1,703
Views
67
CrossRef citations to date
0
Altmetric
Original Articles

Wheat Dough Microstructure: The Relation Between Visual Structure and Mechanical Behavior

&

REFERENCES

  • Aguilera, J.M. and de Vries, J. (1999). Microstructural Principles of Food Processing and Egnineering. Springer, Berlin.
  • Autio, K., Flander, L., Kinnunen, A. and Heinonen, R. (2001). Bread quality relationship with rheological measurements of wheat flour dough. Cereal Chem. 78:654–657.
  • Autio, K. and Salmenkallio-Marttila, M. (2001). Light microscopic investigations of cereal grains, doughs and breads. Lebensmittel-Wissenschaft und - Technologie. 34:18–22.
  • Bechtel, D.B., Pomeranz, Y. and De Francisco, A. (1978). Breadmaking studied by light and transmission electron microscopy. Cereal Chem. 55:392–401.
  • Beck, M., Jekle, M. and Becker, T. (2009). Protein cross-linking - A method for improving the quality of rye baked goods. Baking + Biscuit. 5:78–81.
  • Beck, M., Jekle, M. and Becker, T. (2012). Impact of sodium chloride on wheat flour dough and yeast-leavened products: I. Rheological attributes. J. Sci. Food Agr. 92, 585–592.
  • Beck, M., Jekle, M., Selmair, P.L., Koehler, P. and Becker, T. (2011). Rheological properties and baking performance of rye dough as affected by transglutaminase. J. Cereal Sci. 54:29–36.
  • Belton, P.S. (1999). Mini review: On the elasticity of wheat gluten. J. Cereal Sci. 29:103–107.
  • Bloksma, A.H. (1990a). Dough structure, dough rheology and baking quality. Cereal Foods World 35:237–244.
  • Bloksma, A.H. (1990b). Rheology of the breadmaking process. Cereal Foods Qorld. 35:228–236.
  • Blonk, J.C. G. and van Aalst, H. (1993). Confocal scanning light microscopy in food research. Food Res. Int. 26:297–311.
  • Breuillet, C., Yildiz, E., Cuq, B. and Kokini, J.L. (2002). Study of the anamalous capillary bagley factor behavior of three types of wheat flour doughs at two moisture contents. J. Texture Studies 33:315–340.
  • Bull, C.R. (1993). A review of sensing techniques which could be used to generate images of agricultural and food materials. Comp. Electron. Agr. 8:1–29.
  • Burhans, M.E. and Clapp, J. (1942). A microscopic study of bread and dough. Cereal Chem. 19:196–216.
  • Calderón-Domínguez, G., Neyra-Guevara, M., Farrera-Rebollo, R., Arana-Errasquín, R. and Mora-Escobedo, R. (2003). Structural and farinographic changes during mixing of a yeast sweet dough. Food/Nahrung 47:312–319.
  • Chabot, J.F., Hood, L.F. and Liboff, M. (1979). Effect of scanning electron-microscopy preparation methods on the ultrastructure of white bread. Cereal Chem. 56:462–464.
  • Charcosset, C., Cherfi, A. and Bernengo, J.-C. (2000). Characterization of microporous membrane morphology using confocal scanning laser microscopy. Chem. Eng. Sci. 55:5351–5358.
  • Dobraszczyk, B.J. and Morgenstern, M.P. (2003). Rheology and the breadmaking process. J. Cereal Sci. 38:229–245.
  • Don, C., Lichtendonk, W., Plijter, J.J. and Hamer, R.J. (2003a). Glutenin macropolymer: A gel formed by glutenin particles. J. Cereal Sci. 37:1–7.
  • Don, C., Lichtendonk, W.J., Plijter, J.J. and Hamer, R.J. (2003b). Understanding the link between GMP and dough: From glutenin particles in flour towards developed dough. J. Cereal Sci. 38:157–165.
  • Don, C., Lichtendonk, W.J., Plijter, J.J., van Vliet, T. and Hamer, R.J. (2005). The effect of mixing on glutenin particle properties: Aggregation factors that affect gluten function in dough. J. Cereal Sci. 41:69–83.
  • Dürrenberger, M.B., Handschin, S., Conde-Petit, B. and Escher, F. (2001). Visualization of food structure by Confocal Laser Scanning Microscopy (CLSM). Lebensmittel-Wissenschaft und-Technologie. 34:11–17.
  • Fardet, A., Baldwin, P.M., Bertrand, D., Bouchet, B., Gallant, D.J. and Barry, J.-L. (1998). Textural images analysis of pasta protein networks to determine influence of technological processes. Cereal Chem. 75:699–704.
  • Faridi, H. and Faubion, J.M. (1990). Dough Rheology and Baked Product Texture. Van Nostrand Reinhold, New York.
  • Flook, A. (2003). MICROSCOPY | image analysis. In: Encyclopedia of Food Sciences and Nutrition, pp. 3934–3940. Benjamin, C., Ed., Academic Press, Oxford.
  • Földes-Papp, Z., Demel, U. and Tilz, G.P. (2003). Laser scanning confocal fluorescence microscopy: An overview. Int. Immunopharmacol. 3:1715–1729.
  • Fulcher, R.G., Faubion, J.M., Ruan, R. and Miller, S.S. (1994). Quantitative microscopy in carbohydrate analysis. Carbohydrate Polymers 25:285–293.
  • Gras, P.W., Carpenter, H.C. and Anderssen, R.S. (2000). Modelling the developmental rheology of wheat-flour dough using extension tests. J. Cereal Sci. 31:1–13.
  • Hamer, R.J. and van Vliet, T. (2000). Understanding the structure and properties of gluten: An overview. In: Wheat Gluten - Proceedings of the Seventh International Workshop Gluten, pp. 125–131.
  • Han, X.-Z., Benmoussa, M., Gray, J.A., BeMiller, J.N. and Hamaker, B.R. (2005). Detection of Proteins in Starch Granule Channels. Cereal Chem. 82:351–355.
  • Han, X.-Z. and Hamaker, B.R. (2002). Association of starch granule proteins with starch ghosts and remnants revealed by confocal laser scanning microscopy1. Cereal Chem. 79:892–896.
  • Heilig, A., Göggerle, A. and Hinrichs, J. (2009). Multiphase visualisation of fat containing [beta]-lactoglobulin-[kappa]-carrageenan gels by confocal scanning laser microscopy, using a novel dye, V03-01136, for fat staining. LWT - Food Sci.Technol. 42:646–653.
  • Hug-Iten, S., Handschin, S., Conde-Petit, B. and Escher, F. (1999). Changes in starch microstructure on baking and staling of wheat bread. Lebensmittel-Wissenschaft und-Technologie 32:255–260.
  • Jekle, M., Houben, A., Mitzscherling, M. and Becker, T. (2010). Effects of selected lactic acid bacteria on the characteristics of amaranth sourdough. J. Sci. Food Agr. 90:2326–2332.
  • Kaláb, M., Allan-Wojtas, P. and Miller, S.S. (1995). Microscopy and other imaging techniques in food structure analysis. Trends Food Sci.Technol. 6:177–186.
  • Katina, K., Salmenkallio-Marttila, M., Partanen, R., Forssell, P. and Autio, K. (2006). Effects of sourdough and enzymes on staling of high-fibre wheat bread. LWT - Food Sci. Technol. 39:479–491.
  • Kenny, S., Wehrle, K., Auty, M. and Arendt, E.K. (2001). Influence of sodium caseinate and whey protein on baking properties and rheology of frozen dough. Cereal Chem. 78:458–463.
  • Laurent, M., Johannin, G., Gilbert, N., Lucas, L., Cassio, D., Petit, P.X. and Fleury, A. (1994). Power and limits of laser scanning confocal microscopy. Biol. Cell 80:229–240.
  • Lee, L., Ng, P.K. W., Whallon, J.H. and Steffe, J.F. (2001). Relationship between rheological properties and microstructural characteristics of nondeveloped, partially developed, and developed doughs. Cereal Chem. 78:447–452.
  • Lefebvre, J., Popineau, Y., Deshayes, G. and Lavenant, L. (2000). Temperature-induced changes in the dynamic rheological behavior and size distribution of polymeric proteins for glutens from wheat near-isogenic lines differing in HMW glutenin subunit composition. Cereal Chem. 77:193–201.
  • Lefebvre, J. and van Vliet, T. (2003). Physico-Chemical Aspects of Gluten Proteins. Elsevier, Amsterdam.
  • Lindsay, M.P. and Skerritt, J.H. (1999). The glutenin macropolymer of wheat flour doughs: Structure-function perspectives. Trends Food Sci.Technol. 10:247–253.
  • Lynch, E.J., Dal Bello, F., Sheehan, E.M., Cashman, K.D. and Arendt, E.K. (2009). Fundamental studies on the reduction of salt on dough and bread characteristics. Food Res Int. 42:885–891.
  • Maningat, C.C. and Seib, P.A. (2010). Understanding the physicochemical and functional properties of wheat starch in various foods. Cereal Chem. 87:305–314.
  • Miller, K.A. and Hoseney, R.C. (1999). Dynamic rheological properties of wheat starch-gluten doughs. Cereal Chem. 76:105–109.
  • Mirsaeedghazi, e.a. (2008). Rheometric measurement of dough rheological characteristics and factors affecting it. Int. J. Agr. Biol. 10:112–119.
  • Morris, C.F. (2002). Puroindolines: The molecular genetic basis of wheat grain hardness. Plant Mol. Biol. 48:633–647.
  • Nagano, T., Tamaki, E. and Funami, T. (2008). Influence of guar gum on granule morphologies and rheological properties of maize starch. Carbohyd. Polym. 72:95–101.
  • Naguleswaran, S., Li, J., Vasanthan, T. and Bressler, D. (2011). Distribution of granule channels, protein, and phospholipid in triticale and corn starches as revealed by confocal laser scanning microscopy. Cereal Chem. 88:87–94.
  • Parada, J. and Aguilera, J.M. (2011). Microstructure, mechanical properties, and starch digestibility of a cooked dough made with potato starch and wheat gluten. LWT - Food Sci. Technol. 44:1739–1744.
  • Parkkonen, T., Heinonen, R. and Autio, K. (1997). A new method for determining the area of cell walls in rye doughs based on fluorescence microscopy and computer-assisted image analysis. Lebensmittel-Wissenschaft und-Technologie. 30:743–747.
  • Peighambardoust, S.H., Dadpour, M.R. and Dokouhaki, M. (2010). Application of epifluorescence light microscopy (EFLM) to study the microstructure of wheat dough: A comparison with confocal scanning laser microscopy (CSLM) technique. J. Cereal Sci. 51:21–27.
  • Peighambardoust, S.H., van Brenk, S., van der Goot, A.J., Hamer, R.J. and Boom, R.M. (2007). Dough processing in a Couette-type device with varying eccentricity: Effect on glutenin macro-polymer properties and dough micro-structure. J. Cereal Sci. 45:34–48.
  • Peighambardoust, S.H., van der Goot, A.J., Hamer, R.J. and Boom, R.M. (2005). Effect of simple shear on the physical properties of glutenin macro polymer (GMP). J. Cereal Sci. 42:59–68.
  • Peighambardoust, S.H., van der Goot, A.J., van Vliet, T., Hamer, R.J. and Boom, R.M. (2006). Microstructure formation and rheological behaviour of dough under simple shear flow. J. Cereal Sci. 43:183–197.
  • Peressini, D., Peighambardoust, S.H., Hamer, R.J., Sensidoni, A. and van der Goot, A.J. (2008). Effect of shear rate on microstructure and rheological properties of sheared wheat doughs. J. Cereal Sci. 48:426–438.
  • Pussayanawin, V., Wetzel, D.L. and Fulcher, R.G. (1988). Fluorescence detection and measurement of ferulic acid in wheat milling fractions by microscopy and HPLC. J.Agr. Food Chem. 36:515–520.
  • Quevedo, R., Carlos, L.-G., Aguilera, J.M. and Cadoche, L. (2002). Description of food surfaces and microstructural changes using fractal image texture analysis. J. Food Eng. 53:361–371.
  • Roman-Gutierrez, A.D., Guilbert, S. and Cuq, B. (2002). Description of microstructural changes in wheat flour and flour components during hydration by using environmental scanning electron microscopy. Lebensmittel-Wissenschaft und-Technologie. 35:730–740.
  • Safari-Ardi, M. and Phan-Thien, N. (1998). Stress relaxation and oscillatory tests to distinguish between doughs prepared from wheat flours of different varietal origin. Cereal Chem. 75:80–84.
  • Schirmer, M., Jekle, M. and Becker, T. (2011). Quantification in starch microstructure as a function of baking time. Procedia Food Sci. 1:154–156.
  • Schluentz, E.J., Steffe, J.F. and Ng, P.K. W. (2000). Rheology and microstructure of wheat dough developed with controlled deformation. J.Texture Stud. 31:41–54.
  • Schober, T.J., Dockery, P. and Arendt, E.K. (2003). Model studies for wheat sourdough systems using gluten, lactate buffer and sodium chloride. Eur. Food Res. Technol. 217:235–243.
  • Seetharaman, K., Yao, N. and Rout, M.K. (2004). Role of water in pretzel dough development and final product quality. Cereal Chem. 81:336–340.
  • Shewry, P.R., Halford, N.G. and Tatham, A.S. (1989). The high molecular weight subunits of wheat, barley and rye: Genetics, molecular biology, chemistry and role in wheat structure and functionality. In: Oxford Surveys of Plant Molecular and Cell Biology, p. 163. Miflin, B.J., Ed., Oxford University Press, Oxford.
  • Skerritt, J.H. (1998). Gluten proteins: Genetics, structure and dough quality - A review. AgBiotech News Information 10.
  • Slade, L. and Levine, H. (1993). Water relationships in starch transitions. Carbohydrate Polymers 21:105–131.
  • Song, Y. and Zheng, Q. (2007). Dynamic rheological propertoes of wheat flour dough and proteins. Trends Food Sci. Technol. 18:132–138.
  • Srikaeo, K., Furst, J.E., Ashton, J.F. and Hosken, R.W. (2006). Microstructural changes of starch in cooked wheat grains as affected by cooking temperatures and times. LWT - Food Sci. Technol. 39:528–533.
  • Steffe, J. (1992). Rheological Methods in Food Process Engineering, Vol 2. Freeman Press, East Lansing.
  • Tronsmo, K.M., Magnus, E.M., Baardseth, P., Schofield, J.D., Aamodt, A. and Færgestad, E.M. (2003). Comparison of small and large deformation rheological properties of wheat dough and gluten. Cereal Chem. J. 80:587–595.
  • Unbehend, L., Lindhauer, M.G. and Meuser, F. (2004). Physical and microscopic studies of flour–water systems. Eur. Food Res. Technol. 219:514–521.
  • Van Bockstaele, F., De Leyn, I., Eeckhout, M. and Dewettinck, K. (2008a). Rheological properties of wheat flour dough and the relationship with bread Volume. I. Creep-Recovery measurements. Cereal Chem. 85:753–761.
  • Van Bockstaele, F., De Leyn, I., Eeckhout, M. and Dewettinck, K. (2008b). Rheological properties of wheat flour dough and their relationship with bread Volume. II. Dynamic oscillation measurements. Cereal Chem. J. 85:762–768.
  • van de Velde, F., van Riel, J. and Tromp, R.H. (2002). Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). J. Sci. Food Agr. 82:1528–1536.
  • van de Velde, F., Weinbreck, F., Edelman, M.W., van der Linden, E. and Tromp, R.H. (2003). Visualisation of biopolymer mixtures using confocal scanning laser microscopy (CSLM) and covalent labelling techniques. Colloids and Surfaces B: Biointerfaces 31:159–168.
  • Weegels, P.L., Groeneweg, F., Esselink, E., Smit, R., Brown, R. and Ferdinando, D. (2003). Large and Fast Deformations Crucial for the Rheology of Proofing Dough. Cereal Chem. 80:424–426.
  • Weegels, P.L., van de Pijpekamp, A.M., Graveland, A., Hamer, R.J. and Schofield, J.D. (1996). Depolymerisation and re-polymerisation of wheat glutenin during dough processing. I. relationships between glutenin macropolymer content and quality parameters. J. Cereal Sci. 23:103–111.
  • Werner, W.E., Adalsteins, A.E. and Kasarda, D.D. (1992). Composition of high-molecular weight glutenin subunit dimers formed by partial reduction of residue glutenin. Cereal Chem. 69:535–541.
  • Wieser, H. (2007). Chemistry of gluten proteins. Food Microbiol. 24:115–119.
  • Wilson, J.D., Bechtel, D.B., Todd, T.C. and Seib, P.A. (2006). Measurement of wheat starch granule size distribution using image analysis and laser diffraction technology. Cereal Chem. 83:259–268.
  • Zhang, Y. and Simsek, S. (2009). Physicochemical changes of starch in refrigerated dough during storage. Carbohyd. Polym. 78:268–274.
  • Zheng, C., Sun, D.-W. and Zheng, L. (2006a). Recent applications of image texture for evaluation of food qualities—A review. Trends Food Sci. Technol. 17:113–128.
  • Zheng, C., Sun, D.-W. and Zheng, L. (2006b). Recent developments and applications of image features for food quality evaluation and inspection—A review. Trends Food Sci. Tech. 17:642–655.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.