4,454
Views
148
CrossRef citations to date
0
Altmetric
Reviews

Xylitol: A Review on Bioproduction, Application, Health Benefits, and Related Safety Issues

, , , &

REFERENCES

  • Aguirre-Zero, O., Zero, D.T. and Proskin, H.M. (1993). Effect of chewing xylitol chewing gum on salivary flow rate and the acidogenic potential of dental plaque. Caries Res. 27:55–59.
  • Ahmad, F. 2010. Preparation and Evaluation of Xylitol from Dried Banana Peels and its utilization in Rusks. M.Sc Thesis, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
  • Arrizon, J., Mateos, J.C., Sandovali, G., Aguilar, B., Solis, J. and Aguilar, M.G. (2011). Bioethanol and xylitol production from different lignocellulosic hydrolysates by sequential fermentation. J. Food Proc. Eng. 10:1745–1762.
  • Asano Takashi, M.D., Levit Michael, D.M. D. and Goetz Frederick, M.D. (1973). Xylitol absorption in healthy men. Diabetes. 22:279–81.
  • Bar, A. (1985). Safety assessment of polyol sweetners-some aspects of toxicology. Food Chem. 16:231–241.
  • Bar, A. (1991). Xylitol. In: Alternative Sweetener, pp. 349–379. Nabors, L.O. and Gelardi, R.C., Eds., Marcel Dekker Inc., Hong-Kong.
  • Barbosa, M.F. S., Lee, H., Schneider, H. and Forsberg, C.W. (1990). Temperature mediated changes of D-xylose metabolism in the yeast Pachyoslen tannophilus. FEMS (The Federation of European Materials Society) Microbiol. Lett. 72:35–40.
  • Beutler, H.O. (1984). Xylitol. In: Methods of Enzymatic Analysis, pp. 484–490. Hans Ulrich, B.W., Ed., Verlag Chemie, Florida.
  • Bobleter, O. (1994). Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 19:797–841.
  • Bower, S., Wickramasinghe, S.R., Nagle, N.J. and Schell, D.J. (2008). Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass. Bioresource Technol. 99:7354–7362.
  • Branco, R.D. F., Dos Santos, J.C. and Silva, S.S. (2011). A novel use for sugarcane bagasse hemicellulosic fraction: Xylitol enzymatic production. Biomass Bioenergy. (Article in press)
  • Bungay, H. (l992). Product opportunities for biomass refining. Enzyme Microbial Technol. 14:501–507.
  • Cao, N.J., Tang, R., Gong, C.S. and Chen, L.F. (1994). The effect of cell density on the production of xylitol from D-xylose by yeast. Appl. Biochem. Biotechnol. 46:515–519.
  • Carvalheiro, F., Duarte, L.C. and Giyrio, F.M. (2008). Hemicelluloses biorefineries: A review on biomass pretreatments. J. Sci. Ind. Res. 67:849–864.
  • Carvalheiro, F., Duarte, L.C., Lopes, S., Parajo, J.C., Pereira, H. and Giyrio, F.M. (2005). Evaluation of the detoxification of brewery's spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem. 40:1215–1223.
  • Carvalho, W., Santos, J.C., Canilha, L., Almeida-Silva, J.B., Felipe, M.G. A., Mancilha, I.M. and Silva, S.S. (2005). A study on xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Ca-alginate entrapped cells in a stirred tank reactor. Process Biochem. 39:2135–2141.
  • Cheng, K.K., Zhang, J.A., Ling, H.Z., Ping, W.X., Huang, W., Ping Ge, J. and Xu, J.M. (2009). Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem. Eng. J. 43:203–207.
  • Chum, H.L., Johnsoon, D.K. and Black, S. (1988). Organosolv pretreatment for enzymatic hydrolysis of poplars: 1. enzyme hydrolysis of cellulosic residues. Biotechnol. Bioeng. 31:643–649.
  • Clark, D.P. and Mackie, K.L. (l987). Steam explosion of the softwood pinus radial Cl with sulphur dioxide addition. I. Process optimization. J. Wood Chem. Technol. 7:373–403.
  • Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P. E. and Mac Farlane, G.T. (1981). Short chain fatty acids in the human colon. Gut. 22:763–779.
  • Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P. E. and Mac Farlane, G.T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 28:1221–1227.
  • Da Silva, S.S. and Afschar, A.S. (1994). Microbial production of xylitol from D-xylose using Candida tropicalis. Bioprocess Eng. 11:29–134.
  • Dale, B.E., Leong, C.K., Pham, T.K., Esquivel, V.M., Rios, L. and Latimur, V.M. (1996). Hydrolysis at low enzyme levels: Application of the AFEX process. Bioresource Technol. 56:111–116.
  • De Sousa, V.M. C., Dos Santos, E.F. and Sgarbieri, V.C. (2011). The importance of prebiotics in functional foods and clinical practice. Food Nutr. Sci. 2:133–144.
  • Doner, L.W. and Hicks, K.B. (1997). Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem. 74:176–181.
  • Douglas, L. (2004). Prebiotics. [Online]. Available from http://www.nutraceuticalsworld.com/Nov021.htm. Accessed December 20, 2004.
  • Du Preez, J.C. (1994). Process parameters and environmental factors affecting D-xylose fermentation by yeasts. Enzyme Microbial Technol. 16:944–956.
  • Eda, S., Ohnishi, A. and Kato, K. (l976). Xylan isolated from the stalk of Nicoliana labacul1l. Agric. Biol. Chem. 40:359–364.
  • Edgar, E. (1998). Sugar substitutes, chewing gum and dental caries-a review. Br. Dental J. 184:29–31.
  • El-Batal, A. and Khalaf, S. (2004). Xylitol Production from corn cobs hemicellulosic hydrolysate by Candida tropicalis immobilized cells in hydrogel copolymer carrier. Int. J. Agric. Biol. 6:1066–1073.
  • Ellwood, K.C., Bhathena, S.J., Johannessen, J.N., Bryant, M.A. and Donnell, M.W. (1999). Biomarkers used to assess the effect of dietry xylitol or sorbitol in the rat. Nutr. Sci. 19:1637–1648.
  • Emodi, A. (1978). Xylitol: Its properties and food applications. Food Technol. 32:20–32.
  • FASEB. (1994). The Evaluation of the Energy of Certain Sugar Alcohols Used as Food Ingredients, Federation of American Societies for Experimental Biology. America.
  • Featherstone, J.D. B., Cutress, T.W., Rodgers, B.E. and Dennison, P.J. (1982). Remineralization of artificial caries-like lesions in vivo by a self-administered mouthrinse or paste. Caries Res. 16:235–242.
  • Feigal, R.J., Jensen, M.E. and Mensing, C.A. (1981). Dental caries potential of liquid medications. Pediatrics. 68:416–419.
  • Felipe, M.G. A., Vieira, D.C., Vitolo, M., Silva, S.S., Roberto, I.C. and Mancilha, I.M. (1995). Effect of acetic-acid on xylose fermentation to xylitol by Candida guilliermondii. J. Basic Microbiol. 35:171–177.
  • Fernandez-Bolanos, J., Felizon, B., Heredia, A., Rodriquez, R., Guillen, R. and Jimenez, A. (2001). Steam-explosion of olive- stones: Hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresource Technol. 79:53–61.
  • Fond, O., Jansen, N.B. and Tsao, G.T. (1985). A model of acetic acid and 2,3-butanediol inhibition of the growth and metabolism of Klebsiellaoxytoca. Biotechnol. Lett. 7:727–732.
  • Forester, M. (1988). Powder filled cough products. US Patent 47,62, 719.
  • Forster, H. (1974). Tolerance in the human adults and children. In: Sugars in Nutrition, pp. 259–280. Sipple, H.L. and Mcnutt, K., Eds., Academic Press, New York.
  • Ghindea, R., Csutak, O., Stoica, I., Tanase, A. and Vassu, T. (2010). Production of xylitol by yeasts. Romanian Biotechnol. Lett. 15:5217–5222.
  • Gibson, G. and Rastall, R. (2004). When we eat, which bacteria should we be feeding? ASM (Animal Shelter Manager) News. 70:224–231.
  • Gibson, G.R., Beatty, E.B., Wang, X. and Cummings, J.H. (1995). Selective stimulation of bifidobacteria in the human colon by fructo-oligofructoses and inulin. Gastroenterology. 108:975–982.
  • Gibson, G.R. and Wang, X. (1993). Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J. Appl. Bacteriol. 75:373–380.
  • Gibson, G.R. and Wang, X. (1994). Inhibitory effects of bifidobacteria on other colonic bacteria. J. Appl. Bacteriol. 77:412–420.
  • Granstrom, T., Ojamo, H. and Leisola, M. (2001). Chemostat study of xylitol production by Candida guilliermondii. Appl. Microbiol. Biotechnol. 55:36–42.
  • Granstrom, T., Wu, X., Airaksinen, U. and Leisola, M. (2002). Candida guilliermondii grows on rare pentoses - implications on production of pure xylitol. Biotechnol. Lett. 24:507–510.
  • Goldstein, I.S. and Easter, J.M. (1992). An improved process for converting cellulose to ethanol. Tappi. 75:135–140.
  • Gould, J.M. (1984). Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol. Bioeng. 26:46–52.
  • Granstrom, T.B., Izumori, K. and Leisola, M. (2007a). A rare sugar xylitol. Part I: The biochemistry and biosynthesis of xylitol. Appl. Microbiol. Biotechnol. 74:277–281.
  • Granstrom, T.B., Izumori, K. and Leisola, M. (2007b). A rare sugar xylitol. Part II: Biotechnological production and future applications of xylitol. Appl. Microbiol. Biotechnol. 74:273–276.
  • Grimble, G. (1989). Fibre, fermentation, flora, and flatus. Gut. 30:6–13.
  • Grizard, D. and Barthomeuf, C. (1999). Non-digestible oligosaccharides used as prebiotic agents: Mode of production and beneficial effects on animal and human health. Reprod. Nutr. Develop. 39:563–588.
  • Gruppen, H., Hamer, R.J. and Voragen, A.G. J. (1992). Water-unextractable cell wall material from wheat flour. 2. Fractionation of alkali-extracted polymers and comparison with water extractable arabinoxylans. J. Cereal Sci. 16:53–56.
  • Gurgel, P.V., Mancilha, I.M., Pecanha, R.P. and Siqueira, J.F. M. (1995). Xylitol recovery from fermented sugarcane bagasse hydrolyzate. Bioresource Technol. 52:219–223.
  • Hamber, O. and Almdal, T.P. (1996). Effects of xylitol on urea synthesis in normal humans: Relation to glucagon. J. Parenteral Enteral Nutr. 20:139–144.
  • Hassinger, W., Sauer, G., Cordes, U., Beyer, J. and Baessler, K.H. (1981). The effects of equal caloric amounts of xylitol, sucrose and starch on insulin requirements and blood glucose levels in insulin-dependent diabetics. Diabetologia. 2:37–40.
  • Herrera, A., Tellez-Luis, S.J., Gonzalez-Cabriales, J.J., Ramirez, J.A. and Vazquez, M. (2004). Effect of the hydrochloric acid concentration and time on the hydrolysis of sorghum straw at atmospheric pressure. J. Food Eng. 63:103–109.
  • Hood, E.E., Hood, K.R. and Fritz, S.E. (1991). Hydroxyproline-rich glycoproteins in cell walls of pericarp from maize. Plant Sci. 79:13–22.
  • Huebner, J., Wehling, R.L. and Hutkins, R.L. (2007). Functional activity of commercial prebiotics. Int. Dairy J. 17:770–775.
  • Hyvonen, L. and Espo, A. (1981). Replacement of Sucrose in Bakery Products. I. Cakes and Cookies, EKT-Ser. 569. University of Helsinki, Finland.
  • Hyvonen, L., Koivistoinen, P. and Voirol, F. (1982). Food technological evaluation of xylitol. In: Advances in Food Research, pp. 373–403. Chichester, C.O., Mrak, E.M. and Stewart, G., Eds., Academic Press, New York.
  • Iranmahboob, J., Nadim, F. and Monemi, S. (2002). Optimizing acidhydrolysis: A critical step for production of ethanol from mixed wood chips. Biomass Bioenergy. 22:401–404.
  • Jaffe, G.M. (1978). Xylitol - A Specialty Sweetener. Sugary Azucar. 93:36–42.
  • Jeffries, T.W. and Sreenath, H.K. (1988). Fermentation of hemicellulosic sugars and sugar mixtures by Candida shehatae. Biotechnol. Bioeng. 31:502–506.
  • Jenkins, D.J. A., Cyril, W.C. K. and Vuksan, V. 1999. Inulin, Oligofructose and intestinal function. J. Nutr. 129:1431–1433.
  • Kaar, W.E. and Holtzaple, M.T. (2000). Using lime pretreatment to facilitate the enzymatic hvdrolvsis of corn stover. Biomass Bioenergy. 18:189–199.
  • Kaur, N. and Gupta, A.K. (2002). Applications of inulin and oligofructose in health and nutrition. J. Biosci. 27:703–714.
  • Kok, N., Roberfroid, F. and Delsene, N. (1996). Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats. Br. J. Nutr. 76:881–890.
  • Kormelink, F.J. and Voragen, A.G. (1993). Degradation of different glucuronoarabin xylans by a combination of purified xylan-degrading enzymes. Appl. Microbiol. Biotechnol. 38:688–695.
  • Koullas, D.P., Christakopoulos, P.F., Kekos, D., Koukios, E.G. and Macris, B.J. (1993). Effect of alkali delignification on wheat straw saccharification by fusarium oxysporum cellulases. Biomass Bioenergy. 4:9–13.
  • Krishnan, R., James, H.J., Rofe, A.M., Edward, J.B. and Conveyers, R.J. A. (1980a). Some biochemical studies on the adaptation associated with xylitol ingestion in rats. Aust. J. Exp. Biol. Med. Sci. 58:627–638.
  • Krishnan, R., Wilkinson, I., Joyce, L., Rofe Allan, M., Bais, R., Conyers, A.J. and Edwards John,B. (1980b). The effect of dietary xylitol on the ability of rat caecal flora to metabolize xylitol. Aust. J. Exp. Biol. Med. Sci. 58:639–652.
  • Laakso, R., Sneck, K. and Kristoffersson, E. (1982). Xylitol and Avicel PH-102 as excipients in tablets made by direct compression and from granulate. Acta Pharm. Fennica. 91:47–54.
  • Larsson, S., Reimann, A., Nilvebrant, N. and Jonsson, L.J. (1999). Comparison of different methods for the detoxification of lignocellulose hydrolysates of spruce. Appl. Biochem. Biotechnol. 77:91–103.
  • Laser, M., Schulman, D., Allen, S.G., Lichwa, J., Antal, M.J. and Lynd, L.R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technol. 81:33–44.
  • Leonhardt, M. (2005). Human Adaptation to Non-digestible, Non-metabolized Carbohydrates in the Diet. M.Sc. Thesis, Department of Nutrition and Foods Science, Utah State University, Utah.
  • Liaw, W.C., Chen, C.S., Chang, W.S. and Chen, K.P. (2008). Xylitol Production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J. Biosci. Bioeng. 105:97–105.
  • Lu, J., Tsai, L.B., Gong, C.S. and Tsao, G.T. (1995). Effect of nitrogen sources on xylitol production from D-xylose by Candida sp. L-102. Biotechnol. Lett. 17:67–170.
  • Macfarlane, S., Macfarlane, G.T. and Cummings, J.H. (2006). Prebiotics in the gastrointestinal tract. Alimentary Pharm. Thera. 24:701–714.
  • Makinen, K.K. (2000a). Can the pentitol–hexitol theory explain the clinical observations made with xylitol. Med. Hypotheses. 54:603–613.
  • Makinen, K.K. (2000b). The rocky road of xylitol to its clinical application. J. Dental Res. 79:1352–1355.
  • Makinen K.K. (2004). Introduction to Xylitol [Online]. Available from http://www.xylitol.org Institute of Dentistry, University of Turku, Finland. Accessed May 26, 2012.
  • Maloney, P.C. and Amburdkar, S.V. (1989). Functional reconstitution of prokaryote and eukaryote membrane-proteins. Arch. Biochem. Biophys. 269:1–10.
  • Manz, U., Vanninen, E. and Voirol, F. (1973). Xylitol- its properties and use as a sugar. In: Food R.A. Symposium Sugar and Sugar Replacements. October 10, 1973, London.
  • Martinez, A., Rodriguez, M.E., Wells, M.L., York, S.W., Preston, J.F. and Ingram, L.O. (2001). Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol. Progr. 17:287–293.
  • Mazur, A., Remedy, C., Gurus, E., Leveret, A.M. and Demigne, C. (1990). Effects of diet rich in fermentable carbohydrates on plasma lipoprotein levels and on lipoprotein catabolism in rats. J. Nutr. 120:1037–1045.
  • Melaja, A.J. and Hamalainen, L. (1977). Process for making xylitol. US Patent 4.008.285.
  • Misra, S., Gupta, P., Raghuwanshi, S., Dutt, K. and Sexena, R.K. (2011). Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep. Purif. Technol. 78:266–273.
  • Moreira, R.F. P. M., Jose, H.J. and Soares, J.L. (2000). Adsorption of Reactive Dyes About Activated Carbon. In: 2 Brazilian Meeting on adsorption, Florianopolis, SC, Pinto., L.T. (Ed.), Brazil, pp. 85–91.
  • Morita, T., Kasaoka, S., Oh-Hashi, A., Ikai, M., Numasaki, Y. and Kirayama, S. (1998) Resistant proteins alter cecal short-chain fatty acid profiles in rats fed high amylose cornstarch. J. Nutr. 128:1156–1164.
  • Mushtaq, Z. (2011). Xylitol production from agricultural wastes for utilization in dietetic food. PhD Thesis, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
  • Mushtaq, Z., Rehman, S., Zahoor, T. and Jamil, A. (2010). Impact of xylitol replacement on phsiochemical, sensory and microbiological quality of cookies. Pakistan J. Nutr. 9:605–610.
  • Mussatto, S.I. and Roberto, I.C. (2004). Alternatives for detoxification of diluted acid lignocellulosic hydrolysates for use in fermentative processes: A review. Bioresource Technol. 93:1–10.
  • Natah, S.S., Hussien, K.R., Tuominen, J.A. and Koivisto, V.A. (1997). Metabolic response to lactitol and xylitol in healthy men. Am. J. Clin. Nutr. 65:947–950.
  • Nicklin, I., Graeme-Cook, K., Paget, T. and Killington, R.A. (1999). Notes in Microbiology. Springer Verlag, New York.
  • Nigam, P. and Singh, D. (1995). Process for fermentative production of xylitol- a sugar substitute. Process Biochem. 30:117–124.
  • Nilvebrant, N.O., Reimann, A., Larsson, S. and Jonsson, L.J. (2001). Detoxification of lignocellulose hydrolysates with ion exchange resins. Appl. Biochem. Biotechnol. 93:35–49.
  • Olinger, P.M. and Pepper, T. (2001). Xylitol. In: Alternative Sweeteners, pp. 335–365. Nabors, L.O., Ed., Marcel Dekker, New York.
  • Otto, C., Sonnichsen, A.C., Ritter, M.M., Richter, W.O. and Schwandt, P. (1993). Influence of fiber, xylitol and fructose in enteral formulas on glucose and lipid metabolism in normal subjects. Clin. Invest. 71:290–293.
  • Ouwehand, A.C., Derrien, M., De Vos, W., Tiihonen, K. and Rautonen, N. (2005). Prebiotics and other microbial substrates for gut functionality. Curr. Opinion Biotechnol. 16:212–217.
  • Palmqvist, E. and Hahn-Hagerdal, B. (2000). Fermentation of lignocellolosic hydrolysates I: Inhibition and detoxification. Bioresource Technol. 74:17–24.
  • Palnitkar, S. and Lachke, A. (1992). Effect of nitrogen sources on oxidoreductive enzymes and ethanol production during xylose fermentation by Candida shehatae. Can. J. Microbiol. 38:258–260.
  • Parajo, J.C., Domınguez, H. and Domınguez, J.M. (1998). Biotechnological production of xylitol. Part 2: Operation in culture media made with commercial sugars. Bioresource Technol. 65:201–212.
  • Pepper, T. and Olinger, P.M. (1988). Xylitol in sugar-free confections. Food Technol. 10:98–106.
  • Pfeifer, M.J., Silva, S.S., Felipe, M.G. A., Roberto, I.C. and Mancilha, I.M. (1996). Effect of culture conditions on xylitol production by Candida guilliermondii FTI 20037. Appl. Biochem. Biotechnol. 58:423–30.
  • Pizzoferrato, L. (2003). Functional ingredients and functional components. Ingredienti Alimentari. 2:26–30.
  • Prakasham, R.S., Merrie, J.S., Sheela, R., Saswathi, N. and Ramakrishna, S.V. (1999). Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environ. Poll. 104:421–427.
  • Prakasham, R.S., Sreenivas, R.R. and Hobbs, P.J. (2009). Current trends in iotechnology production of xylitol and future prospects. Curr. Trends Biotechnol. Pharm. 3:8–36.
  • Ribeiro, M.H. L., Lourenco, P.A. S., Monteiro, J.P. and Ferreira-Dias, S. (2001). Kinetics of selective adsorption of impurities from a crude vegetable oil in hexane to activated earths and carbons. Eur. Food Res. Technol. 213:132–138.
  • Rahman, S.H. A., Choudhury, J.P., Ahmad, A.L. and Kamaruddin, A.H. (2007). Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for fermentation of dilute-acid hydrolysates. Bioresource Technol. 98:554–559.
  • Roberfroid, M.B. and Delzenne, N.M. (1998). Dietary fructans. Ann. Rev. 18:117–143.
  • Rodrigues, D.C. G. A., Silva, S.S., Prata, M.R. and Felipe, M.G. A. (1998). Biotechnological production of xylitol from agricultural residues evaluation bioprocess. Appl. Biochem. Biotechnol. 72:869–875.
  • Romero, I., Sanchez, S., Moya, M., Castro, E., Ruiz, E. and Bravo, V. (2007). Fermentation of olive tree pruning acid hydrolysates by Pachysolen tannophilus. Biochem. Eng. J. 36:108–115.
  • Ruppin, H., Bar-Meir, S., Soergel, K.H., Wood, C.M. and Schmitt, J.M. G. (1980). Absorption of short-chain fatty acids by the colon. Gastroenterology. 78:1500–1507.
  • Saha, B.C. and Bothast, R.J. (1997). In Fuels and chemicals from biomass, American chemical society, ACS symposium series. 666:307–319.
  • Saha, B.C. and Bothast, R.J. (1999). Pretreatment and enzymatic saccharification of corn fiber. Appl. Biochem. Biotechnol. 76:65–77.
  • Salminen, E., Koivistoinen, P., Bridges, J. and Marks, V. (1985). Gut Microflora interactions with xylitol in the mouse, rat and man. Food Chem. Toxicol. 23:985–990.
  • Salminen, E., Prokka, L. and Koivistoinen, P. (1984). The effects of Xylitol on gastric emptying and secretion of gastric inhibitory polypeptide in the rat. J. Nutr. 114:2201–2203.
  • Sanches, S., Bravo, V., Garcia, J.F., Cruz, N. and Cuevas, M. (2008). Fermentation of D-glucose and D-xylose mixtures by Candida tropicalis NBRC 0618 for xylitol production. World J. Microbiol. Biotechnol. 24:709–716.
  • Saulnier, L., Vilarot, C., Chanliaud, E. and Thibault, J.F. (1995). Cell wall polysaccharide interactions in maize bran. Carbohydr. Polym. 26:279–287.
  • Schirmer-Michel, A.C., Flores, S.H., Hertz, P.F., Matos, G.S. and Ayub, M.A. Z. (2008). Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresource Technol. 99:2898–2904.
  • Schmidt, A.S. and Thomsen, A.B. (1998). Optimization of wet oxidation pretreatment of wheat straw. Bioresource Technol. 64:139–151.
  • Schneider, H. 1996. Selective removal of acetic acid from hardwood-spent sulfite liquor using mutant yeast. Enzyme Microbial Technol. 19:94–98.
  • Schricker, T., Gross, G., Wolfel, R. and Georgieff, M. (1995). Enhancement of fatty acid mobilization and oxidation by glucose-xylitol compared to glucose alone in posttraumatic and septic patients. Nutr. Hospitals. 10:13–8.
  • Shibuya, N. and Iwasaki, T. (1985). Structural features of rice bran hemicellulose. Phytochemistry. 24:285–289.
  • Silva, S.S. and Afschar, A.S. (1994). Microbial production of xylitol from D-xylose using Candida tropicalis. Bioprocess Eng. 11:129–134.
  • Silva, C.J. S. M. and Roberto, I.C. (2001). Improvement of xylitol production by Candida guilliermondii FTI 20037 previously adapted to rice straw hemicellulosic hydrolysate. Lett. Appl. Microbiol. 32:248–252.
  • Skutch, C.L., Holroyde, C.P., Myers, R.N., Paul, P. and Reichard, G.A. (1979). Plasma acetate turnover and oxidation. J. Clin. Invest. 64:708–713.
  • Slininger, P.J., Bolen, P.L. and Kurtzman, C.P. (1987). Pachysolen tannophilus properties and process consideration for ethanol production from D-xylose. Enzyme Microbial Technol. 9:5–15.
  • Smits, M.T. and Arends, J. (1988). Influence of extraoral xylitol and sucrose dippings on enamel demineralization in vivo. Caries Res. 22:160–165.
  • Sreenivas, R.R., Jyothi, C.P., Prakasham, R.S., Rao, C.S., Sarma, P.N. and Rao, L.V. (2006). Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresource Technol. 97:1974–1978.
  • Sreenivas, R.R., Prakasham, R.S., Krishna, P.K., Rajesham, S., Sharma, P.N. and Venkateswar, R.L. (2004). Xylitol production by Candida sp.: Parameter optimization using Taguchi appraoach. Process Biochem. 39:951–956.
  • Sun, Y. and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technol. 83:1–11.
  • Svanberg, M. and Birkhed, D. (1995). Effects of dentrifices containing either xylitol and glycerin or sorbitol on Streptococcus mutans in saliva. Caries Res. 25:74–79.
  • Swarm, R.L. and Banziger, R. (1970). A thirteen week oral feeding study in rats with xylitol (Ro-6-7045). Unpublished report of Hazleton Laboratories Inc., submitted to the World Health Organization by Hoffmann La Roche, Basle, Switzerland.
  • Taherzadeh, M.J., Niklasson, C. and Liden, G. (2000). On-line control of fed-batch production of xylose. Bioresource Technol. 98:554–559.
  • Topping, D. (1996). Short-chain fatty acids produced by intestinal bacteria. Asia Pacific J. Clin. Nutr. 5:15–19.
  • Truhaut, R., Coquet, B., Fouillet, X., Galland, L., Guyot, D., Rouaud, J.L. and Long, D.L. (1977). Subacute toxicity of xylitol in rats. Personal communication to the World Health Organization (Unpublished report)
  • Uhari, M., Kontiokari, T., Koskela, M., and Niemela, M. (1996). Xylitol chewing gum in prevention of acute otitis media: Double blind randomized trial. Br. Med. J. 313:1180–1184.
  • Van Wyk, J.P. H. (2001). Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol. 19:172–177.
  • Vargas, S.L., Patrick, C.C., Ayers, G.D. and Hughes, W.T. (1993). Modulating effect of dietary carbohydrate supplements on Candida albicans colonization and invasion in neutropenic mouse model. Infection Immunity. 619–626.
  • Villa, P., Felipe, M.G. A., Rodriguez, R.C. L., Vitolo, M., Luis dos Reis, E., Silva, S.S., Napoles, A.I. and Mancilha, I.M. (1998). Influence of phenolic compounds on the bioprocess of xylitol production by Candida guilliermondii. In: Esbes-2 European Symposium on Biochemical Engineering Science, 2. Porto-Portugal.
  • Villarreal, M.L. M., Prata, A.M. R., Felipe, M.G. A., Almeida, E. and Silva, J.B. (2006). Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microbial Technol. 40:17–24.
  • Vinals-Verde, M., Maciel-de-Mancilha, I., Batista-de-Almeida-e-Silva, J. and Napoles-Solenzar, A.I. (2006). Metodos de purificacion de hidrolizados de bagazo de cana de azucar para la obtencion de xilitol. Ciencia y Tecnologia Alimentaria. 5:129–134.
  • Vogel-Lowmeier, E.M., Sopher, C.R. and Lee, H. (1998). Intracellular acidification as a mechanism for the inhibitors of xylose fermentation by yeast. J. Ind. Microbiol. Biotechnol. 20:75–81.
  • Wang, Y.M. and Van Eyes, J. (1981). Nutritional significance of fructose and sugar alcohols. Ann. Rev. Nutr. 1:437–475.
  • WHO/FAO. (1977). Summary of toxicology data of certain food additives. Twenty-first report of the joint FAO/WHO Expert Committee on Food Additives, WHO technical report Series. No. 617. pp. 124–147. Geneva.
  • WHO/FAO. (1978). Summary of toxicological data of certain food additives and comtaminants. Twenty- second report of joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report series No. 631. pp. 28–34. Geneva.
  • Weil, J., Westgate, P., Kohlmann, K. and Ladisch, M.R. (1994). Cellulose pretreatments of lignocellulosic substrates. Enzyme Microbial Technol. 16:1002–1004.
  • Winkelhausen, E. and Kuzmanova, S. (1998). Microbial conversion of D-xylose to xylitol. J. Fermentation Bioeng. 86:1–14.
  • Winkelhausen, E., Malinovska, R.J., Velickova, E. and Kuzmanova, S. (2007). Sensory and microbiological quality of a baked product containing xylitol as an alternative sweetener. Int. J. Food Properties 10:639–649.
  • Wyman, C.E. (1994). Ethanol from lignocellulosic biomass: Technology, economics and opportunities. Bioresource Technol. 50:3–16.
  • Yamagata, S., Goto, Y., Ohneda, A., Anzai, M., Kawashima, S., Kikuchi, J., Chiba, M., Maruhama, Y., Yamauchi, Y., and Toyota, T. (1969). Clinical application of xylitol in diabetics. In: Pentoses and Pentitols, pp. 316–325. Horecker, B.L., Lang, K. and Takagi, Y., Eds., Springer-Verlag, Berlin.
  • Yoshitake, J., Obiwa, H., and Shimamurs, M. (1971). Production of polyalcohol by Corynebacterium sp. I. Production of pentitol from aldopentose. Agric. Biol. Chem. 35:905–911.
  • Zhu, L., O’Dwyer, JP., Chang, VS., Granda, C.B., and Holtzapple, M.T. (2008). Structural features affecting biomass enzymatic digestibility. Bioresource Technol. 99:3817–3828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.