int. J. Mol. Sci. 12:5039–5051.
  • Ipek, E., Tuylu, B.A. and Zeytinoglu, H. (2003). Effects of carvacrol on sister chromatid exchanges in human lymphocyte cultures. Cytotechnology 43:145–148.
  • Jayakumar, S., Madankumar, A., Asokkumar, S., Raghunandhakumar, S., Gokula Dhas, K., Kamaraj, S., Josephine Divya, M.G. and Devaki, T. (2012). Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol. Cell. Biochem. 360:51–60.
  • Johny, A.K., Hoagland, T. and Venkitanarayanan, K. (2010). Effect of subinhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 to antibiotics. Foodborne. Pathog. Dis. 7:1165–1170.
  • Jukic, M., Politeo, O., Maksimovic, M. and Milos, M. (2007). In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother. Res. 21:259–261.
  • Jung, C.H., Ro, S.-H., Cao, J., Otto, N.M. and Kim, D.-H. (2010). mTOR regulation of autophagy. FEBS Lett. 584:1287–1295.
  • Kararli, T.T., Kirchhoff, C.F. and Penzotti, S.C. (1995). Enhancement of transdermal transport of azidothymidine (AZT) with novel terpene and terpene-like enhancers: In vivo-in vitro correlations. J. Control. Rel. 34:43–51.
  • Karioti, A., Vrahimi-Hadjilouca, T., Droushiotis, D., Rancic, A., Hadjipavlou-Litina, D. and Skaltsa, H. (2006). Analysis of the essential oil of Origanum dubium growing wild in Cyprus. Investigation of its antioxidant capacity and antimicrobial activity. Planta. Med. 72:1330–1334.
  • Karkabounas, S., Kostoula, O.K., Daskalou, T., Veltsistas, P., Karamouzis, M., Zelovitis, I., Metsios, A., Lekkas, P., Evangelou, A.M., Kotsis, N. and Skoufos, I. (2006). Anticarcinogenic and antiplatelet effects of carvacrol. Exp. Oncol. 28:121–125.
  • Keawchaoon, L. and Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloid. Surf B Biointerfaces 84:163–171.
  • Kim, S., Jin, Y., Choi, Y. and Park, T. (2011). Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem. Pharmacol. 81:1343–1351.
  • Kisko, G. and Roller, S. (2005). Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice. BMC Microbiol. 5:36.
  • Knowles, J. and Roller, S. (2001). Efficacy of chitosan, carvacrol, and a hydrogen peroxide-based biocide against foodborne microorganisms in suspension and adhered to stainless steel. J. Food Prot. 64:1542–1548.
  • Knowles, J.R., Roller, S., Murray, D.B. and Naidu, A.S. (2005). Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 71:797–803.
  • Kong, J.O., Park, I.K., Choi, K.S., Shin, S.C. and Ahn, Y.J. (2007). Nematicidal and propagation activities of thyme red and white oil compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J. Nematol. 39:237–242.
  • Koopman, W.J., Nijtmans, L.G., Dieteren, C.E., Roestenberg, P., Valsecchi, F., Smeitink, J.A. and Willems, P.H. (2010). Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 12:1431–1470.
  • Koparal, A.T. and Zeytinoglu, M. (2003). Effects of carvacrol on a human non-small cell lung cancer (NSCLC) cell line, A549. Cytotechnology 43:149–154.
  • Kulkarni, S.B., Betageri, G.V. and Singh, M. (1995). Factors affecting microencapsulation of drugs in liposomes. J. Microencapsul 12:229–246.
  • Kunta, J.R., Goskonda, V.R., Brotherton, H.O., Khan, M.A. and Reddy, I.K. (1997). Effect of menthol and related terpenes on the percutaneous absorption of propranolol across excised hairless mouse skin. J. Pharm. Sci. 86:1369–1373.
  • Lambert, R.J., Skandamis, P.N., Coote, P.J. and Nychas, G.J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91:453–462.
  • Lampronti, I., Saab, A.M. and Gambari, R. (2006). Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division. Int. J. Oncol. 29:989–995.
  • Landa, P., Kokoska, L., Pribylova, M., Vanek, T. and Marsik, P. (2009). In vitro anti-inflammatory activity of carvacrol: Inhibitory effect on COX-2 catalyzed prostaglandin E(2) biosynthesis. Arch. Pharm. Res. 32:75–78.
  • Lauridsen, E. (1997). Quality control of essential drugs. Lancet 350:1106–1107.
  • Le Guellec, C., Lacarelle, B., Villard, P.H., Point, H., Catalin, J. and Durand, A. (1995). Glucuronidation of propofol in microsomal fractions from various tissues and species including humans: effect of different drugs. Anesth Analg 81:855–861.
  • LeBlanc, B.W., Boue, S., De-Grandi Hoffman, G., Deeby, T., McCready, H. and Loeffelmann, K. (2008). Beta-cyclodextrins as carriers of monoterpenes into the hemolymph of the honey bee (Apis mellifera) for integrated pest management. J. Agric. Food Chem. 56:8565–8573.
  • Lee, J., Jung, E., Yu, H., Kim, Y., Ha, J., Kim, Y.S. and Park, D. (2008). Mechanisms of carvacrol-induced expression of type I collagen gene. J. Dermatol. Sci. 52:160–169.
  • Lee, S.Y. and Jin, H.H. (2008). Inhibitory activity of natural antimicrobial compounds alone or in combination with nisin against Enterobacter sakazakii. Lett. Appl. Microbiol. 47:315–321.
  • Lei, J., Leser, M. and Enan, E. (2010). Nematicidal activity of two monoterpenoids and SER-2 tyramine receptor of Caenorhabditis elegans. Biochem. Pharmacol. 79:1062–1071.
  • Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J.A. and Robinson, J.P. (2003). Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278:8516–8525.
  • Liolios, C.C., Gortzi, O., Lalas, S., Tsaknis, J. and Chinou, I. (2009). Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem. 112:77–83.
  • Liolios, C.C., Graikou, K., Skaltsa, E. and Chinou, I. (2010). Dittany of Crete: a botanical and ethnopharmacological review. J. Ethnopharmacol. 131:229–241.
  • Lopez-Malo, A., Maris Alzamora, S. and Palou, E. (2005). Aspergillus flavus growth in the presence of chemical preservatives and naturally occurring antimicrobial compounds. Int. J. Food Microbiol. 99:119–128.
  • Lu, Y. and Wu, C. (2010). Reduction of Salmonella enterica contamination on grape tomatoes by washing with thyme oil, thymol, and carvacrol as compared with chlorine treatment. J. Food Prot. 73:2270–2275.
  • Luna, A., Labaque, M.C., Zygadlo, J.A. and Marin, R.H. (2010). Effects of thymol and carvacrol feed supplementation on lipid oxidation in broiler meat. Poult. Sci. 89:366–370.
  • Maeda, T. and Kishioka, S. (2009). Chapter 13 PPAR and Pain. Int. Rev. Neurobiol. 85:165–177.
  • Magyar, J., Szentandrássy, N., Bányász, T., Fülöp, L., Varró, A. and Nánási, P.P. (2004). Effects of terpenoid phenol derivatives on calcium current in canine and human ventricular cardiomyocytes. Eur. J. Pharmacol. 487:29–36.
  • Manabe, A., Nakayama, S. and Sakamoto, K. (1987). Effects of essential oils on erythrocytes and hepatocytes from rats and dipalmitoyl phosphatidylcholine-liposomes. Jpn J. Pharmacol. 44:77–84.
  • Mansour, S.A., Messeha, S.S. and el-Gengaihi, S.E. (2000). Botanical biocides. 4. Mosquitocidal activity of certain Thymus capitatus constituents. J. Nat. Toxins 9:49–62.
  • Marcos-Arias, C., Eraso, E., Madariaga, L. and Quindos, G. (2011). In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement Altern Med. 11:119.
  • Mastelic, J., Jerkovic, I., Blazevic, I., Poljak-Blazi, M., Borovic, S., Ivancic-Bace, I., Smrecki, V., Zarkovic, N., Brcic-Kostic, K., Vikic-Topic, D. and Muller, N. (2008). Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J. Agric. Food Chem. 56:3989–3996.
  • Mathela, C.S., Singh, K.K. and Gupta, V.K. (2010). Synthesis and in vitro antibacterial activity of thymol and carvacrol derivatives. Acta Pol. Pharm. 67:375–380.
  • McOmie, W.A., Anderson, H.H. and Estess, F.M. (1949). Comparative toxicity of certain t-butyl substituted cresols and xylenols. J. Am. Pharm. Assoc. Am. Pharm. Assoc. 38:366–369.
  • Melo, F.H., Moura, B.A., de Sousa, D.P., de Vasconcelos, S.M., Macedo, D.S., Fonteles, M.M., Viana, G.S. and de Sousa, F.C. (2011). Antidepressant-like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: involvement of dopaminergic system. Fundam. Clin. Pharmacol. 25:362–367.
  • Melo, F.H., Venancio, E.T., de Sousa, D.P., de Franca Fonteles, M.M., de Vasconcelos, S.M., Viana, G.S. and de Sousa, F.C. (2010). Anxiolytic-like effect of Carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission. Fundam. Clin. Pharmacol. 24:437–443.
  • Miguel, M.G., Figueiredo, A.C., Costa, M.M., Martins, D., Duarte, J., Barroso, J.G. and Pedro, L.G. (2003). Effect of the volatile constituents isolated from Thymus albicans, Th. mastichina, Th. carnosus and Thymbra capitata in sunflower oil. Nahrung 47:397–402.
  • Monzote, L., Stamberg, W., Staniek, K. and Gille, L. (2009). Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria. Toxicol. Appl. Pharmacol. 240:337–347.
  • Moraes, L.A., Piqueras, L. and Bishop-Bailey, D. (2006). Peroxisome proliferator-activated receptors and inflammation. Pharmacol. Ther. 110:371–385.
  • Moreira, P.I. and Oliveira, C.R. (2011). Mitochondria as potential targets in antidiabetic therapy. Handb. Exp. Pharmacol. 331–356.
  • Nino, M., Calabro, G. and Santoianni, P. (2010). Topical delivery of active principles: the field of dermatological research. Dermatol. Online J. 16
  • Nostro, A., Marino, A., Blanco, A.R., Cellini, L., Di Giulio, M., Pizzimenti, F., Sudano Roccaro, A. and Bisignano, G. (2009). In vitro activity of carvacrol against staphylococcal preformed biofilm by liquid and vapour contact. J. Med. Microbiol. 58:791–797.
  • Nostro, A., Sudano Roccaro, A., Bisignano, G., Marino, A., Cannatelli, M.A., Pizzimenti, F.C., Cioni, P.L., Procopio, F. and Blanco, A.R. (2007). Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 56:519–523.
  • Nychas, G.J. E. (1995). Natural antimicrobials from plants. In: New Methods of Food Preservation, pp. 58–89. Gould, G.W. Ed., Aspen Publishers, Glasgow.
  • Obaidat, R.M., Bader, A., Al-Rajab, W., Abu Sheikha, G. and Obaidat, A.A. (2011). Preparation of mucoadhesive oral patches containing tetracycline hydrochloride and carvacrol for treatment of local mouth bacterial infections and candidiasis. Sci. Pharm. 79:197–212.
  • Olasupo, N.A., Fitzgerald, D.J., Narbad, A. and Gasson, M.J. (2004). Inhibition of Bacillus subtilis and Listeria innocua by nisin in combination with some naturally occurring organic compounds. J. Food Prot. 67:596–600.
  • Opdyke, D.L. (1979). Monographs on fragrance raw materials. Food Cosmet. Toxicol. 17:695–923.
  • Park, B.S., Choi, W.S., Kim, J.H., Kim, K.H. and Lee, S.E. (2005). Monoterpenes from thyme (Thymus vulgaris) as potential mosquito repellents. J. Am. Mosq. Control. Assoc. 21:80–83.
  • Parnas, M., Peters, M., Dadon, D., Lev, S., Vertkin, I., Slutsky, I. and Minke, B. (2009). Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell. Calcium. 45:300–309.
  • Pavela, R. (2011). Insecticidal properties of phenols on Culex quinquefasciatus Say and Musca domestica L. Parasitol. Res. 109:1547–1553.
  • Peixoto-Neves, D., Silva-Alves, K.S., Gomes, M.D., Lima, F.C., Lahlou, S., Magalhaes, P.J., Ceccatto, V.M., Coelho-de-Souza, A.N. and Leal-Cardoso, J.H. (2010). Vasorelaxant effects of the monoterpenic phenol isomers, carvacrol and thymol, on rat isolated aorta. Fundam. Clin. Pharmacol. 24:341–350.
  • Perez-Conesa, D., Cao, J., Chen, L., McLandsborough, L. and Weiss, J. (2011). Inactivation of Listeria monocytogenes and Escherichia coli O157:H7 biofilms by micelle-encapsulated eugenol and carvacrol. J. Food Prot. 74:55–62.
  • Perez-Conesa, D., McLandsborough, L. and Weiss, J. (2006). Inhibition and inactivation of Listeria monocytogenes and Escherichia coli O157:H7 colony biofilms by micellar-encapsulated eugenol and carvacrol. J. Food Prot. 69:2947–2954.
  • Phillips, A.K. and Appel, A.G. (2010). Fumigant toxicity of essential oils to the German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol. 103:781–790.
  • Phillips, M. (1924) The sulfonation of para-cymene. J. Am. Chem. Soc., 46:686–694.
  • Pina-Vaz, C., Goncalves Rodrigues, A., Pinto, E., Costa-de-Oliveira, S., Tavares, C., Salgueiro, L., Cavaleiro, C., Goncalves, M.J. and Martinez-de-Oliveira, J. (2004) Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol. 18:73–78.
  • Radominska-Pandya, A., Ouzzine, M., Fournel-Gigleux, S. and Magdalou, J. (2005). Structure of UDP-glucuronosyltransferases in membranes. Methods Enzymol. 400:116–147.
  • Radonic, A. and Milos, M. (2003). Chemical composition and in vitro evaluation of antioxidant effect of free volatile compounds from Satureja montana L. Free Radic. Res. 37:673–679.
  • Rao, A., Zhang, Y., Muend, S. and Rao, R. (2010). Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob. Agents Chemother 54:5062–5069.
  • Rattanachaikunsopon, P. and Phumkhachorn, P. (2010). Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. J. Biosci. Bioeng. 110:614–619.
  • Ravishankar, S., Zhu, L., Law, B., Joens, L. and Friedman, M. (2008). Plant-derived compounds inactivate antibiotic-resistant Campylobacter jejuni strains. J. Food Prot. 71:1145–1149.
  • Ravishankar, S., Zhu, L., Reyna-Granados, J., Law, B., Joens, L. and Friedman, M. (2010). Carvacrol and cinnamaldehyde inactivate antibiotic-resistant Salmonella enterica in buffer and on celery and oysters. J. Food Prot. 73:234–240.
  • Ray, S.D. (2011). Potential aspects of chitosan as pharmaceutical excipient. Acta. Pol. Pharm. 68:619–622.
  • Ritter, J.J. and Ginsburg, D. (1950). Preparation of chlorination of alpha-pinene with tert-butyl hypochlorite. J. Am. Chem. Soc. 72:2381–2384.
  • Rivas, L., McDonnell, M.J., Burgess, C.M., O’Brien, M., Navarro-Villa, A., Fanning, S. and Duffy, G. (2010). Inhibition of verocytotoxigenic Escherichia coli in model broth and rumen systems by carvacrol and thymol. Int. J. Food Microbiol. 139:70–78.
  • Roller, S. and Seedhar, P. (2002). Carvacrol and cinnamic acid inhibit microbial growth in fresh-cut melon and kiwifruit at 4 degrees and 8 degrees C. Lett. Appl. Microbiol. 35:390–394.
  • Sarkozi, S., Almassy, J., Lukacs, B., Dobrosi, N., Nagy, G. and Jona, I. (2007). Effect of natural phenol derivatives on skeletal type sarcoplasmic reticulum Ca2 +-ATPase and ryanodine receptor. J. Muscle. Res. Cell. Motil. 28:167–174.
  • Sasaki, K., Wada, K., Tanaka, Y., Yoshimura, T., Matuoka, K. and Anno, T. (2005). Thyme (Thymus vulgaris L.) leaves and its constituents increase the activities of xenobiotic-metabolizing enzymes in mouse liver. J. Med. Food 8:184–189.
  • Schroder, J. and Vollmer, H. (1932). The excretion of thymol, carvacrol, eugenol and guaiacol and the distribution of these substances in the organism. Arch. Exp. Path. Pharmakol. 168:331–353.
  • Shoji, Y. and Nakashima, H. (2004). Nutraceutics and delivery systems. J. Drug. Target 12:385–391.
  • Slamenova, D., Horvathova, E., Chalupa, I., Wsolova, L. and Navarova, J. (2011). Ex vivo assessment of protective effects of carvacrol against DNA lesions induced in primary rat cells by visible light excited methylene blue (VL+MB). Neoplasma 58:14–19.
  • Slamenova, D., Horvathova, E., Marsalkova, L. and Wsolova, L. (2008). Carvacrol given to rats in drinking water reduces the level of DNA lesions induced in freshly isolated hepatocytes and testicular cells by H(2)O(2). Neoplasma 55:394–399.
  • Slamenova, D., Horvathova, E., Sramkova, M. and Marsalkova, L. (2007). DNA-protective effects of two components of essential plant oils carvacrol and thymol on mammalian cells cultured in vitro. Neoplasma 54:108–112.
  • Smith, P.A., Sorich, M.J., McKinnon, R.A. and Miners, J.O. (2003). Pharmacophore and quantitative structure-activity relationship modeling: complementary approaches for the rationalization and prediction of UDP-glucuronosyltransferase 1A4 substrate selectivity. J. Med. Chem. 46:1617–1626.
  • Sokmen, M., Serkedjieva, J., Daferera, D., Gulluce, M., Polissiou, M., Tepe, B., Akpulat, H.A., Sahin, F. and Sokmen, A. (2004). In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J. Agric. Food Chem. 52:3309–3312.
  • Sompolinsky, D. and Samra, Z. (1981). Plasmid-determined resistance to tetracycline. Microbios 30:109–130.
  • Songkro, S., Rades, T. and Becket, G. (2009). Effects of some terpenes on the in vitro permeation of LHRH through newborn pig skin. Pharmazie 64:110–115.
  • Stammati, A., Bonsi, P., Zucco, F., Moezelaar, R., Alakomi, H.L. and von Wright, A. (1999). Toxicity of selected plant volatiles in microbial and mammalian short-term assays. Food. Chem. Toxicol. 37:813–823.
  • Stella, V.J. and He, Q. (2008). Cyclodextrins. Toxicol. Pathol. 36:30–42.
  • Suntres, Z.E. (2011). Liposomal antioxidants for protection against oxidant-induced damage. J. Toxicol. 2011:152474.
  • Tang, X., Chen, S. and Wang, L. (2011). Purification and identification of carvacrol from the root of Stellera chamaejasme and research on its insecticidal activity. Nat. Prod. Res. 25:320–325.
  • Teissedre, P.L. and Waterhouse, A.L. (2000). Inhibition of oxidation of human low-density lipoproteins by phenolic substances in different essential oils varieties. J. Agric. Food Chem. 48:3801–3805.
  • Tepe, B., Daferera, D., Sokmen, M., Polissiou, M. and Sokmen, A. (2004). In vitro antimicrobial and antioxidant activities of the essential oils and various extracts of Thymus eigii M. Zohary et P. H. Davis. J. Agric. Food Chem. 52:1132–1137.
  • Ueda, T., Yamada, T., Ugawa, S., Ishida, Y. and Shimada, S. (2009). TRPV3, a thermosensitive channel is expressed in mouse distal colon epithelium. Biochem. Biophys. Res. Commun. 383:130–134.
  • Ündeger, Ü., Basaran, A., Degen, G.H. and Basaran, N. (2009). Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food Chem. Toxicol. 47:2037–2043.
  • Ultee, A., Bennik, M.H. and Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68:1561–1568.
  • Ultee, A., Kets, E.P., Alberda, M., Hoekstra, F.A. and Smid, E.J. (2000a). Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Arch. Microbiol. 174:233–238.
  • Ultee, A., Kets, E.P. and Smid, E.J. (1999). Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 65:4606–4610.
  • Ultee, A., Slump, R.A., Steging, G. and Smid, E.J. (2000b). Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot. 63:620–624.
  • Uyanoglu, M., Canbek, M., Aral, E. and Husnu Can Baser, K. (2008). Effects of carvacrol upon the liver of rats undergoing partial hepatectomy. Phytomedicine 15:226–229.
  • Vaddi, H.K., Ho, P.C. and Chan, S.Y. (2002). Terpenes in propylene glycol as skin-penetration enhancers: permeation and partition of haloperidol, Fourier transform infrared spectroscopy, and differential scanning calorimetry. J. Pharm. Sci. 91:1639–1651.
  • Van Den Broucke, C.O. and Lemli, J.A. (1980). Antispasmodic activity of Origanum compactum. Planta Med. 38:317–331.
  • Van Den Broucke, C.O. and Lemli, J.A. (1982). Antispasmodic Activity of Origanum compactum. Planta. Med. 45:188–190.
  • Vardar-Unlu, G., Yagmuroglu, A. and Unlu, M. (2010). Evaluation of in vitro activity of carvacrol against Candida albicans strains. Nat. Prod. Res. 24:1189–1193.
  • Vokou, D., Kokkini, S. and Bessiere, J.M. (1993). Geographical variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol. 21:287–295.
  • Wang, Q., Gong, J., Huang, X., Yu, H. and Xue, F. (2009) In vitro evaluation of the activity of microencapsulated carvacrol against Escherichia coli with K88 pili. J. Appl. Microbiol. 107:1781–1788.
  • Wienkers, L.C. and Heath, T.G. (2005). Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug. Discov. 4:825–833.
  • Wong, S.Y., Grant, I.R., Friedman, M., Elliott, C.T. and Situ, C. (2008). Antibacterial activities of naturally occurring compounds against Mycobacterium avium subsp. paratuberculosis. Appl. Environ. Microbiol. 74:5986–5990.
  • Xu, H., Delling, M., Jun, J.C. and Clapham, D.E. (2006). Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci. 9:628–635.
  • Yadav, G.D. and Kamble, S.B. (2009). Synthesis of carvacrol by Friedel–Crafts alkylation of o-cresol with isopropanol using superacidic catalyst UDCaT-5. J. Chem. Technol. Biotechnol. 84:1499–1508.
  • Yamada, T., Ueda, T., Ugawa, S., Ishida, Y., Imayasu, M., Koyama, S. and Shimada, S. (2010). Functional expression of transient receptor potential vanilloid 3 (TRPV3) in corneal epithelial cells: Involvement in thermosensation and wound healing. Exp. Eye. Res. 90:121–129.
  • Yessoufou, A. and Wahli, W. (2010). Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss. Med. Wkly. 140:w13071.
  • Yin, Q.H., Yan, F.X., Zu, X.Y., Wu, Y.H., Wu, X.P., Liao, M.C., Deng, S.W. , Yin, L.L. and Zhuang, Y.Z. (2012). Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology 64:43–51.
  • Zeytinoglu, M., Aydin, S., Ozturk, Y., Husnu, K. and Baser, C (1998). Inhibitory effects of carvacrol on DMBA induced pulmonary tumorigenesis in rats. Acta. Pharmaceutica Turcica 40:93–98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.