1,006
Views
55
CrossRef citations to date
0
Altmetric
Original Articles

Principles and Limitations of Stable Isotopes in Differentiating Organic and Conventional Foodstuffs: 1. Plant Products

, &

REFERENCES

  • Amundson, R., Austin, A.T., Schuur, E.A. G., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D. and Baisden, W.T. (2003). Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles. 17:1031–1041.
  • Bateman, A.S. and Kelly, S.D. (2007). Fertilizer nitrogen isotope signatures. Isotopes Environ. Health Stud. 43:237–247.
  • Bateman, A.S., Kelly, S.D. and Jickells, T.D. (2005). Nitrogen isotope relationships between crops and fertilizer: Implications for using nitrogen isotope analysis as an indicator of agricultural regime. J. Agric. Food Chem. 53:5760–5765.
  • Bateman, A.S., Kelly, S.D. and Woolfe, M. (2007). Nitrogen isotope composition of organically and conventionally grown crops. J. Agric. Food Chem. 55:2664–2670.
  • Benner, R., Fogel, M.L., Sprague, E.K. and Hodson, R.E. (1987). Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature. 329:708–710.
  • Brasil (2003). Lei N° 10.831 de 23 de dez. 2003. In: Dispõe sobre a agricultura orgânica e dá outras providências. p. 8, Diário Oficial da União, Brasília, Seção 1,. . Available from http://www.planalto.gov.br/ccivil_03/LEIS/2003/L10.831.htm
  • Camin, F., Moschella, A., Miselli, F., Parisi, B., Versini, G., Ranalli, P. and Bagnaresi, P. (2007). Evaluation of markers for the traceability of potato tubers grown in an organic versus conventional regime. J. Sci. Food Agric. 87:1330–1336.
  • Camin, F., Perini, M., Bontempo, L., Fabroni, S., Faedi, W., Magnani, Baruzzi, G., Bonoli, M., Tabilio, M.R., Musmeci, S., Rossman, A., Kelly, S.D. and Rapisarda, P. (2011). Potential isotopic and chemical markers for characterizing organic fruits. Food Chem. 125:1072–1082.
  • Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V. and Ehleringer, J.R. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature. 389:153–158.
  • Chalk, P.M. (1995). Isotope ratios. In: Encyclopedia of Analytical Science, pp. 2409–2415. Townshend, A. and Worsfold, P., Eds., Academic Press Limited, London.
  • Chen, P. and Harnly, J.M. (2010). Flow injection mass spectral fingerprints demonstrate chemical differences in Rio Red grapefruit with respect to year, harvest time, and conventional versus organic farming. J. Agric. Food Chem. 58:4545–4553.
  • Chiodini, A.M., Scherpenise, P. and Bergwerff, A.A. (2006). Ochratoxin A contents in wine: Comparison of organically and conventionally produced products. J. Agric. Food Chem. 54:7399–7404.
  • Choi, W-J., Arshad, M.A., Chang, S.X. and Kim, T.H. (2006). Grain 15N of crops applied with organic and chemical fertilizers in a four-year rotation. Plant Soil. 248:165–174.
  • Choi, W-J., Han, G-H., Lee, S-M., Lee, G-T., Yoon, K-S., Choi S-M. and Ro, H-M. (2007). Impact of land-use types on nitrate concentration and δ15N in confined groundwater in rural areas of Korea. Agric., Ecosyst. Environ. 120:259–268.
  • Choi, W-J., Lee, S-M., Ro, H-M., Kim, K-C. and Yoo, S-H. (2002). Natural 15N abundances of maize and soil amended with urea and composted pig manure. Plant Soil. 245:223–232.
  • Choi, W-J., Ro, H-M. and Hobbie, E.A. (2003). Patterns of natural 15N in soils and plants from chemically and organically fertilized uplands. Soil Biol. Biochem. 35:1493–1500.
  • Coplen, T.B., Böhlke, J.K., De Bièvre, P., Ding, T., Holden, N.E., Hopple, J.A., Krouse, H.R., Lamberty, A., Peiser, H.S., Révész, K., Rieder, S.E., Rosman, K.J. R., Roth, E., Taylor, P.D. P., Vocke Jr., R.D. and Xiao Y.K. (2002). Isotope-abundance variation of selected elements. Pure and Applied Chemistry 74:1987–2017.
  • Dawson, T.E., Mambelli, S., Palmboeck, A.H., Templer, P.H. and Tu, K.P. (2002). Stable isotopes in plant ecology. Annu. Rev. Ecol., Evol. Syst. 33:507–559.
  • del Amor, F.M., Navarro, J. and Aparicio, P.M. (2008). Isotopic discrimination as a tool for organic farming certification in sweet pepper. J. Environ. Qual. 37:182–185.
  • Erskine, P.D., Bergstrom, D.M., Schmidt, S., Stewart, G.R., Tweedie, C.E. and Shaw, D. (1998). Subantarctic Macquarie Island—A model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia. 117:187–193.
  • EU (2007). European Union Council Regulation (EC) No. 834/2007. Organic Production and Labeling of Organic Products. Available from http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:189:0001:0023:EN:PDF
  • Evans, R.D. (2001). Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6:121–126.
  • Flores, P., Fenoll, J. and Hellín, P. (2007). The feasibility of using δ15N and δ13C values for discriminating between conventionally and organically fertilized pepper (Capsicum annuum L.). J. Agric. Food Chem. 55:5740–5745.
  • Flores, P., Murray, P.J., Hellín, P. and Fenoll, J. (2011). Influence of N doses and form on 15N natural abundance of pepper plants: Considerations for using δ15N values as indicator of N source. J. Sci. Food Agric. 91:2255–2258.
  • Fontes, J.C. (1980). Environmental isotopes in groundwater hydrology. In: Handbook of Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment, pp. 75–140. Fritz, P. and Fontes, J.C., Eds., Elsevier, Amsterdam.
  • Förstel, H. (2007). The natural fingerprint of stable isotopes—use of IRMS to test food authenticity. Anal. Bioanal. Chem. 388:541–544.
  • Gat, J.R. (1996). Oxygen and hydrogen isotopes in the hydrological cycle. Ann. Rev. Earth Planet. Sci. 24:225–262.
  • Georgi, M., Boullenger, A., Voerkelius, S. and Schnitzler, W.H. (2004). Differences in δ15N signatures to determine plant material from integrated or organic greenhouse production. ISHS Acta Horticul 659:749–753.
  • Georgi, M., Voerkelius, S., Rossmann, A., Graßmann, J. and Schnitzler, W.H. (2005). Multielement isotope ratios of vegetables from integrated and organic production. Plant Soil. 275:93–100.
  • Gundersen, V., Bechmann, I.E., Behrens, A. and Stürup, S. (2000). Comparative investigation of concentration of major and trace elements in organic and conventional Danish agricultural crops. 1. Onions (Allium cepa cv. Hysan) and peas (Pisum sativum cv. Ping Pong). J. Agric. Food Chem. 48:6094–6102.
  • Hayashi, N., Ujihara, T., Tanaka, E., Kishi, Y., Ogawa, H. and Matsuo, H. (2011). Annual variation of natural 15N abundance in tea leaves and its practicality as an organic tea indicator. J. Agric. Food Chem. 59:10317–10321.
  • Hobbie, E.A. and Werner, R.A. (2004). Tansley review. Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: A review and synthesis. New Phytologist. 171:371–385.
  • Högberg, P. (1997). 15N natural abundance in soil-plant systems. Tansley Review N°. 95, New Phytologist. 137:179–203.
  • Högberg, P., Johannisson, C., Högberg, M., Högberg, L., Näsholm, T. and Hällgren, J-E. (1995). Measurements of abundances of 15N and 13C as tools in retrospective studies of N balances and water stress in forests: A discussion of preliminary results. Plant Soil. 168–169:125–133.
  • Hristov, A.N., Zaman, S., Vander Pol, M., Campbell, L. and Silva, S. (2009). Nitrogen losses from dairy manure estimated through nitrogen mass balance and chemical markers. J. Environ. Qual. 38:2438–2448.
  • IFOAM. (2005). International Federation of Organic Agriculture Movements. Basic Standards for Organic Production and Processing, v. 2005. Corrected v. p. 85. Available from http://www.ifoam.org/about_ifoam/standards/norms/norm_documents_library/IBS_V3_20070817.pdf. Accessed August 2007.
  • IFOAM. (2011). International Federation of Organic Agriculture Movements. The World of Organic Agriculture—Statistics and Emerging Trends 2011. Available from http://www.organic-world.net/1209.html?&L=1
  • Jenkinson, D.S., Coleman, K. and Harkness, D.D. (1995). The influence of fertilizer nitrogen and season on the carbon-13 abundance of wheat straw. Plant Soil. 171:365–367.
  • Junk, G. and Svec, H.J. (1958). The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochimica Cosmochimica Acta. 14:234–243.
  • Kelly, S.D. and Bateman, A.S. (2010). Comparison of mineral concentrations in commercially grown organic and conventional crops—Tomatoes (Lycopersicon esculentum) and lettuce (Lactuca sativa). Food Chem. 119:738–745.
  • Kelly, S.D., Scotter, M.J., Macarthur, R., Castle, L. and Dennis, M.J. (2002). Survey of stable sulfur isotope ratios (34S/32S) of sulfite and sulfate in foods. Food Addit. Contam. 19:1003–1009.
  • Larcher, W. (2003). Carbon utilization and dry matter production. In: Physiological Plant Ecology, 4th ed., pp. 69–184. Springer, Berlin.
  • Laursen, K.H., Schjoerring, J.K.E. Olesen, J.E., Askegaard, M., Halekoh, U. and Husted, S. (2011). Multielemental fingerprinting as a tool for authentication of organic wheat, barley, fava bean, and potato. J. Agric. Food Chem. 59:4385–4396.
  • Lee, C., Hristov, A.N., Cassidy T. and Heyler, K. (2011). Nitrogen isotope fractionation and origin of ammonia volatilized from cattle manure in simulated storage. Atmosphere. 2:256–270.
  • Lindahl, P., Maquet, A., Hult, M., Gasparro, J., Marissens, G. and González de Orduña, R. (2011). Natural radioactivity in winter wheat from organic and conventional agricultural systems. J. Environ. Radioactivity. 102:163–169.
  • Luykx, D.M. A. M. and van Ruth, S.M. (2008). An overview of analytical methods for determining the geographical origin of food products. Food Chem. 107:897–911.
  • Machado, M.M., Montagner, G.F. F. dos S., Boligon, A., Athayde, M.L., da Rocha, M.I. U. M., Lera, J.P. B, Belló, C. and da Cruz, I.B. M. (2011). Determination of polyphenol contents and antioxidant capacity of no-alcoholic red grape products (Vitis labrusca) from conventional and organic crops. Quimica Nova. 34:798–803.
  • Martinelli, L.A., Piccolo, M.C., Towsend, A.R., Vitousek, P.M., Cuevas, E., McDowell, W., Robertson, G.P., Santos, O.C. and Treseder, K. (1999). Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochem. 46:45–65.
  • Mizota, C. and Sasaki, A. (1996). Sulfur isotope composition of soils and fertilizers: Differences between northern and southern hemispheres. Geoderma. 71:77–93.
  • Nakano, A. and Uehara, Y. (2007). Effects of different kinds of fertilizer and application methods on δ15N values of tomato. Jpn Agric. Res. Q. 41:219–226.
  • Nakano, A., Uehara, Y. and Yamauchi, A. (2003). Effect of organic and inorganic fertigation on yields, δ15N values and δ13C values in tomato (Lycopersicon esculentum Mill. cv. Saturn). Plant Soil. 255:343–349.
  • Novák, M., Buzek, F., Harrison, A.F., Přechová, E., Jačková, I., Fottová, D. (2003). Similarity between C, N and S stable isotope profiles in European spruce forest soils: Implications for the use of δ34S as a tracer. Appl. Geochem. 18:765–779.
  • Oberson, A., Nanzer, S., Bosshard, C., Dubois, D., Mäder, P. and Frossard, E. (2007). Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance. Plant Soil. 290:69–83.
  • Peck, W.H. and Tubman, S.C. (2010). Changing carbon isotope ratio of atmospheric carbon dioxide: Implications for food authentication. J. Agric. Food Chem. 58:2364–2367.
  • Piccolo, M.C., Neill, C., Melillo, J.M., Cerri, C.C. and Steudler, P.A. (1996). 15N natural abundance in forest and pasture soils of the Brazilian Amazon Basin. Plant Soil. 182:249–258.
  • Pieper, J.R. and Barret, D.M. (2009). Effects of organic and conventional production systems on quality and nutritional parameters of processing tomatoes. J. Sci. Food Agric. 89:177–194.
  • Primrose, S., Woolfe, M. and Rollinson, S. (2010). Food forensics: Methods for determining the authenticity of foodstuffs. Trends Food Sci. Technol. 21:582–590.
  • Rapisarda, P., Calabretta, M.L. Romano, G. and Intrigliolo, F. (2005). Nitrogen metabolism components as a tool to discriminate between organic and conventional citrus fruits. J. Agric. Food Chem. 53:2664–2669.
  • Rapisarda, P., Camin, F., Fabroni, S., Perini, M., Torrisi, B. and Intrigliolo, F. (2010). Influence of different organic fertilizers on quality parameters and the δ15N, δ13C, δ2H, δ34S, and δ18O values of orange fruit (Citrus sinensis L. Osbeck). J. Agric. Food Chem. 58:3502–3506.
  • Robinson, D. (2001). δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evolution. 16:153–162.
  • Rogers, K.M. (2008). Nitrogen isotopes as a screening tool to determine the growing regimen of some organic and nonorganic supermarket produce from New Zealand. J. Agric. Food Chem. 56:4078–4083.
  • Röhlig, R.M. and Engel, K-H. (2010). Influence of the input system (conventional versus organic farming) on metabolite profiles of maize (Zea mays) kernels. J. Agric. Food Chem. 58:3022–3030.
  • Rossmann, A. (2001). Determination of stable isotope ratios in food analysis. Food Rev. Int. 17:347–381.
  • Schmidt, H-L., Roßmann, A., Voerkelius, S., Schnitzler, W.H., Georgi, M., Graßmann, J., Zimmermann, G. and Winkler, R. (2005). Isotope characteristics of vegetables and wheat from conventional and organic production. Isotopes Environ. Health Stud. 41:223–228.
  • Senbayram, M., Dixon, L., Goulding, K.W. T. and Bol, R. (2008). Long-term influence of manure and mineral nitrogen applications on plant and soil 15N and 13C values from the broadbalk wheat experiment. Rapid Commun. Mass Spectrom. 22:1735–1740.
  • Serret, M.D., Ortiz-Monasterio, I., Pardo, A. and Araus, J.L. (2008). The effect of urea fertilization and genotype on yield, nitrogen use efficiency, δ15N and δ13C in wheat. Ann. Appl. Biol. 153:243–257.
  • Sisti, C.P. J., dos Santos, H.P., Kohhann, R., Alves, B.J. R., Urquiaga, S. and Boddey, R.M. (2004). Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Tillage Res. 76:39–58.
  • Søltoft, M., Nielsen, J., Laursen, K.H., Husted, S., Halekoh, U. and Knuthsen, P. (2010). Effects of organic and conventional growth systems on the content of flavenoids in onions and phenolic acids in carrots and potatoes. J. Agric. Food Chem. 58:10323–10329.
  • Šturm, M., Kacjan-Maršić, N. and Lojen, S. (2011). Can 15N in lettuce tissues reveal the use of synthetic nitrogen fertilizer in organic production? J. Sci. Food Agric. 91:262–267.
  • Šturm, M. and Lojen, S. (2011). Nitrogen isotopic signature of vegetables from the Slovenian market and its suitability as an indicator of organic production. Isotopes Environ. Health Stud. 47:214–220.
  • Suhaj, M. and Koreňovska, M. (2005). Application of elemental analysis for identification of wine origin. Acta Alimentaria. 34:393–401.
  • Tanz, N. and Schmidt, H-L. (2010). δ34S-value measurements in food origin assignments and sulfur isotope fractionations in plants and animals. J. Agric. Food Chem. 58:3139–3146.
  • Trust, B.A. and Fry, B. (1992). Stable sulfur isotopes in plants: A review. Plant, Cell Environ. 15:1105–1110.
  • UK (2004). Statutory Instrument 2004 No. 1604. The Organic Products Regulations 2004. Available from http://www.opsi.gov.uk/si/si2004/20041604.htm
  • US (1990). Organic Foods Production Act—OFPA. Public Law 109-97 Amendment. Available from http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5060370&acct=nopgeninfo. Accessed November 10, 2005.
  • USDA (2002). United States Department of Agriculture. National Organic Program Board. National list of allowed and prohibited substances. Available from http://www.ams.usda.gov/AMSv1.0/nop. Accessed January 7.
  • Vallverdú-Queralt, A., Medina-Remón, A., Casais-Ribes, I., Amat, M. and Lamuela-Riventós, R.M. (2011). A metabolomic approach differentiates between conventional and organic ketchup. J. Agric. Food Chem. 59:11703–11710.
  • Vitòria, L., Otero, N., Soler, A. and Canals A. (2004). Fertilizer characterization: Isotopic data (N, S, O, C and Sr). Environ. Sci. Technol. 38:3254–3262.
  • Vitorello, V.A., Cerri, C.C., Victória, R.L., Andreux, F. and Feller, C. (1989). Organic matter and natural carbon-13 distribution in forested and cultivated oxisols. Soil Sci. Soc. Am. J. 53:773–778.
  • Werner, R.A., Bruch, B.A. and Brand, W.A. (1999) ConFlo III—An interface for high precision δ13C and δ15N analysis with an extended dynamic range. Rapid Commun. Mass Spectrom. 13:1237–1241.
  • Yoneyama, T., Kouno, K. and Yazaki, J. (1990). Variation of natural 15N abundance of crops and soils in Japan with special reference to the effect of soil conditions and fertilizer application. Soil Sci. Plant Nutr. 36:667–675.
  • Yuan, Y., Zhao, M., Zhang, Z., Chen, T., Yang, G. and Wang, Q. (2012). Effect of different fertilizers on nitrogen isotope composition and nitrate content of Brassica campestris. J. Agric. Food Chem. 60:1456–1460.
  • Yun, S-I., Lim, S-S., Lee, G-S., Lee, S-M., Kim, H-Y., Ro, H-M. and Choi, W-J. (2011). Natural 15N abundance of paddy rice (Oryza sativa L.) grown with synthetic fertilizer, livestock manure compost, and hairy vetch. Biol. Fertil. Soils. 47:607–617.
  • Yun, S-I. and Ro, H-M. (2008). Stable C and N isotopes: A tool to interpret interacting environmental stress on soil and plant. J. Appl. Biol. Chem. 56:262–271.
  • Yun, S-I. and Ro, H-M. (2009). Natural 15N abundance of plant and soil inorganic-N as evidence for over-fertilization with compost. Soil Biol. Biochem. 41:1541–1547.
  • Yun, S-I., Ro, H-M., Choi, W-J. and Chang, X.S. (2006). Interactive effects of N fertilizer source and timing of fertilization leave specific N isotopic signatures in Chinese cabbage and soil. Soil Biol. Biochem. 38:1682–1689.
  • Zorb, C., Langenkämper, G., Betsche, T., Niehaus, K. and Barsch, A. (2006). Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agric. Food Chem. 54:8301–8306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.