2,870
Views
107
CrossRef citations to date
0
Altmetric
Original Articles

Sugar Ester Surfactants: Enzymatic Synthesis and Applications in Food Industry

, &

REFERENCES

  • Adachi, S. and Kobayashi, T. (2005). Synthesis of esters by immobilized-lipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent. J. Biosci. Bioeng. 99(2):87–94.
  • Adelhorst, K., Bjorkling, F., Godtfredsen, S.E. and Kirk, O. (1990). Enzyme catalyzed preparation of 6-O-acylglucopyranosides. Synthesis 2:112–115.
  • Affleck, R., Haynes, C.A. and Clark, D.S. (1992). Solvent dielectric effects on protein dynamics. Proc. Natl. Acad. Sci. USA 89:167–170.
  • Akoh, C.C., Lee, G-C. and Shaw, J-F. (2004). Protein engineering and applications of Candida rugosa lipase isoforms. Lipids 39:513–526.
  • Alhir, S., Manjrekajis, S. and Chandan, R. (1990). Lipase of Penicillium caseicolum. J. Agric. Food Chem. 38:598–601.
  • Arcos, J.A., Bernabe, M. and Otero, C. (1998). Quantitative enzymatic production of 6-O-acylglucose esters. Biotechnol. Bioeng. 57(5):505–509.
  • Arcos, J.A., Hill, C.G. and Otero, C. (2001). Kinetics of the lipase-catalyzed synthesis of glucose esters in acetone. Biotechnol. Bioeng. 73:104–110.
  • Asghar, A., Anjum, F.M. and Allen, J.C. (2011). Utilization of dairy byproduct proteins, surfactants, and enzymes in frozen dough. Crit. Rev. Food Sci. Nutr. 51:374–382.
  • Awang, R., Basri, M., Ahmad, S. and Salleh, A.B. (2000). Enzymatic esterification of dihydroxystearic acid. J. Am. Oil Chem. Soc. 77:609–612.
  • Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J. and Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87:427–444.
  • Banat, I.M., Makkar, R.S. and Cameotra, S.S. (2000). Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53:495–508.
  • Brígida, A.I., Pinheiro, A.D., Ferreira, A., Pinto, G.A. and Gonçalves, L.R. (2008). Immobilization of Candida antarctica lipase B by adsorption to green coconut fiber. Appl. Biochem. Biotechnol. 146:173–187.
  • Brink, L.E. S. and Tramper, J. (1985). Optimization of organic solvent in multiphase biocatalysis. Biotechnol. Bioeng. 27:1258–1269.
  • Cabrera, Z., Gutarra, M.L. E., Guisan, J.M. and Palomo, J.M. (2010). Highly enantioselective biocatalysts by coating immobilized lipases with polyethyleneimine. Catal. Commun. 11:964–967.
  • Cajal, Y., Svendsen, A., Girona, V., Patkar, S.A. and Alsina, M.A. (2000) Interfacial control of lid opening in Thermomyces lanuginosa lipase. Biochemistry 39:413–423.
  • Cao, L., Bornscheuer, U.T. and Schmid, R.D. (1999). Lipase-catalyzed solid-phase synthesis of sugar esters. Influence of immobilization on productivity and stability of the enzyme. J. Mol. Catal. B: Enzymatic 6:279–285.
  • Castillo, R.E., Marty, A., Combes, D. and Condoret, J.S. (1994). Polar substrates for enzymatic reactions in supercritical CO2: How to overcome the solubility limitation. Biotechnol. Lett. 16:169–174.
  • Castillo, E., Pezzotti, F., Navarro, A. and López-Munguia, A. (2003). Lipase-catalyzed synthesis of xylitol monoesters: Solvent engineering approach. J. Biotechnol. 102:251–259.
  • Cauglia, F. and Canepa, P. (2008) The enzymatic synthesis of glucosylmyristate as a reaction model for general considerations on “sugar esters” production. Biores. Technol. 99:4065–4072.
  • Chaiyaso, T., H-kittikun, A. and Zimmermann, W. (2006). Biocatalytic acylation of carbohydrates with fatty acids from palm fatty acid distillates. J. Ind. Microbiol. Biotechnol. 33:338–342.
  • Chamouleau, F., Coulon, D., Girardin, M. and Ghoul, M. (2001). Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media. J. Mol. Catal. B: Enzymatic 11:949–954.
  • Chang, S.W. and Shaw, J.F. (2009). Biocatalysis for the production of carbohydrate esters. New Biotechnol. 26:109–116.
  • Chmielewski, R.A. N. and Ftank, J.F. (2007). Inactivation of Listeria monocytogenes biofilms using chemical sanitizers and heat. In: Biofilms in the Food Environment, pp. 73–104. Blaschek, H.P., Wang, H.H. and Alge, M.E., Eds., Blackwell Publishing, Iowa.
  • Chopineau, J., McCafferty, F.D., Therisod, M. and Klibanov, A.M. (1988). Production of bio- surfactants from sugar alcohols and vegetable oils catalyzed by lipases in a nonaqueous medium. Biotechnol. Bioeng. 31:208–214.
  • Chowdary, G.V. and Prapulla, S.G. (2002). The influence of water activity on the lipase catalyzed synthesis of butyl butyrate by transesterification. Proc. Biochem. 38:393–397.
  • Contesini, F.J., Lopes, D.B., Macedo, G.A., Nascimento, M.G. and Carvalho, P.O. (2010). Aspergillus sp. lipase: Potential biocatalyst for industrial use. J. Mol, Catal. B: Enzymatic 67:163–171.
  • Coulon, D. and Ghoul, M. (1998). The enzymatic synthesis of non-ionic surfactants: The sugar esters. Agro Food Ind. Hi-Tech 9:22–26.
  • Cruces, M.A., Plou, F.J., Ferrera, M., Bernabé, M. and Ballesteros, A. (2001). Improved synthesis of sucrose fatty acid monoesters. J. Am. Oil Chem. Soc. 78:541–546.
  • Degn, P., Pedersen, L.H., Duus, J. and Zimmermann, W. (1999). Lipase-catalysed synthesis of glucose fatty acid esters in tert-butanol. Biotechnol. Lett. 21:275–280.
  • Divakar, S. and Manohar, B. (2007). Use of lipases in the industrial production of esters. Ind. Enzymes 283–300.
  • Doukyu, N. and Ogino, H. (2010). Organic solvent-tolerant enzymes. Biochem. Eng. J. 48:270–282.
  • Ducret, A., Giroux, A., Trani, M. and Lortie, R. (1995). Enzymatic preparation of biosurfactants from sugar or sugar alcohols and fatty acids in organic media under reduced pressure. Biotechnol. Bioeng. 48:214–221.
  • El-Laithy, H.M., Shoukry, O. and Mahran, L.G. (2011). Novel sugar esters proniosomes for transdermal delivery of vinpocetine: Preclinical and clinical studies. Eur. J. Pharm. Biopharm. 77:43–55.
  • Endy, D. (2005). Foundations for engineering biology. Nature 438:449–453.
  • Engasser, J.M., Chamouleau, F., Chebil, L. and Ghoul, M. (2008) Kinetic modeling of glucose and fructose dissolution in 2-methyl-2-butanol. Biochem. Eng. J. 42:159–165.
  • Fanun, M. (2009a). Microemulsions with nonionic surfactants and mixed oils. Soft Mat. 7(4):258–276.
  • Fanun, M. (2009b). Properties of microemulsions with sugar surfactants and peppermint oil. Col. Pol. Sci. 287:899–910.
  • Farinas, E.T., Bulter, T. and Arnold, F.H. (2001). Directed enzyme evolution. Curr. Opin. Biotechnol. 12:545–551.
  • Ferrer, M., Cruces, M.A., Bernabe, M., Ballesteros, A. and Plou, F.J. (1999) Lipase catalyzed regioselective acylation of sucrose in two-solvent mixtures. Biotechnol. Bioeng. 65(1):10–16.
  • Ferrer, M., Solvieri, J., Plou, F.J., López-Cortés, N., Reyes-Duarte, D., Christensen, M., Copa-Patiño, J.L. and Ballesteros, A. (2005). Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Enz. Microb. Technol. 36(4):391–398.
  • Flanagan, J. and Singh, H. (2006). Microemulsions: A potential delivery system for bioactives in food. Crit. Rev. Food Sci. Nutr. 46(3):221–237.
  • Flores, M.V., Sewalt, J.J., Janssen, A.E. and Padt, A. (2000). The nature of fatty acid modifies the equilibrium position in the esterification catalyzed by lipase. Biotechnol. Bioeng. 67:364–371.
  • Fregapane, G., Sarney, D.B. and Vulfson, E.N. (1991). Enzymatic solvent-free synthesis of sugar acetal fatty acid esters. Enz. Microb. Technol. 13:796–800.
  • Fuciños, P., Rúa, M.L., Longo, M.A., Sanromán, M.A. and Pastrana, L. (2008). Thermal spring water enhances lipolytic activity in Thrmus thermophiles HB27. Proc. Biochem. 43:1383–1390.
  • Furukawa, S., Akiyoshi, Y., O’Toole, G.A., Ogihara, H. and Morinaga, Y. (2010). Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria. Int. J. Food Microbiol. 138:176–180.
  • Gandhi, N.N., Patil, N.S., Sawant, S.B., Joshi, J.B., Wangikar, P.P. and Mukesh, D. (2000). Lipase catalyzed esterification. Catalysis Rev. 42:439–480.
  • Gargouri, M., Drouet, P. and Legoy, M.D. (2002). Synthesis of a novel macrolactone by lipase-catalyzed intra-esterification of hydroxy-fatty acid in organic media. J. Biotechnol. 92:259–266.
  • Garti, N., Clement, V., Fanun, M. and Leser, M.E. (2000). Some characteristics of sugar ester nonionic microemulsions in view of possible food applications. J. Agric. Food Chem. 48(9):3945–3956.
  • Glatter, O., Orthaber, D., Stradner, A., Scherf, G., Fanun, M., Garti, N., Clement, V. and Leser, M.E. (2001). Sugar-ester nonionic microemulsion: Structural characterization. J. Col. Int. Sci. 241(1):215–225.
  • Golynskiy, M.V. and Seelig, B. (2010). De novo enzymes: From computational design to mRNA display. Trends Biotechnol. 28(7):340–345.
  • Gumel, A.M., Annuar, M.S. M., Heidelberg, T. and Chisti, Y. (2011). Lipase mediated synthesis of sugar fatty acid esters. Proc. Biochem. 46:2079–2090.
  • Guncheva, M. and Zhiryakova, D. (2011). Catalytic properties and potential applications of Bacillus lipases. J. Mol. Catal. B: Enzymatic 68:1–21.
  • Gupta, R., Gupta, N. and Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64:763–781.
  • Hasan, F., Shah, A.A. and Hameed, A. (2006). Industrial applications of microbial lipases. Enz. Microb. Technol. 39:235–251.
  • Hernandez-Fernandez, F.J., de los Rios, A.P., Lozano-Blanco, L.J. and Godinez, C. (2010). Biocatalytic ester synthesis in ionic liquid media. J. Chem. Technol. Biotechnol. 85:1423–1435.
  • Hill, K. (2000). Fats and oils as oleochemical raw materials. Pure Appl. Chem. 72:1255–1264.
  • Hill, K. and LeHen-Ferrenbach, C. (2009). Sugar-based surfactants for consumer products and technical applications. In: Sugar-Based Surfactants, pp. 1–20. Ruiz, C.C., Ed., CRC Press, Taylor & Francis Group LLC, USA.
  • Hudson, E.P., Eppler, R.K. and Clark, D.S. (2005). Biocatalysis in semi-aqueous and nearly anhydrous conditions. Curr. Opin. Biotechnol. 16:637–643.
  • Ikeda, I. and Klibanov, A.M. (1993). Lipase-catalyzed acylation of sugars solubilized in hydrophobic solvents by complexation. Biotechnol. Bioeng. 42(6):788–791.
  • Ikeda, Y. and Kurokawa, Y. (2002). Enantioselective esterification of racemic ibuprofen in isooctane by immobilized lipase on cellulose acetate-titanium iso-propoxide gel fiber. J. Biosci. Bioeng. 93:98–100.
  • Izák, P., Mateus, N.M., Afonso, C.A. and Crespo, J.G. (2005). Enhanced esterification conversion in a room temperature ionic liquid by integrated water removal with pervaporation. Sep. Pur. Technol. 41:141–145.
  • Jaeger, K.E. and Eggert, T. (2002). Lipases for biotechnology. Curr. Opin. Biotechnol. 13:390–397.
  • Janssen, A.E. M., Lefferts, A.G. and Riet, K. (1990). Enzymatic synthesis of carbohydrate esters in aqueous media. Biotechnol. Lett. 12:711–716.
  • Johansson, I. and Svensson, M. (2001). Surfactants based on fatty acids and other natural hydrophobes. Curr. Opin. Col. Int. Sci. 6:178–188.
  • Joseph, B., Ramteke, P.W. and Thomas, G. (2008). Cold active microbial lipases: Some hot issues and recent developments. Biotechnol. Adv. 26:457–470.
  • Juhl, P.B., Doderer, K., Hollmann, F., Thum, O. and Pleiss, J.(2010). Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters. J. Biotechnol. 150:474–480.
  • Karmee, S.K. (2008). Lipase catalyzed synthesis of ester-based surfactants from biomass derivatives. Biofuels Bioprod. Bioref. 2:144–154.
  • Kennedy, J.F., Panesar, P.S., Marwaha, S.S., Goyal, R., Parmar, A. and Kaur, S. (2006). Enzyme-catalyzed regioselective synthesis of sugar esters and related compounds. J. Chem. Technol. Biotechnol. 81:866–876.
  • Khaled, N., Montet, D., Pina, M. and Graille, J. (1991). Fructose oleate synthesis in a fixed catalyst bed reactor. Biotechnol. Lett. 13:167–172.
  • Khmelnitsky, Y.L., Levashov, A.V., Klyachko, N.L. and Martinek, K. (1988). Engineering biocatalytic systems in organic media with low water content. Enz. Microb. Technol. 10:710–724.
  • Klibanov, A.M. (1990). Asymmetric transformations catalysed by enzymes in organic solvents. Accounts Chem. Res. 23:114–120.
  • Klibanov, A.M. (2001). Improving enzymes by using them in organic solvents. Nature 409:241–246.
  • Knezevic, Z., Milosavic, N., Bezbradica, D., Jakovljevic, Z. and Prodanovic, R. (2006). Immobilization of lipase from Candida rugosa on Eupergit C supports by covalent attachment. Biochem. Eng. J. 30:269–278.
  • Kobayashi, T., Furutani, W., Adachi, S. and Matsuno, R. (2003). Equilibrium constant for the lipase-catalyzed synthesis of fatty acid butyl ester in various organic solvents. J. Mol. Catal. B: Enzymatic 24–25:61–66.
  • Kralova, I. and Sjoblom, J. (2009). Surfactants used in food industry: A review. J. Disp. Sci. Technol. 30:1361–1383.
  • Krishna, S.H. and Karanth, N.G. (2002). Lipases and lipase-catalyzed esterification reactions in nonaqueous media. Catal. Rev. 44:499–591.
  • Ku, M.A. and Hang, Y.D. (1995). Enzymatic synthesis of esters in organic medium with lipase from Byssochlamys fulva. Biotechnol. Lett. 17:1081–1084.
  • Kumar, R., Modak, J. and Madras, G. (2005). Effect of the chain length of the acid on the enzymatic synthesis of flavours in supercritical carbon dioxide. Biochem. Eng. J. 23:199–202.
  • Lay, L., Panza, L., Riva, S., Khitri, M. and Tirendi, S. (1996). Regioselective acylation of disaccharides by enzymatic transesterification. Carbohydrate Res. 291:197–204.
  • Lee, S.H., Dang, D.T., Ha, S.H., Chang, W-J. and Koo, Y-M. (2007). Lipase-catalyzed synthesis of fatty acid sugar ester using extremely supersaturated sugar solution in ionic liquids. Biotechnol. Bioeng. 99(1):1–8.
  • Lee, M.Y. and Dordick, J.S. (2002). Enzyme activation for nonaqueous media. Curr. Opin. Biotechnol. 13:376–384.
  • Lee, S.B. and Kim, K.J. (1995). Effect of water activity on enzyme hydration and enzyme reaction rate in organic solvents. J. Ferm. Bioeng. 79:473–478.
  • Liu, X., Gong, L., Xin, M. and Liu, J. (1999). The synthesis of sucrose ester and selection of its catalyst. J. Mol. Catal. A: Chem. 147:37–40.
  • Liu, Q.B., Janssen, M.H., van Rantwijk, F. and Sheldon, R.A. (2005). Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem. 7(1):39–42.
  • Liu, Y., Wang, F. and Tan, T. (2009). Effects of alcohol and solvent on the performance of lipase from Candida sp. in enantioselective esterification of racemic ibuprofen. J. Mol. Catal. B: Enzymatic 56:126–130.
  • Lombardo, D. and Guy, O. (1981). Effect of alcohol on the hydrolysis catalyzed by human pancreatic carboxylic-ester hydrolase. Biochim. Biophys. Acta 657:425–437.
  • Lozano, P., Pérez-Marín, A.B., De Diego, T., Gómez, D., Paolucci-Jeanjean, D., Belleville, M.P., Rios, G.M. and Iborra, J.L. (2002). Active membranes coated with immobilized Candida antarctica lipase B: Preparation and application for continuous butyl butyrate synthesis in organic media. J. Memb. Sci. 201:55–64.
  • Lu, J., Nie, K., Wang, F. and Tan, T. (2008). Immobilized lipase Candida sp 99–125 catalyzed methanolysis of glycerol trioleate: Solvent effect. Biores. Technol. 99:6070–6074.
  • Magnusson, A.O., Rotticci-Mulder, J.C., Santagostino, A. and Hult, K. (2005). Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. Eur. J. Chem. Biol. 6:1051–1056.
  • Makas, Y.G., Kalkan, N.A., Aksoy, S., Altinok, H. and Hasirci, N. (2010). Immobilization of laccase in κ-carrageenan based semi-interpenetrating polymer networks. J. Biotechnol. 148:216–220.
  • Matsue, S. and Miyawaki, O. (2000). Influence of water activity and aqueous solvent ordering on enzyme kinetics of alcohol dehydrogenase, lysozyme, and β-galactosidase. Enz. Microb. Technol. 26:342–347.
  • McCabe, R.W. and Taylor, A. (2004). An investigation of the acryl-binding site of Candida antarctica lipase B. Enz. Microb. Technol. 35:393–398.
  • McClements, D.J. (2010). Emulsion design to improve the delivery of functional lipophilic components. Ann. Rev. Food Sci. Technol. 1(1):241–269.
  • McClements, D.J., Decker, E.A. and Weiss, J. (2007). Emulsion-based delivery systems for lipophilic bioactive components. J. Food Sci. 72(8):109–124.
  • Moayedallaie, S., Mirzaei, M. and Paterson, J. (2010). Bread improvers: Comparison of a range of lipases with a traditional emulsifier. Food Chem. 122:495–499.
  • Moreno, J.M. and Sinisterra, J.V. (1994). Immobilization of lipase from Candida cylindracea on inorganic supports. J. Mol. Catal. 93(3):357–369.
  • Neta, N.S., Peres, A.M., Teixeira, J.A. and Rodrigues, L.R. (2011). Maximization of fructose esters synthesis by response surface methodology. New Biotechnol. 28(4):349–355.
  • Neta, N.S., Santos, J.C., Sancho, S.O., Rodrigues, S., Gonçalves, L.R.B, Rodrigues, L.R. and Teixeira, J.A. (2012). Enzymatic synthesis of sugar esters and their potential as surface-active stabilizers of coconut milk emulsions. Food Hydrocol. 27(2):324–331.
  • Nitschke, M. and Costa, S.G. (2007). Biosurfactants in food industry. Trends Food Sci. Technol. 18:252–259.
  • Oguntimein, G.B., Erdmann, H. and Scmid, R.D. (1993). Lipase catalysed synthesis of sugar ester in organic solvent. Biotechnol. Lett. 15:175–180.
  • Ong, A.L., Kamaruddin, A.H., Bhatia, S., Long, W.S., Lim, S.T. and Kumari, R. (2006). Performance of free Candida antarctica lipase B in the enantioselective esterification of (R)-ketoprofen. Enz. Microb. Technol. 39:924–929.
  • Oosterom, W.M., van Rantwijk, F. and Sheldon, R.A. (1996) Regioselective acylation of disaccharides in t-butyl alcohol catalysed by Candida antartica lipase. Biotechnol. Bioeng. 49:328–333.
  • Orrego, C.E., Salgado, N., Valencia, J.S., Giraldo, G.I., Giraldo, O.H. and Cardona, C.A. (2010). Novel chitosan membranes as support for lipases immobilization: Characterization aspects. Carbohydrate Pol. 79:9–16.
  • Partal, P., Guerrero, A., Berjano, M. and Gallegos, C. (1999). Transient flow of o/w sucrose palmitate emulsions. J. Food Eng. 41:33–41.
  • Patel, M. (2004). Surfactants based on renewable raw materials; carbon dioxide reduction potential and policies and measures for the European Union. J. Ind. Ecol. 7:47–62.
  • Patil, D.R., Rethwisch, D.G. and Dordick, J.S. (1991). Enzymatic synthesis of a sucrose containing linear polyester in nearly anhydrous organic media. Biotechnol. Bioeng. 37:639–646.
  • Pedersen, N.R., Wimmer, R., Matthiesen, R., Pedersen, L.H. and Gessesse, A. (2003). Synthesis of sucrose laurate using a new alkaline protease. Tetrah. Asym. 14:667–673.
  • Persson, M., Costes, D., Wehtje, E. and Adlercreutz, P. (2002). Effects of solvent, water activity and temperature on lipase and hydroxynitrile lyase enantioselectivity. Enz. Microb. Technol. 30:916–923.
  • Plou, F.J., Cruces, M.A., Ferrer, M., Fuentes, G., Pastor, E., Bernabe, M., Christensen, M., Comelles, F., Parra, J.L. and Ballesteros, A. (2002). Enzymatic acylation of di- and trisaccharides with fatty acids: Choosing the appropriate enzyme, support and solvent. J. Biotechnol. 96:55–66.
  • Pulido, R., López, F.O. and Gotor, V. (1992). Enzymatic regioselective acylation of hexoses and pentoses using oxime esters. J. Chem. Soc. Perkin Trans. 1:2981–2988.
  • Queneau, Y., Chambert, S., Besset, C. and Cheaib, R. (2008). Recent progress in the synthesis of carbohydrate-based amphiphilic materials: The examples of sucrose and isomaltulose. Carbohydrate Res. 343:1999–2009.
  • Rajendran, A., Palanisamy, A. and Thangavelu, V. (2009). Lipase catalyzed ester synthesis for food processing industries. Braz. Arch. Biol. Technol. 52(1):207–219.
  • Rao, J. and McClements, J. (2011). Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate and lemon oil. Food Hydrocol. 25:1413–1423.
  • Reis, P., Holmberg, K., Watzke, H., Leser, M.E. and Miller, R. (2009). Lipases at interfaces: A review. Adv. Col. Int. Sci. 147–148:237–250.
  • Riva, S., Chopineau, J., Kieboom, A.P. G. and Klibanov, A.M. (1988). Protease catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethylformamide. J. Am. Oil Chem. Soc. 110:584–589.
  • Rodrigues, D.S., Cavalcante, G.P., Ferreira, A.L. and Gonçalves, L.R. (2008b). Immobilization of Candida antarctica lipase type b by adsorption on activated carbon. Chem. Biochem. Eng. Quart. 22:125–133.
  • Rodrigues, R.C. and Fernandez-Lafuente, R. (2010). Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. J. Mol. Catal. B: Enzymatic 64:1–22.
  • Rodrigues, D.S., Mendes, A.A., Adriano, W.S., Gonçalves, L.R. and Giordano, R.L. (2008a). Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J. Mol. Catal. B: Enzymatic 51:100–109.
  • Rodrigues, L.R. and Teixeira, J.A. (2008). Biosurfactants production from cheese whey. In: Advances in Cheese Whey Utilization, pp. 81–104. Cerdán, M.E., González-Siso, M. and Becerra, M., Eds., Transworld Research Network Publishers, India.
  • Rodrigues, L.R. and Teixeira, J.A. (2010). Biomedical and therapeutic applications of biosurfactants. In: Biosurfactants. Advances in Experimental Medicine & Biology Series, vol. 55, pp. 75–87. Sen, R., Ed., Landes Bioscience Publishers, Austin.
  • Rubio, E., Fernandez-Mayorales, A. and Klibanov, A.M. (1991). Effects of solvents on enzyme regioselectivity. J. Am. Chem. Soc. 113:695–696.
  • Sabeder, S., Habulin, M. and Knez, Z. (2005). Comparison of the esterification of fructose and palmitic acid in organic solvent and in supercritical carbon dioxide. Ind. Eng. Chem. Res. 44:9631–9635.
  • Sabeder, S., Habulin, M. and Knez, Z. (2006). Lipase-catalyzed synthesis of fatty acid fructose esters. J. Food Eng. 77:880–886.
  • Sagalowicz, L. and Leser, M.E. (2010). Delivery systems for liquid food products. Curr. Opin. Col. Int. Sci. 15(1–2):61–72.
  • Sakurai, T., Margolin, A.L., Russell, A.J. and Klibanov, A.M. (1988). Control of enzyme enantioselectivity by the reaction medium. J. Am. Chem. Soc. 110:7236–7237.
  • Salager, J.L., Anton, R.E., Sabatini, D.A., Harwell, J.H., Acosta, E.J. and Tolosa, L.I. (2005). Enhancing solubilization in microemulsions—state of the art and current trends. J. Surf. Det. 8(1):3–21.
  • Salem, J.H., Humeau, C., Chevalot, I., Harscoat-Schiavo, C., Vanderesse, R., Blanchard, F. and Fick, M. (2010). Effect of acyl donor chain length on isoquercitrin acylation and biological activities of corresponding esters. Proc. Biochem. 45:382–389.
  • Sawa, K., Inoue, S., Lysenko, E., Edwards, N.M. and Preston, K.R. (2009). Effects of purified monoglycerides on Canadian short process and sponge and dough mixing properties, bread quality and crumb firmness during storage. Food Chem. 115:884–890.
  • Saxena, R.K., Davidson, W.S., Sheoran, A. and Giri, B. (2003). Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus. Proc. Biochem. 39:239–247.
  • Schlotterbeck, A., Lang, S., Wary, V. and Wagner, F. (1993). Lipase catalyzed monoacylation of fructose. Biotechnol. Lett. 15:61–64.
  • Severac, E., Galy, O., Turon, F., Pantel, C.A., Condoret, J.S., Monsan, P. and Marty, A. (2010). Selection of Cal B immobilization method to be used in continuous oil transesterification: Analysis of the economical impact. Enz. Microb. Technol. 48:61–70.
  • Sharma, A. and Chattopadhyay, S. (1993). Lipase catalysed acetylation of carbohydrates. Biotechnol. Lett. 15:1145–1146.
  • Sharma, R., Chisti, Y. and Banerjee, U.C. (2001). Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19:627–662.
  • Sheldon, R. (2001). Catalytic reactions in ionic liquids. Chem. Comm. 2399–2407.
  • Shieh, C.J. and Lai, Y.F. (2000). Application of response surface methodology to the study of methyl glucoside polyester synthesis parameters in a solvent-free system. J. Agric. Food Chem. 48:1124–1128.
  • Shu, Z.Y., Jiang, H., Lin, R.F., Jiang, Y.M., Lin, L. and Huang, J.Z. (2010). Technical methods to improve yield, activity and stability in the development of microbial lipases. J. Mol. Catal. B: Enzymatic 62:1–8.
  • Somashekar, B.R. and Divakar, S. (2007). Lipase catalyzed synthesis of L-alanyl esters of carbohydrates. Enz. Microb. Technol. 40:299–309.
  • Sonwalkar, R.D., Chen, C.C. and Ju, L.K. (2003). Roles of silica gel in polycondensation of lactic acid in organic solvent. Biores. Technol. 87:69–73.
  • Soultani, S., Engasser, J.-M. and Ghoul, M. (2001). Effect of acyl donor chain length and sugar/acyl donor molar ratio on enzymatic synthesis of fatty acid fructose esters. J. Mol. Catal. B: Enzymatic 11:725–731.
  • Soultani, S., Ognier, S., Engasser, J-M. and Ghoul, M. (2003). Comparative study of some surface active properties of fructose esters and commercial sucrose esters. Col. Surf. A: Physicochem. Eng. Asp. 227:35–44.
  • Szuts, A., Pallagi, E., Regdon, G., Aigner, Z. and Szabo-Revesz, P. (2007). Study of thermal behaviour of sugar esters. Int. J. Pharm. 336(2):199–207.
  • Tarahomjoo, S. and Alemzadeh, I. (2003). Surfactant production by an enzymatic method. Enz. Microb. Technol. 33:33–37.
  • Tejo, B.A., Salleh, A.B. and Pleiss, J. (2004). Structure and dynamics of Candida rugosa lipase: The role of organic solvent. J. Mol. Modeling 10:358–366.
  • Therisod, M. and Klibanov, A. M. (1987). Regioselective acylation of secondary hydroxyl groups in sugars catalyzed by lipases in organic solvents. J. Am. Oil Chem. Soc. 109(13):3977–3981.
  • Tokiwa, Y., Raku, T., Kitagawa, M. and Kurane, R. (2000). Preparation of polymeric biosurfactant containing sugar and fatty acid esters. Clean Prod. Proc. 2:108–111.
  • Treichel, H., de Oliveira, D., Mazutti, M.A., Di Luccio, M. and Oliveira, J.V. (2010). solvent review on microbial lipases production. Food Bioproc. Technol. 3:182–196.
  • Tsuzuki, W., Kitamura, Y., Suzuki, T. and Kobayashi, S. (1999a). Synthesis of sugar fatty acid esters by modified lipase. Biotechnol. Bioeng. 64:267–271.
  • Tsuzuki, W., Kitamura, Y., Suzuki, T. and Mase, T. (1999b). Effects of glucose on lipase activity. Biosci. Biotechnol. Biochem. 63:1467–1470.
  • Valivety, R.H., Halling, P.J., Peilow, A.D. and Macrae, A.R. (1994). Relationship between water activity and catalytic activity of lipases in organic media. effects of supports, loading and enzyme preparation. Eur. J. Biochem. 222:461–466.
  • Velikov, K.P. and Pelan, E. (2008). Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4(10):1964–1980.
  • Villeneuve, P., Muderhwa, J.M., Graille, J. and Haas, M.J. (2000). Customizing lipases for biocatalysis: A survey of chemical, physical and molecular biological approaches. J. Mol. Catal. B: Enzymatic 9:113–148.
  • Ward, O.P., Fang, J. and Li, Z. (1997). Lipase-catalyzed synthesis of a sugar ester containing arachidonic acid. Enz. Microb. Technol. 20:52–56.
  • Watanabe, T., Katayama, S., Matsubara, M., Honda, Y. and Kuwahara, M. (2000). Antibacterial carbohydrate monoesters suppressing cell growth of Streptococcus mutans in the presence of sucrose. Curr. Microbiol. 41:210–213.
  • Watanabe, Y., Miyawaki, Y., Adachi, S., Nakanishi, K. and Matsuno, R. (2001). Equilibrium constant for lipase-catalyzed condensation of mannose and lauric acid in water-miscible organic solvents. Enz. Microb. Technol. 29:494–498.
  • Wescott, C.R. and Klibanov, A.M. (1994). The solvent dependence of enzyme specificity. Biochem. Biophys. Acta 1206:1–9.
  • Wu, J.Y. and Liu, S.W. (2000). Influence of alcohol concentration on lipase-catalyzed enantioselective esterification of racemic naproxen in isooctane: Under controlled water activity. Enz. Microb. Technol. 26:124–130.
  • Yamane, T., Hoq, M.M., Itoh, S. and Shimizu, S. (1986). Glycerolysis of fats by lipase. J. Jap. Oil Chem. Soc. 35:625–631.
  • Yan, Y., Bornscheuer, U.T., Cao, L. and Schmid, R.D. (1999). Lipase catalyzed solid-phase synthesis of sugar fatty acid esters. Enz. Microb. Technol. 25:725–728.
  • Yan, Y., Bornscheuer, U.T. and Schmid, R.D. (2002). Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope. Biotechnol. Bioeng. 78:31–34.
  • Yan, Y., Bornscheuer, U.T., Stadler, G., Lutz-Wahl, S., Reuss, M. and Schmid, R.D. (2001). Production of sugar fatty acid estrs by enzymatic esterification in a stirred-tank membrane reactor: Optimization of parameters by response surface methodology. J. Am. Oil Chem. Soc. 78:147–153.
  • Ye, P., Wan, R.B. and Wang, X.P. (2009). Quantitative enzyme immobilization: Control of the carboxyl group density on support surface. J. Mol. Catal. B: Enzymatic 61:296–302.
  • Yin, L.J., Chu, B.S., Kobayashi, I. and Nakajima, M. (2009). Performance of selected emulsifiers and their combinations in the preparation of beta-carotene nanodispersions. Food Hydrocol. 23:1617–1622.
  • Yoshida, Y., Kimura, Y., Kadota, M., Tsuno, T. and Adachi, S. (2006). Continuous synthesis of alkyl ferulate by immobilized Candida antarctica lipase at high temperature. Biotechnol. Lett. 28:1471–1474.
  • Yu, J., Zhang, J., Zhao, A. and Ma, X. (2008). Study of glucose ester synthesis by immobilized lipase from Candida sp. Catal. Comm. 9:1369–1374.
  • Zhang, L., Somasundaran, P., Singh, S.K., Felse, A.P. and Gross, R. (2004). Synthesis and interfacial properties of sophorolipid derivatives. Col. Surf. A: Physicochem. Eng. Asp. 240:75–82.
  • Zhang, W., Wang, Y., Hayat, K., Zhang, X., Shabbar, A., Feng, B. and Jia, C. (2009) Efficient lipase-selective synthesis of dilauryl mannoses by simultaneous reaction–extraction system. Biotechnol. Lett. 31:423–428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.