797
Views
36
CrossRef citations to date
0
Altmetric
Reviews

Genotypic Variation in Tomatoes Affecting Processing and Antioxidant Attributes

, &

REFERENCES

  • Abushita, A. A., Daood, H. G. and Biacs, P. A. (2000). Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J. Agric. Food Chem. 48:2075–2081.
  • Abushita, A. A., Hebshi, E. A., Daood, H. G. and Biacs, P. A. (1997). Determination of antioxidant vitamins in tomatoes. Food Chem. 60(2):207–212.
  • Adalid, A. M., Rosello, S. and Nuez, F. (2007). Mejora de la calidad nutritiva en tomate: busqueda de nuevas fuentes de variabilidad con alto contenido en carotenoides y vita- mina C. Actas de Hortic. 48:121–124.
  • Adalid, A. M., Rosello, S. and Nuez, F. (2010). Evaluation and selection of tomato accessions (Solanum section lycopersicon) for content of lycopene, β-carotene and ascorbic acid. J. Food Compos. Anal. 23(6):613–618.
  • Adedeji, O., Taiwo, K. A., Akanbi, C. T. and Ajani, R. (2006). Physicochemical properties of four tomato cultivars grown in Nigeria. J. Food Process. Preserv. 30:79–86.
  • Aggarwal, P., Singh, B. and Sidhu, J. S. (1995). Studies on the physico-chemical and processing characteristics of some newly evolved tomato cultivars for making juice and concentrate. Indian Food Pack. 49(2):45–53.
  • Aherne, S. A., Jiwan, M. A., Daly, T. and Brien, N. M. O. (2009). Geographical location has greater impact on carotenoid content and bioaccessibility from tomatoes than variety. Plant Foods Hum. Nutr. 64:250–256.
  • Al-Wandawi, H., Abdul-Rahman, M. and Al-Shaikhly, K. (1985). Tomato processing wastes as essential raw material sources. J. Agric. Food Chem. 33:804–807.
  • Andrews, J. (2003). Regulation of tomato fruit growth by peroxidases. PhD thesis, Taylor & Francis, UK.
  • Arias, R., Lee, T. C., Logendra, L. and Janes, H. (2000). Correlation of lycopene measured by HPLC with the L*, a*, b* colour readings of a hydroponic tomato and the relationship of maturity with colour and lycopene content. Food Chem. 48:1697–1702.
  • Atta-Aly, M. A. and Brecht, J. K. (1995). Effect of postharvest high temperature on tomato fruit ripening and quality. In: Proceeding of the International Symposium ‘‘Postharvest Physiology, Pathology and Technologies for Horticultural Commodities: Recent Advances”, pp. 250–256. Ait-Oubahou, A. and El-Otmani, M., Eds., Taylor & Francis, Agadir, Morocco.
  • Atta-Aly, M. A. and Brecht, J. K. (1995). Effect of postharvest high temperature on tomato fruit ripening and quality. In: Ait-Oubahou, A. and El-Otmani, M. (Eds.), Proceeding of the International Symposium ‘‘Postharvest Physiology, Pathology and Technologies for Horticultural Commodities: Recent Advances,” Institute Agronomic et Veterinaire Hassan II, Agadir, Morocco, pp. 250–256.
  • Atta-Aly, M. A., Riad, G. S., Lacheene, Z. E., and El- Beltagy, A. S. (1999). Early application of ethrel extends tomato fruit cell division and increases fruit size and yield with ripening delay. J. Plant Growth Regul. 18(1):150–124.
  • Azari, R., Tadmor, Y., Meir, A., Reuveni, M., Evenor, D., Nahon, S. and Shlomo, H. (2010). Light signaling genes and their manipulation towards modulation of phytonutrient content in tomato fruits. Biotechnol. Adv. 28(1):108–118.
  • Baldwin, E. A., Nisperos-Carriedo, M. O. and Moshonas, M. G. (1991). Quantitative analysis of flavor and other volatiles and for certain constituents of two tomato cultivars during ripening. J. Am. Soc. Hort. Sci. 116(2):265–269.
  • Balibrea, M. E., Martinez-Andujar, C., Cuartero, J., Bolarin, M. C. and Perez-Alfocea, F. (2006). The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism. Funct. Plant Biol. 33:279–288.
  • Barrett, D. M., Garcia, E. and Wayne, J. E. (1998). Textural modification of processing tomatoes. Crit. Rev. Food Sci. Nutr. 38:173–258.
  • Batu, A. (2004). Determination of acceptable firmness and colour values of tomatoes. J. Food Eng. 61(3):471–475.
  • Baxter, C. J., Carrari, F., Bauke, A., Overy, S., Hill, S. A., Quick, P. W. and Fernie, A. R. (2005). Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids. Plant Cell Physiol. 46(3):425–437.
  • Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 63(1):129–140.
  • Benal, B. P., Madalageri, M. B. and Rokhade, A. K. (2005). Physico-chemical qualities of fruits of commercial tomato hybrids and varieties in Ghataprabha Left Bank Command (GLBC) area for processing into puree. J. Food Sci. Technol. 42:8–11.
  • Bertin, N., Ghichard, N., Leonardi, C., Longuenesse, J. J., Langlois, D. and Naves, B. (2000). Seasonal evolution the quality of fresh glasshouse tomato under Mediterranean conditions, as affected by vapour pressure deficit and plant fruit load. Ann. Bot. 85:741–750.
  • Bhutani, R. D. and Kalloo, G. (1991). Inheritance studies of locule number in tomato. Haryana J. Hort. Sci. 20(1–2):119–124.
  • Bino, R. J., de Vos, C. H. R., Lieberman, M., Hall, R. D., Bovy, A., Jonker, H. H., Tikunov, Y., Lommen, A., Moco, S. and Levin, I. (2005). The light-hyperresponsive high pigment-2(dg) mutation of tomato: Alterations in the fruit metabolome. New Phytol. 166:427–438.
  • Bovy, A., Schijlen, E. and Hall, R. D. (2007). Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics. Metabolomics. 3:399–412.
  • Brummell, D. A. and Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47:311–340.
  • Bugianesi, R., Salucci, M., Leonardi, C., Ferracane, R., Catasta, G., Azzini, E. and Maiani, G. (2004). Effect of domestic cooking on human bioavailability of naringenin, chlorogenic acid, lycopene and β-carotene in cherry tomatoes. Eur. J. Nutr. 43:360–366.
  • Burns, J., Fraser, P. D. and Bramley, P. M. (2003). Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochem. 62:939–947.
  • Calvenzani, V., Martinelli, M., Lazzeri, V., Giuntini, D., Dall, C., Gianni, A. and Tonelli, C. (2010). Response of wild-type and high pigment-1 tomato fruit to UV-B depletion: Flavonoid profiling and gene expression. Planta, 231:755–765.
  • Campos, C. A. B., Fernandes, P. D., Gheyi, H. R., Blanco, F. F., Goncalves, C. B. and Campos, S. A. F. (2006). Yield and fruit quality of industrial tomato under saline irrigation. Sci. Agric. 2:63–69.
  • Causse, M., Buret, M., Robini, K. and Verschave, P. (2003). Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J. Food Sci. 68:2342–2350.
  • Cemeroglu, B., Karadeniz, F. and Ozkan, M. (2003). Meyve sebze isleme teknolojisi. Gıda Teknolojisi Yayınları (in Turkısh), 28:469–472.
  • Cerne, M. and Resnik, M. (1994). Fruit quality of tomato cultivars. Acta Hortic. 376:313–318.
  • Chaib, J., Devaux, M. F., Grotte, M. G., Robini, K., Causse, M., Lahaye, M. and Marty, I. (2007). Physiological relationships among physical, sensory, and morphological attributes of texture in tomato fruits. J. Exp. Bot. 58:1915–1925.
  • Chakraborty, I., Vanlalliani , Chattopadhyay, A. and Hazra, P. (2007). Studies on processing and nutritional qualities of tomato as influenced by genotypes and environment. Veg. Sci. 34:26–31.
  • Cheniclet, C., Rong, W. Y., Causse, M., Frangne, N., Bolling, L., Carde, J. P. and Renaudin, J. P. (2005). Cell expansion and endure duplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol. 139:1984–1994.
  • Choudhari, S. M. and Ananthanarayan, L. (2007). Enzyme aided extraction of lycopene from tomato tissues. Food Chem. 102:77–81.
  • Cookson, P. J., Kiano, J. W., Shipton, C. A., Fraser, P. D., Romer, S., Schuch, W., Bramley, P. M. and Pyke, K. A. (2003). Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta, 217:896–903.
  • Creiler, S., Robert, M. C., Claude, J. and Juillerat, M. A. (2001). Tomato (Lycopersicon esculentum) pectin methylesterase and polygalacturonase behaviors regarding heat- and pressure-induced inactivation. J. Agric. Food Chem. 49:5566–5575.
  • Davies, J. and Hobson, G. E. (1981). The constituents of tomato fruit-the influence of environment, nutrition and genotype. Crit. Rev. Food Sci. Nutr. 15(3):205–280.
  • Davuluri, G. R., Van Tuinen, A., Fraser, P. D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D. A., King, S. R., Palys, J., Uhlig, J., Bramley, P. M., Pennings, H. M. J. and Bowler, C. (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotech. 23:890–895.
  • Dhaliwal, M. S., Singh, S., Badhan, B. S., Cheema, D. S. and Singh, S. (1999). Diallel analysis for total soluble solids contents, pericarp thickness and locule number in tomato. Veg. Sci. 26(2):120–122.
  • Dumas, Y., Dadomo, M., Di Lucca, G. and Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 83:369–382.
  • Eberhardt, M. V., Lee, C. Y. and Liu, R. H. (2000). Antioxidant activity of fresh apples. Nature. 405:903–904.
  • Elbadrawy, E. and Sello, A. (2012). Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian J. Chem. DOI:10.1016/j.arabjc.2011.11.011 (In Press).
  • Elizalde-González, M. P. and Hernandez-Ogarcia, S. G. (2007). Effect of cooking processes on the contents of two bioactive carotenoids in Solanum lycopersicum tomatoes and Physalis ixocarpa and Physalis philadelphica tomatillos. Molecules. 12:1829–1835.
  • Elkind, Y., Galper, O. B., Scott, J. W. and Kedar, N. (1990). Genotype by environment interaction of tomato blossom-end scar size. Euphytica 50:91–95.
  • Eshed, Y. and Zamir, D. (1994). Introgressions from Lycopersicon pennellican improve the soluble-solids yield of tomato hybrids. Theor. Appl. Genet. 88:891–897.
  • Fanasca, S., Colla, G., Maiani, G., Venneria, E., Rouphael, Y. and Azzini, E. (2006). Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agric. Food Chem. 54:4319–4325.
  • Favati, F., Lovelli, S., Galgano, F., Miccolis, V., Di Tommaso, T. and Candido, V. (2009). Processing tomato quality as affected by irrigation scheduling. Sci. Hort. 122(4):562–571.
  • Fraser, P. D., Enfissi, E. M. A. and Bramley, P. M. (2009). Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch. Biochem. Biophys. 483:196–204.
  • Fleisher, D. D., Logendra, L. S., Moraru, C., Jan, B. A., Cavazzoni, J. and Gianfagna, T. (2006). Effect of temperature perturbations on tomato (Lycopersicon esculentum Mill.) quality and production scheduling. J. Hortic. Sci. Biotechnol. 81:125–131.
  • Frusciante, L., Carli, P., Ercolano, M. R., Pernice, R., Matteo, A. D., Fogliano, V. and Pellegrini, N. (2007). Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 51:609–617.
  • Garcia, E. and Barrett, D. M. (2006a). Evaluation of processing tomatoes from two consecutive growing seasons: Quality attributes peelability and yield. J. Food Process. Preserv. 30:20–36.
  • Garcia, E. and Barrett, D. M. (2006b). Assessing lycopene content in California processing tomatoes. J. Food Process. Preserv. 30:56–70.
  • Garg, N. and Cheema, D. S. (2011). Assessment of fruit quality attributes of tomato hybrids involving ripening mutants under high temperature conditions. Sci. Hortic. 131:29–38.
  • Gastélum-Barrios, A., Bórquez-López, R. A., Rico-García, E. and Soto-Zarazúa, G. M. (2011). Tomato quality evaluation with image processing: A review. Afr. J. Agr. Res. 6(14):3333–3339.
  • George, B., Kaur, C., Khurdiya, D. S. and Kapoor, H. C. (2004). Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem. 84(1):45–51.
  • George, D. M. R., Smith, A. C. and Waldron, K. W. (2001). Effect of ripening on the mechanical properties of Portugese and Spanish varieties of olive (Olea europaea L.). J. Sci. Food Agric. 81:448–454.
  • George, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E. and Caris-Veyrat, C. (2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem. 124(4):1603–1611.
  • Gillaspy, G., Ben-David, H. and Gruissem, W. (1993). Fruits: A development perspective. Plant Cell 6:1439–1451.
  • Giordano, L. B., Silva, J. B. C. and Barbosa, V. (2000). Escolha de cultivars e plantio. In: Tomatoe para processamento industrial, pp. 36–59. Silva, J. B. C. and Guarding, L. B., Taylor & Francis, Brasilia.
  • Giovanelli, G., Lavelli, V., Peri, C. and Nobili, S. (1999). Variation in antioxidant components of tomato during vine and post-harvest ripening. J. Sci. Food Agric. 79:1583–1588.
  • Gomez, P., Ferrer, M. A., Fernandez-Trujillo, J. P., Calderon, A., Artes, F., Egea-Cortines, M. and Weiss, J. (2009). Structural changes, chemical composition and antioxidant activity of cherry tomato fruits (cv. Micro-Tom) stored under optimal and chilling conditions. J. Sci. Food Agric. 89(9):1543–1551.
  • Gómez, R., Costa, J., Amo, M., Alvarruiz, A. Picazo, M. and Pardo, J. E. (2001). Physicochemical and colorometric evaluation of local varieties of tomato grown in SE Spain. J. Sci. Food Agric. 81:1101–1105.
  • Gonzalez-Cebrino, F., Lozano, M., Ayuso, M. C., Bernalte, M. J., Vidal-Aragon, M. C. and Gonzalez-Gomez, D. (2011). Characterization of traditional tomato varieties grown in organic conditions. Spanish J. Agr. Res. 9(2):444–452.
  • Gould, W. A. 1992. Tomato Production, Processing and Technology. Taylor & Francis, Baltimore.
  • Gowda, I. N. D., Raman, J. K. H., Anand, N., Sadashiva, A. T. and Tikoo, S. K. (1994). Studies on the physico-chemical characteristics and processing quality of two IIHR tomato varieties in relation to commercial cultivars. J. Food Sci. Technol. 31(2):126–129.
  • Grandillo, S., Zamir, D. and Tanksley, S. D. (1999). Genetic improvement of processing tomatoes: A 20 years perspective. Plant Breed. 85:85–97.
  • Grasselly, D., Navez, B. and Letard, M. (2000). Tomate, Pour un Produit de Qualite. Taylor & Francis, Paris, France, p. 222.
  • Guil-Guerrero, J. L. and Rebolloso-Fuentes, M. M. (2009). Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J. Food Compos. Anal. 22(2):123–129.
  • Gupta, A., Kawatra, A. and Sehgal, S. (2011). Physical-chemical properties and nutritional evaluation of newly developed tomato genotypes. Afr. J. Food Sci. Technol. 2(7):167–172.
  • Heinonen, M. I., Ollilainen, V., Linkola, E. K., Varo, P. T. and Koivistoinen, P. E. (1989). Carotenoids in Finnish foods. J. Agric. Food Chem. 37:655–659.
  • Helmja, K., Vaher, M., Gorbatsova, J. and Kaljurand, M. (2007). Characterization of bioactive compounds contained in vegetables of the Solanaceae family by capillary electrophoresis. Proc. Estonian Acad. Sci. Chem. 56(4):172–186.
  • Helyes, L. and Lugasi, A. (2006). Formation of certain compounds having technological and nutritional importance in tomato fruit during maturation. Acta Alimentaria 35(2):183–193.
  • Hernández Suárez, M., Rodriguez Rodriguez, E. and Diaz Romero, C. (2008). Analysis of organic acid content in cultivars of tomato harvested in Tenerife. Eur. Food Res. Technol. 226(3): 423–435.
  • Hernandez, M., Rodriguez, E. and Diaz, C. (2007). Free hydroxycinnamic acids, lycopene, and color parameters in tomato cultivars. J. Agric. Food Chem. 55(21):8604–8615.
  • Hong, T. L. and Tsou, S. C. S. (1998). Determination of tomato quality by near infrared spectroscopy. J. Near Infrared Spectrosc. 6:321–324.
  • Hsu, K. C., Tan, F. J. and Chi, H. Y. (2008). Evaluation of microbial inactivation and physicochemical properties of pressurized tomato juice during refrigerated storage. LWT—Food Sci. Technol. 41:367–375.
  • Ilahy, R., Hdider, C., Lenucci, M. S., Tlili, I. and Dalessandro, G. (2011a). Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J. Food Compos. Anal. 24(4–5):588–595.
  • Ilahy, R., Hdider, C., Lenucci, M. S., Tlili, I. and Dalessandro, G. (2011b). Phytochemical composition and antioxidant activity of high-lycopene tomato (Solanum lycopersicum L.) cultivars grown in Southern Italy. Sci. Hort. 127(3):255–261.
  • Islam, S., Matsui, T. and Yoshida, Y. (1996). Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Sci. Hort. 65:137–149.
  • Jarret, R. L., Sayama, H. and Tigchelaar, E. C. (1995). Pleiotropic effects associated with the chlorophyll intensifier mutations high pigment and dark green in tomatoes. J. Am. Soc. Hortic. Sci. 109:873–878.
  • Jongen, W. (2002). Fruit and vegetables processing. Wood Head Publishing in Food Science and Technology. Taylor & Francis, Netherlands, p. 350.
  • Kacjan-Maršić, N., Gašperlin, L., Abram, V., Budič, M., and Vidrih, R. (2011). Quality parameters and total phenolic content in tomato fruits regarding cultivar and microclimatic conditions. Turk. J. Agric. For. 35:185–194.
  • Kader, A. A. (2008). Flavor quality of fruits and vegetables. J. Sci. Food Agric. 88:1863–1868.
  • Kahkonen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S. and Heinonen, M. (1999). Antioxidant capacity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954–3962.
  • Kalloo, G. and Bhutani, R. D. (1993). Improvement of tomato. Advances Horticulture: Vegetable Crops. 3:45–68.
  • Kamis, A. B., Modu, A. S. and Bobboi, M. B. (2004). Effect of ripening on the proximate and some biochemical composition of a local tomato cultivar grown at Lake Alau Region of Borno State. J. Appl. Sci. 4(3):424–426.
  • Kaur, C. and Kapoor, H. C. (2008). Antioxidant Activity in Tomato: A Function of Genotype. In: Tomatoes and Tomato Products Nutritional, Medicinal and Therapeutic Properties. Preedy, V. R. and Watson, R. R., Eds., Taylor & Francis, USA.
  • Kaur, D., Sharma, R., Wani, A. A., Gill, B. S. and Sogi, D. S. (2006). Physicochemical changes in seven tomato (Lycopersicon esculentum) cultivars during ripening. Int. J. Food Prop. 9:747–757.
  • Kaur, R., Savage, G. P. and Dutta, P. C. (2002). Antioxidant vitamins in four commercially grown tomato cultivars. Proc. Nutr. Soc. New Zealand, 27:69–74.
  • Kerkhofs, N. S., Lister, C. E. and Savage, G. P. (2005). Change in colour and antioxidant content of tomato cultivars following forced-air drying. Plant Foods Hum. Nutr. 60:117–121.
  • Koley, T. K., Kaur, C., Nagal, S., Walia, S. and Jaggi, S. (2012). Antioxidant activity and phenolic content in genotypes of Indian jujube (Zizyphus mauritiana Lamk.). Arabian J. Chem. DOI:10.1016/j.arabjc.2011.11.005 (In Press).
  • Kolota, E. and Winiarska, S. (2005). Porownanie plonowia kilku odmian pomidora (Lycopersicon Esculentum Mill.) wuprawia podowej przy polikach. Zesz. Navk. AR Wroclaw, Rol L XXXVI Ogrodnictwo, 515:251–257.
  • Kolotilin, I., Koltai, H., Tadmor, Y., Bar, O. C., Reuveni, M. and Meir, A. (2007). Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol. 145:389–401.
  • Kotikova, Z., Hejtmankova, A. and Lachman, J. (2009). Determination of the influence of variety and level of maturity on the content and development of carotenoids in tomatoes. Czech J. Food Sci. 27:S200–S203.
  • Kumar, D. and Singh, S. P. (1996). Evaluation of tomato cultivars for juice preparation. Indian Food Pack. 50(5):11–15.
  • Kumari, A. (1998). Nutritive value and processing of tomatoes for its effective utilization. M.Sc. Thesis submitted to Department of Food Nutrition, CCS Haryana Agricultural University, Hisar, India.
  • Kurian, A., Peter, K. V. and Rajan, S. (2001). Heterosis for yield components and fruit characters in tomato. J. Trop. Agric. 39:5–8.
  • Lenucci, M. S., Cadinu, D., Taurino, M., Piro, G. and Dalessandro, G. (2006). Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 54:2606–2613.
  • Li, Z., Li, P. and Liu, J. (2011). Physical and mechanical properties of tomato fruits as related to robot's harvesting. J. Food Eng. 103(2):170–178.
  • Li, Z. G., Li, P. P. and Liu, J. Z. (2010). Effect of tomato internal structure on its mechanical properties and degree of mechanical damage. Afr. J. Biotechnol. 9(12):1816–1826.
  • Li, Z. G., Liu, J. Z. and Li, P. P. (2009). Study on the collision mechanical properties of tomatoes gripped by harvesting robot. Afr. J. Biotechnol. 8(24):7000–7007.
  • Liu, Y., Liu, J., Chen, X., Liu, Y. and Di, D. (2010). Preparative separation and purification of lycopene from tomato skins extracts by macroporous adsorption resins. Food Chem. 123(4):1027–1034.
  • Loiuidice, R., Impembo, M., Laratta, B., Villari, G., Lovoi, A., Siviero, P. and Castaldo, D. (1995). Composition of San Marzano tomato varieties. Food Chem. 53:81–89.
  • Luengwilai, K. and Beckles, D. M. (2009). Structural investigations and morphology of tomato fruit starch. J. Agric. Food Chem. 57:282–291.
  • Lugasi, A., Biro, L., Hovarie, J., Sagi, K. V., Brandt, S. and Barna, E. (2003). Lycopene content of foods and lycopene intake in two groups of the Hungarian population. Nutr. Res. 23:1035–1044.
  • Macheix, J. J., Fleuriet, A. and Billot, J. (1990). Fruit phenolics. Taylor & Francis, Florida.
  • Madaiah, N., Radhakrishnaiah, S. G., Krishna Prakash, M. S., NauJunda Swamy, A. M. and Patwardhan, M. X. (1986). Studies on the physicochemical characteristics of some new tomato varieties for their suitability for preparing tomato paste. Indian Food Pack. 40(3):6–12.
  • Mahakun, N., Leeper, P. W. and Burns, E. E. (1979). Acidic constituents of various tomato fruit types. J. Food Sci. 44:241–244.
  • Majkowska-Godomska, J., Francke, A. and Wierzbicka, B. (2008). Effect of soil substrate on the chemical composition of fruit of some tomato cultivars grown in an unheated plastic tunnel. J. Elementol. 13(2):261–268.
  • Mane, R., Sridevi, O., Salimath, P. M., Deshpande, S. K. and Khot, A. B. (2010). Performance and stability of different tomato (Solanum lycopersicum) genotypes. Indian J. Agric. Sci. 80(10):898–901.
  • Mansour, A., Ismail, H. M., Ramadan, M. F. and Gyulai, G. (2009). Comparative genotypic and phenotypic analysis of tomato (Lycopersicon esculentum) cultivars grown under two different seasons in Egypt. Afr. J. Plant Sci. Biotechnol. 3:73–79.
  • Marcos, H., Elena, R. and Carcos, D. (2005). Chemometric studies applied on chemical compounds in samples of tomatoes, preliminary study. Electronic J. Environ. Agric. Food Chem. 4(5):1043–1048.
  • Markovic, K., Hruskar, M. and Vahcic, N. (2006). Lycopene content of tomato products and their contribution to the lycopene intake of Croatians. Nutr. Res. 26:556–560.
  • Martı´nez-Valverde, I., Periago, M. J., Provan, G. and Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric. 82:323–330.
  • Meiers, S., Kemeny, M., Weyand, U., Gastpar, R., von Angerer, E. and Marko, D. (2001). The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J. Agric. Food Chem. 49:958–962.
  • Melkamu, M., Seyoum, T. and Woldetsadik, K. (2008). Effects of pre- and post harvest treatments on changes in sugar content of tomato. Afr. J. Biotechnol. 7(8):1139–1144.
  • Mohammed, M., Wilson, L. A. and Gomes, P. L. (1999). Postharvest sensory and physiochemical attributes of processing and non-processing tomato cultivar. J. Food Qual. 22:167–182.
  • Mohr, W. P. (1987). Tomato fruit properties affecting consistency of concentrated product. Can. J. Plant Sci. 67:881–890.
  • Moraru, C., Logendra, L., Lee, T. C. and Janes, H. (2004). Characteristics of 10 processing tomato cultivars grown hydroponically for the NASA Advances Life (ALS) Support Program. J. Food Compos. Anal. 17:141–154.
  • Moreiras, O., Carbajal, A., Cabrera, L. and Cuadrado, C. (2005). Tablas de composicion de alimentos. Taylor & Francis, Madrid, p. 295.
  • Muir, S. R., Collins, G. J., Robinson, S., Hughes, S., Bovy, S., De Vos, C. H., Van Tunen, A. J. and Verhoeyen, M. E. (2001). Over expression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnol. 19:470–474.
  • Nguyen, M. L. and Schwartz, S. J. (1998). Lycopene stability during food processing. Exp. Biol. Med. 218:101–105.
  • Nisen, A., Graffiadellis, M., Jimnez, R. and LaMalfa, C. T. (1990). Protected cultivation in Mediterranean climate. Plant production and protection paper, Taylor & Francis, Rome.
  • Odriozola-serrano, I., Soliva-fortuny, R., Gimeno-ano, V. and Martin-belloso, O. (2008). Modeling changes in health-related compounds of tomato juice treated by high-intensity pulsed electric fields. J. Food Eng. 89:210–216.
  • Olaniyi, J. O., Akanbi, W. B., Adejumo, T. A. and Akande, O. G. (2010). Growth, fruit yield and nutritional quality of tomato varieties. Afr. J. Food Sci. 4(6):398–402.
  • Ordones-Santos, L. E., Vazquez-Oderiz, L., Arbones-Macineira, E. and Romero-Rodriguez, M. A. (2009). The influence of storage time on micronutrients in bottled tomato pulp. Food Chem. 112:146–149.
  • Osvald, J., Petrovic, N. and Demsar, J. (2001). Sugar and organic acid content of tomato fruits (Lycopersicon lycopersicum Mill.) grown on aeroponics at different plant density. Acta Aliment. Hung. 30:53–61.
  • Ozgen, M. C., Drugac, S. S. and Kaya, C. (2008). Chemical and antioxidant properties of pomegranate cultivars grown in Mediterranean region of Turkey. Food Chem. 111:703–706.
  • Page, D., Marty, I., Bouchet, J. P., Gouble, B. and Causse, M. (2008). Isolation of genes potentially related to fruit quality by subtractive selective hybridization in tomato. Postharvest Biol. Technol. 50:117–124.
  • Passam, H. C., Karapanos, I. C., Bebeli, P. J. and Savvas, D. (2007). A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. Eur. J. Plant Sci. Biotech. 1:1–21.
  • Peng, Y., Zhang, Y. and Ye, J. (2008). Determination of phenolic compounds and ascorbic acid in different fractions of tomato by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem. 56:1838–1844.
  • Perkins-Veazie, P., Roberts, W. and Collins, J. K. (2006). Lycopene content among organically produced tomatoes. J. Veget. Sci. 12(4):93–106.
  • Pernice, R., Parisi, M., Giordano, I., Pentangelo, A., Graziani, G., Gallo, M. and Fogliano, V. (2010). Antioxidants profile of small tomato fruits: Effect of irrigation and industrial process. Sci. Hort. 126(2):156–163.
  • Peters, J. L., Schreuder, M., Verduin, S. and Kendrick, R. E. (1992). Physiological characterisation of a high pigment mutant of tomato. Photochem. Photobiol. 56:75–82.
  • Petro-Turza, M. (1987). Taste of tomato and tomato products. Food Rev. Int. 2(3):309–351.
  • Plaza, L., Munoz, M., de Ancos, B. and Cano, P. M. (2003). Effect of combined treatment of high pressure, citric acid and sodium chloride on quality parameters of tomato puree. Eur. Food Res. Technol. 216(6):514–519.
  • Potaczek, H. and Michalik, H. (1998). Improvement of the nutritional value of tomato (Lycopersicon esculentum Mill.) by means of breeding for quality. Veg. Crops Res. Bull. 49:13–20.
  • Raffo, A., La Malfa, G., Fogliano, V., Maiani, G. and Quaglia, G. (2006). Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). J. Food Compos. Anal. 19:11–19.
  • Raffo, A., Leonardo, C., Fogliano, V., Ambrosino, P., Salucci, M., Gennaro, L., Bugianesi, R., Giuffrida, F. and Quaglia, G. (2002). Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 50:6550–6556.
  • Redgwell, R. J. and Fischer, M. (2002). Fruit texture, cell wall metabolism and consumer perceptions. In: Fruit quality and its biological basis (Knee M, Ed.). Oxford: Taylor & Francis, pp. 46–88.
  • Rodıca, S., Apahıdean, S. A., Apahıdean, M. and Manıtıu, P. L. (2008). Yield, physical and chemical characteristics of greenhouse tomato grown on soil and organic substratum. In: Proceedings of the 43rd Croatian and 3rd International Symposium on Agriculture, pp. 439–443. Opatija, Croatia.
  • Rodriguez-Burruezo, A., Prohens, J., Rosello, S. and Nuez, F. (2005). Heirloom varieties as sources of variation for the improvement of fruit quality in greenhouse-grown tomatoes. J. Hortic. Sci. Biotechnol. 80:453–460.
  • Ronen, G., Cohen, M., Zamir, D. and Hirschberg, J. (1999). Regulation of carotenoid biosynthesis during tomato fruit development: Expression of the gene for lycopene epsilon-cyclase is down- regulated during ripening and is elevated in the mutant Delta. Plant J. 17:341–351.
  • Ronen, G., Carmel-Goren, L., Zamir, D., Hirschberg, J. (2000). An alternative pathway to beta-carotene formation in plant chro- moplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proceedings of the National Academy of Sciences of the United States of America 97, 11102–11107.
  • Rubio-Diaz, D. E., De Nardo, T., Santos, A., de Jesus, S., Francis, D. and Rodriguez-Saona, L. E. (2010). Profiling of nutritionally important carotenoids from genetically-diverse tomatoes by infrared spectroscopy. Food Chem. 120(1):282–289.
  • Ruiz, J. J., Alonso, A., Garcia-Martinez, S., Valero, M., Blasco, P. and Ruiz-Bevia, F. (2005). Quantitative analysis of flavour volatiles detects differences among closely related traditional cultivars of tomato. J. Sci. Food Agric. 85:54–60.
  • Sahlin, E., Savage, G. P. and Lister, C. E. (2004). Investigation of the antioxidant properties of tomatoes after processing. J. Food Compos. Anal. 17:635–647.
  • Saimbhi, M. S., Singh, S. and Cheema, D. S. (2001). Physiochemical characters of exotic varieties of tomato. Haryana J. Hort. Sci. 30(3–4):279–280.
  • Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H. and Kanazawa, K. (2003). Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem. 51:571–581.
  • Sakiyama, R. and Stevens, M. A. (1976). Organic acid accumulation in attached and detached tomato fruits. J. Am. Soc. Hort. Sci. 101:394–396.
  • Scalfi, L., Fogliano, V., Pentagelo, A., Graziani, G., Giordano, I. and Ritieni, A. (2000). Antioxidant activity and general fruit characteristics in different ecotypes of Corbarini small tomatoes. J. Agric. Food Chem. 48:1363–1366.
  • Schindler, M., Solar, S. and Sontag, G. (2005). Phenolic compounds in tomatoes. Natural variations and effect of gamma-irradiation. Eur. Food Res. Technol. 221:439–445.
  • Sekhar, L., Prakash, B. G., Salimath, P. M., Sridevi, O. and Patil, A. A. (2009). Performance of productive single cross hybrids in tomato (Solanum lycopersicum). Karnataka J. Agric. Sci. 22(4):877–878.
  • Serrano-Megias, M. and Lopez-Nicolas, J. M. (2006). Application of agglomerative hierarchical clustering to identify consumer tomato preferences: influence of physicochemical and sensory characteristics on consumer response. J. Sci. Food Agric. 86:493–499.
  • Sharma, S. K. and Le Maguer, M. (1996). Kinetics of lycopene degradation in tomato pulp solids under different processing and storage conditions. Food Res. Int. 29(3–4):309–315.
  • Shen, Y. C., Chen, S. L. and Wang, C. K. (2007). Contribution of tomato phenolics to antioxidation and down-regulation of blood lipids. J. Agric. Food Chem. 55:6475–6481.
  • Shi, J. and Le Maguer, M. (2000). Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit. Rev. Biotechnol. 20:293–334.
  • Siddiqui, M. W. (2013). Variation in post harvest quality traits among tomato genotypes. Ph.D. Thesis, Taylor & Francis, Nadia, West Bengal, India.
  • Siddiqui, M. W., Chakraborty, I., Ayala-Zavala, J. F. and Dhua, R. S. (2011). Advances in minimal processing of fruits and vegetables: A Review. J. Sci. Ind. Res. 70(9):823–834.
  • Siddiqui, M. W. and Dhua, R. S. (2010). Eating artificially ripened fruits is harmful. Curr. Sci. 99(12):1664–1668.
  • Sies, H. (1991). Oxidative Stress: Oxidant and Antioxidant. Taylor & Francis, London.
  • Silva, J. B. C. and Giordano, L. B. (2000). Tomate Para Processamento Industrial. Embrapa, Brasilia, p. 200.
  • Singh, M., Walia, S., Kaur, C., Kumar, R. and Joshi, S. (2010). Processing characteristics of tomato (Solanum lycopersicum) cultivars. Indian J. Agric. Sci. 80:174–176.
  • Slimestad, R. and Verheul, M. (2009). Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric. 89:1255–1270.
  • Spagna, G., Barbagallo, R. N., Chisari, M. and Branca, F. (2005). Characterization of a tomato polyphenol oxidase and its role in browning and lycopene content. J. Agric. Food Chem. 53(6):2032–2038.
  • Stertz, S. C., Santo, A. P. E., Bona, C. and Freitas, R. J. S. (2005). Comparative morphological analysis of cherry tomato fruits from three cropping systems. Sci. Agric. 62:296–298.
  • Stevens, M. A., Kader, A. A. and Albright, M. (1979). Potential for increasing tomato flavor via sugar and acid contents. J. Am. Soc. Hortic. Sci. 104:40–42.
  • Stewart, A. J., Bozonett, S., Mullen, W., Jenkins, G. I., Lean, M. E. J. and Crozier, A. (2000). Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem. 48:2663–2669.
  • Szczesniak, A. S. (2002). Texture is a sensory property. Food Qual. Preference 13:215–225.
  • Tadesse, T., Workneh, T. S. and Woldetsadik, K. (2012). Effect of varieties on changes in sugar content and marketability of tomato stored under ambient conditions. Afr. J. Agric. Res. 7(14):2124–2130.
  • Tangwongchai, R., Ledward, D. A. and Ames, J. M. (2000). Effect of high-pressure treatment on the texture of cherry tomato. J. Agric. Food Chem. 48:1434–1441.
  • Tanksley, S. D., Grandillo, S., Fulton, T. M., Zamir, D., Eshed, Y., Petiard, V., Lopez, J. and Beck-Bunn, T. (1996). Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor. Appl. Genet. 92:213–224.
  • Tavares, C. A. and Rodriguez-Amaya, D. R. (1994). Carotenoid composition of Brazilian tomatoes and tomato products. LWT—Food Sci. Technol. 7:219–224.
  • Terzopoulos, P. J. and Bebeli, P. J. (2010). Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Sci. Hort. 126(2):138–144.
  • Thakur, N. S. and Kaushal, B. B. (1995). Study of quality characteristics of some commercial varieties and F1 hybrids of tomato (Lycnpersicon esculentum Mill.) grown in Himachal Pradesh in relation to processing. Indian Food Pack. 49(3):25–31.
  • Tigist, M., Workneh, T. S. and Woldetsadik, K. (2013). Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 53(3):477–486.
  • Tiwari, J. K. and Upadhyay, D. (2011). Correlation and path-coefficient studies in tomato (Lycopersicon esculentum Mill.). Res. J. Agric. Sci. 2(1):63–68.
  • Toivonen, P. and Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Technol. 48(1):1–14.
  • Toor, R. K. and Savage, G. P. (2005). Antioxidant activity in different fraction of tomatoes. Food Res. Int. 38:487–494.
  • Toor, R. K., Savage, G. P. and Lister, C. E. (2006). Seasonal variations in the antioxidant composition of greenhouse grown tomatoes. J. Food Compos. Anal. 19:1–10.
  • Torres, C. A., Davies, N. M., Yanez, J. A. and Andrews, P. K. (2005). Disposition of selected Xavonoids in fruit tissues of various tomato (Lycopersicon esculentum Mill.) genotypes. J. Agric. Food Chem. 53:9536–9543.
  • Traka-Mavrona, K., Tasios, V., Palatos, G., Koutsos, T., Stavropoulos, N. and Mellidis, V. (2002). Description, evaluation and use of non-watering type landraces of tomatoes. In: Proceedings of the 9th Meeting of the Hellenic Scientific Society for Genetics and Plant Breeding, pp. 189–196. Thessaloniki, Greece, (In Greek, with English Abstract).
  • Triano, S. R. and St. Clair, D. A. (1995). Processing tomato germplasm with improved fruit soluble solids content. HortScience 30:1477–1478.
  • Turhan, A. and Seniz, V. (2009). Estimation of certain chemical constituents of fruits of selected tomato genotypes grown in Turkey. Afr. J. Agric. Res. 4(10):1086–1092.
  • Upasana, R. and Bains, G. S. (1988). Physico-chemical and pectic changes in ripening tomato cultivars. Trop. Sci. 28(3):185–189.
  • Vallverdú-Queralt, A., Medina-Remón, A., Casals-Ribes, I. and Lamuela-Raventos, R. M. (2012). Is there any difference between the phenolic content of organic and conventional tomato juices? Food Chem. 130:222–227.
  • Williams, R. J., Spencer, J. P. and Rice-Evans, C. (2004). Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med. 36:838–849.
  • Yen, H., Shelton, A., Howard, L., Vrebalov, J. and Giovanonni, J. J. (1997). The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor. Appl. Genet. 95:1069–1079.
  • Yousef, G. G. and Juvik, J. A. (2001). Evaluation of breeding utility of a chromosomal segment from Lycopersicon chmielewskii that enhances cultivated tomato soluble solids. Theor. Appl. Genet. 103(6–7):1022–1027.
  • Zapata, L., Gerard, L., Davies, C., Oliva, L. and Schvab, M. (2007). Correlacion matematica de indices de color del tomate con parametros texturales y concentracion de caro- tenoides. Ciencia, Docenciay Tecnología. 34:207–226.
  • Zegbe-Domı´nguez, J. A., Behboudian, M. H. and Clothier, B. E. (2006). Responses of ‘‘Peto- pride’’ processing tomato to partial root zone drying at different phenological stages. Irrig. Sci. 24:203–210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.