1,187
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

Recent Research in Antihypertensive Activity of Food Protein-derived Hydrolyzates and Peptides

, &

REFERENCES

  • Ahhmed, A.M. and Muguruma, M. (2010). A review of meat protein hydrolyzates and hypertension. Meat Sci. 86:110–118.
  • Ahn, J.E., Park, S.Y., Atwal, A., Gibbs, B.F. and Lee, B..H. (2009). Angiotensin i-converting enzyme (ace) inhibitory peptides from whey fermented by lactobacillus species. J. Food Biochem. 33:587–602.
  • Aihara, K., Kajimoto, O., Hirata, H., Takahashi, R. and Nakamura, Y. (2005). Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. J. Am. Coll. Nutr. 24:257–265.
  • Akıllıoglu, H. G. and Karakaya, S. (2009). Effects of heat treatment and in vitro digestion on the angiotensin converting enzyme inhibitory activity of some legume species. Eur. Food Res. Technol. 229:915–921.
  • Alemán, A., Pérez-Santín, E., Bordenave-Juchereau, S., Arnaudin, I., Gómez-Guillén, M.C. and Montero, P. (2011). Squid gelatin hydrolyzates with antihypertensive, anticancer and antioxidant activity. Food Res. Int. 44:1044–1051.
  • Aluko, R.E. and Monu, E. (2003). Functional and bioactive properties of quinoa seed protein hydrolyzates. J. Food Sci. 68:1254–1258.
  • Arihara, K. (2006). Strategies for designing novel functional meat products. Meat Sci. 74:219–229.
  • Asoodeh, A., Yazdi, M. M. and Chamani, J. (2012). Purification and characterisation of angiotensin I converting enzyme inhibitory peptides from lysozyme hydrolyzates. Food Chem. 131:291–295.
  • Balti, R., Nedjar-Arroume, N., Bougatef, A., Guillochon, D. and Nasri, M. (2010). Three novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases. Food Res. Int. 43:1136–1143.
  • Barbana, C. and Boye, J.I. (2010). Angiotensin I-converting enzyme inhibitory activity of chickpea and pea protein hydrolyzates. Food Res. Int. 43:1642–1649.
  • Bernardini, R. D., Mullen, A. M., Bolton, D., Kerry, J., O’Neill, E. and Hayes, M. (2012). Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolyzates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions. Meat Sci. 90:226–235.
  • Bidasolo, I. B., Ramos, M. and Gomez-Ruiz, J. A. (2011). In vitro simulated gastrointestinal digestion of donkeys’ milk. Peptide characterization by high performance liquid chromatography-tandem mass spectrometry. Int. Dairy J. 24(2):146–152.
  • Bougatef, A., Nedjar-Arroume, N., Ravallec-Plé, R., Leroy, Y., Guillochon, D., Barkia, A. and Nasri, M. (2008). Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolyzates obtained by treatment with microbial and visceral fish serine proteases. Food Chem. 111:350–356.
  • Boye, J. I., Roufik, S., Pesta, N and Barbana, C. (2010). Angiotensin I-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolyzates. LWT Food Sci. Technol. 43:987–991.
  • Brown, N. J. and Vaughan, D. E. (1998). Angiotensin-converting enzyme inhibitors. Circulation 97:1411–1420.
  • Chen, G.-W., Tsai, J.-S. and Pan, B. S. (2009). Cardiovascular effects of whey from prozyme 6-facilitated lactic acid bacteria fermentation of milk. J. Food Biochem. 31:639–655.
  • Chen, Q., Xuan G., Fu, M., He, G., Wang, W., Zhang, H. and Ruan, H. (2007). Effect of angiotensin І-converting enzyme inhibitory peptide from rice dregs protein on antihypertensive activity in spontaneously hypertensive rats. Asia Pacific J. Clin. Nutr. 16(Suppl 1):281–285.
  • Chen, Y.H., Liu, Y.H., Yang, Y.H., Feng, H.H., Chang, C.T. and Chen, C.C. (2002). Antihypertensive effect of an enzymatic hydrolyzate of chicken essence residues. Food Sci. Technol. Res. 8:144–147.
  • Cheung, H.S., Wang, F., Sabo, E.F. and Chushman, D.W. (1980). Binding of peptides substrates and inhibitors of angiotensin-converting enzyme. J. Biol. Chem. 255:401–407.
  • Cheung, I. W. Y., Nakayama, S., Hsu, M. N. K., Samaranayaka, A. G. P. and LI-Chan, E. C. Y. (2009). Angiotensin-I converting enzyme inhibitory activity of hydrolyzates from oat (Avena sativa) proteins by in silico and in vitro analyses. J. Agric. Food Chem. 57:9234–9242.
  • Chiang, W. D., Tsou, M. J., Tsai, Z. Y. and Tsai, T. C. (2006). Angiotensin I-converting enzyme inhibitor derived from soy protein hydrolyzate and produced by using membrane reactor. Food Chem. 98:725–732.
  • Choi, H.S., Cho, H.Y., Yang, H.C., Ra, K.S. and Suh, H.J. (2001). Angiotensin I-converting enzyme inhibitor from Grifola frondosa. Food Res. Int. 34:177–182.
  • Christensen J.E., Dudley E.G., Pederson J.A. and Steele J.L. (1999). Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhock. 76:217–246. (Cited in Ramchandran and Shah, 2008).
  • Cinq-Mars, C. D., Hu, C., Kitts, D. D. and Li-Chan, E. C. Y. (2008). Investigations into inhibitor type and mode, simulated gastrointestinal digestion, and cell transport of the angiotensin i-converting enzyme-inhibitory peptides in Pacific Hake (Merluccius productus) fillet hydrolyzate. J. Agric. Food Chem. 56:410–419.
  • Collins, R., Peto, R., MacMahon, S., Hebert P., Fiebach, N.H. and Eberlein, K..A. (1990). Blood pressure, stroke, and coronary heart disease. Part 2: Short-term reductions in blood pressure: Overview of randomized drug trials in their epidemiological context. Lancet. 335:827–838.
  • Contreras, M. M., Sevilla, M. A., Monroy-Ruiz, J., Amigo, L. Gómez-Sala, B., Molina, E., Ramos, M. and Recio, I. (2011). Food-grade production of an antihypertensive casein hydrolyzate and resistance of active peptides to drying and storage. Int. Dairy J. 21:470–476.
  • Contreras, M.D., Carron, R., Montero, M.J., Ramos, M. and Recio, I. (2009). Novel casein-derived peptides with antihypertensive activity. Int. Dairy J. 19:566–573.
  • Decker, E. A. and Park, Y. (2010). Healthier meat products as functional foods. Meat Sci. 86:49–55.
  • Donkora, O.N., Henrikssonb, A., Singhc, T.K., Vasiljevica, T. and Shah, N.P. (2007). ACE-inhibitory activity of probiotic yoghurt. Int. Dairy J. 17:1321–1331.
  • Enari, H., Takahashi, Y., Kawarasaki, M., Tada, M. and Tatsuta, K. (2008). Identification of angiotensin I-converting enzyme inhibitory peptides derived from salmon muscle and their antihypertensive effect. Fish. Sci. 74:911–920.
  • Erdmann, K., Cheung, B..W..Y. and Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 19:643–654.
  • Fardet, A, Rock, E. and Remesy, C. (2008). Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo?. J. Cereal Sci. 48:258–276.
  • Ferrari, R. (2008). Treatment with angiotensin-converting enzyme inhibitors: Insight into perindopril cardiovascular protection. Eur. Heart J. Suppl. 10(suppl G):G13–G20.
  • FitzGerald, R. J., Murray, B. A. and Walsh, D. J. (2004). Hypotensive peptides from milk proteins. J. Nutr. 134:980S–988S.
  • Flint, A. J., Hu, F. B., Robert, J. G., Jensen M. K., Franz, M., Sampson, L. and Rimm, E. B. (2009). Whole grains and incident hypertension in men. Am. J. Clin. Nutr. 90:493–498.
  • Fluegel, S. M., Shultz, T. D., Powers, J..R., Clark, S., Barbosa-Leiker, C., Wright, B. R., Freson, T. S., Fluegel, H. A., Minch, J. D., Schwarzkopf, L. K., Miller, A. J. and Di Filippo, M. M. (2010). Why beverages decrease blood pressure in pre-hypertensive and hypertensive young men and women. Int. Dairy J. 20:753–760.
  • Fritz, M., Vecchi, B., Rinaldi, G. and Anon, M..C. (2011). Amaranth seed protein hydrolyzates have in vivo and in vitro antihypertensive activity. Food Chem. 126:878–884.
  • Fujita, H., Yokoyama, K. and Yoshikawa, M. (2000). Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food Sci. 65:564–569.
  • Fung, W.-Y. and Liong, M.-T. (2010). Evaluation of proteolytic and ACE-inhibitory activity of Lactobacillus acidophilus in soy whey growth medium via response surface methodology. LWT Food Sci. Technol. 43:563–567.
  • Garcia-Redondo, A. B., Roque, F. R., Miguel, M., Lopez-Fandino, R. and Salaices, M. (2010). Vascular effects of egg white-derived peptides in resistance arteries from rats. Structure–activity relationships. J. Sci. Food Agric. 90:1988–1993.
  • Ghassem, M., Arihara, K., Babji, A., Said, M. and Ibrahim, S. (2011). Purification and identification of ACE-inhibitory peptides from Haruan (Channa striatus) myofibrillar protein hydrolyzate using HPLC–ESI-TOF MS/MS. Food Chem. 129:1770–1777.
  • Gildberga, A., Arnesen, A. A., Saether, B.-S., Rauo, J. and Stenberg, E. (2011). Angiotensin I-converting enzyme inhibitory activity in a hydrolyzate of proteins from Northern shrimp (Pandalus borealis) and identification of two novel inhibitory tri-peptides. Process Biochem. 46:2205–2209.
  • Gómez-Guillén, M.C., Giménez, B., López-Caballero, M.E. and Montero, M.P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids. 25:1813–1827.
  • Gomez-Ruiz, J. A., Taborda, G., Amigo, L., Recio, I. and Ramos M. (2006). Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry. Eur. Food Res. Techol. 223:595–601.
  • Gu, R.-Z., Li, C.-Y., Liu, W.-Y., Yi, W.-X. and Cai, M.-Y. (2011). Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Res. Int. 44: 1536–1540.
  • Guéguen, J. (2000). Pea proteins: New and promising protein ingredients. Ind. Proteins. 8:6–8.
  • Guo, H., Kouzuma, Y. and Yonekura, M. (2009). Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 113:238–245.
  • Guo, Y., Pan, D. and Tanokura, M. (2011). Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chem. 114:328–333.
  • Hai-Lun, H., Chen, X.L., Sun, C.Y., Zhang, Y.Z. and Zhou, B.C. (2006). Analysis of novel angiotensin-I-converting enzyme inhibitory peptides from protease hydrolyzed marine shrimp Acetes chinensis. J. Peptide Sci. 12:726–733.
  • Haque, E. and Chand, R. (2008). Antihypertensive and antimicrobial bioactive peptides from milk proteins. Eur. Food Res. Technol. 227:7–15.
  • Haque, E., Chand, R. and Kapila, S. (2009). Biofunctional properties of bioactive peptides of milk origin. Food Rev. Int. 25:28–43.
  • Harnedy, P. A. and FitzGerald, R. J. (2011). Bioactive peptides from marine processing waste and shellfish: A review. J. Funct. Foods. 4(1):6–24.
  • Hasan, F., Kumada, Y., Hashimoto, N., Katsuda, T., Terashima, M. and Katoh, S. (2006). Fragmentation of angiotensin-i convertingenzyme inhibitory peptides from bonito meatunder intestinal digestion conditionsand their characterization. Food Bioprod. Process. 84:135–138.
  • Hellstrom, J. K., Shikov, A. N., Makarova, M. N., Pihlanto, A. M., Pozharitskaya, O. N., Ryhanen, E.-L., Kivijarvi, P., Makarov, V..G. and Mattila, P. H. (2010). Blood pressure-lowering properties of chokeberry (Aronia mitchurinii, var. Viking). J. Funct. Foods. 2:163–169.
  • Hernández-Ledesma, B., Ramos, M. and Gómez-Ruiz, J. Á (2011a). Bioactive components of ovine and caprine cheese whey. Small Rumin. Res. 101(1-3):195–204.
  • Hernández-Ledesma, B., Contreras, M..D. and Recio, I. (2011b). Antihypertensive peptides: Production, bioavailability and incorporation into foods. Adv. Colloid. Interface Sci. 165:23–35.
  • Herregods, G., Van Camp, J., Morel, N., Ghesquiere, B., Gevaert, K., Vercruysse, L., Dierckx, S., Quanten, E. and Smagghe, G. (2011). Angiotensin I-converting enzyme inhibitory activity of gelatin hydrolyzates and identification of bioactive peptides. J. Agric. Food Chem. 59:552–558.
  • Hong, F., Ming, L., Yi, S., Zhanxia, L., Yongquan, W. and Chi, L. (2008). The antihypertensive effect of peptides: A novel alternative to drugs? Peptides. 29:1062–1071.
  • Hsu, G. W., Lu, Y., Chang, S. and Hsu, S. (2011). Antihypertensive effect of mung bean sprout extracts in spontaneously hypertensive rats. J. Food Biochem. 35:278–288.
  • Hu, Y., Stromeck, A., Loponen, J., Lopes-Lutz, D., Schieber, A. and Goanzle, M. G. (2011). LC-MS/MS quantification of bioactive angiotensin I-converting enzyme inhibitory peptides in rye malt sourdoughs. J. Agric. Food Chem. 59:11983–11989.
  • Huang, W.-H., Sun, J., He, H., Dong, H.-W. and Li, J.-T. (2011). Antihypertensive effect of corn peptides, produced by a continuous production in enzymatic membrane reactor, in spontaneously hypertensive rats. Food Chem. 128:968–973.
  • Hwang, J. (2010). Impact of processing on stability of angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from tuna cooking juice. Food Res. Int. 43:902–906.
  • Hwang, J.S. and Ko, W.C. (2004). Angiotensin I-converting enzyme inhibitory activity of protein hydrolyzates from tuna cooking juice. J. Food Drug Anal. 12:62–8.
  • Ishiguro, K., Sameshima, Y., Kume, T., Ikeda, K. and Matsumoto, J. (2012). Makoto Yoshimoto a. hypotensive effect of a sweet potato protein digest in spontaneously hypertensive rats and purification of angiotensin I-converting enzyme inhibitory peptides. Food Chem. 131:774–779.
  • Itou, k., Nagahashi, R., Saitou, M. and Akahane, Y. (2007). Antihypertensive effect of Narezushi, a fermented mackerel product, on spontaneously hypertensive rats. Fish. Sci. 73:1344–1352.
  • Jäkälä, P. and Vapaatalo, H. (2010). Antihypertensive peptides from milk proteins. Pharmaceuticals. 3:251–272.
  • Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., Juan, F., Yardi, V. and Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE-inhibitoryactivity of peanut protein hydrolyzate. Food Chem. 121:178–184.
  • Jang, A. and Lee, M. (2005). Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolyzates. Meat Sci. 69:653–661.
  • Jang, A., Jo, C., Kang, K.-S. and Lee, M. (2008). Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chem. 107:327–336.
  • Jang, J.H., Jeong, S.C., Kim, J.H., Lee, Y.H., Ju, Y.C. and Lee, J.S. (2011a). Characterisation of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae. Food Chem. 127:412–418.
  • Jang, J.H., Jeong, S.C., Lee, J.K. and Lee, J.S. (2011b). Digestion pattern of antihypertensive angiotensin i-converting enzyme inhibitory peptides from saccharomyces cerevisiae in a successive simulated gastricintestinal bioreactor. Mycobiology. 39:67–69.
  • Jauhiainen, T. and Korpela, R. (2007). Milk peptides and blood pressure. J. Nutr. 137:825S–829S.
  • Je, J., Lee, K., Lee, M. H. and Ahn, C. (2009). Antioxidant and antihypertensive protein hydrolyzates produced from tuna liver by enzymatic hydrolysis. Food Res. Int. 42:1266–1272.
  • Je, J., Park, J., Jung, W, Park, P. and Kim, S. (2005). Isolation of angiotensin-I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas. Food Chem. 90:809–814.
  • Jia, J., Ma, H., Zhao, W., Wang, Z., Tian, W., Luo, L. and He, R. (2010). The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chem. 119:336–342.
  • Jiang, Z., Tian, B., Brodkorb, A. and Huo, G. (2010). Production, analysis and in vivo evaluation of novel angiotensin-I-converting enzyme inhibitory peptides from bovine casein. Food Chem. 123:779–786.
  • Jimsheena, V..K. and Gowda, L. R. (2011). Angiotensin I-converting enzyme (ACE) inhibitory peptides derived from arachin by simulated gastric digestion. Food Chem. 125:561–569.
  • Jung, H. A., Hyun, S. K., Kim, H. R. and Choi, J. S. (2006). Angiotensin converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fish. Sci. 72:1292–1299.
  • Jung, W. K., Mendis, E., Je, J.Y., Park, P.J., Son B. W., Kim, H. C., Choi, Y..K. and Kim, S. K. (2006). Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 94:26–32.
  • Kim, J. M., Whang, J. H. and Suh, H. J. (2004). Enhancement of angiotensin I converting enzyme inhibitory activity and improvement of the emulsifying and foaming properties of corn gluten hydrolyzate using ultrafiltration membranes. Eur. Food Res. Technol. 218:133–138.
  • Kim, J.H., Lee, D.H., Jeong, S.C., Chung, K.S. and Lee, J.S. (2004). Characterization of antihypertensive angiotensin i-converting enzyme inhibitor from Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 14:1318–1323.
  • Kim, S. M., Park, S. and Choue, R. (2010). Effects of fermented milk peptides supplement on blood pressure and vascular function in spontaneously hypertensive rats. Food Sci. Biotechnol. 19:1409–1413.
  • Ko, S.-C., Kang, M. C., Lee, J.-K., Byun, H.-G., Kim, S.-K., Lee, S.-C., Jeon, B.-T., Park, P.-J., Jung, W.-K. and Jeon, Y.-J. (2011). Effect of angiotensin I-converting enzyme (ACE) inhibitory peptide purified from enzymatic hydrolyzates of Styela plicata. Eur. Food Res. Technol. 233:915–922.
  • Ko, W., Cheng, M., Hsu, K. and Hwang, J. (2006). Absorption-enhancing treatments for antihypertensive activity of oligopeptides from tuna cooking juice : In vivo evaluation in spontaneously hypertensive rats. J. Food Sci. 71:S13–S17.
  • Ko, W..C. and Jao, C..L., (2000). Effect of enzyme treatment upon hydrolysis of proteins from the cooking juice of tuna. Food Sci. Agric. Chem. 4:226–232.
  • Kong, Q., Chen, F., Wang, X., Li, J., Guan, B. and Lou X. (2011). Optimization of conditions for enzymatic production of ace-inhibitorypeptides from collagen. Food Bioprocess. Tech. 4:1205–1211.
  • Lahogue, V., Rehel, K., Taupin, L., Haras, D. and Allaume, P. (2010). A HPLC-UV method for the determination of angiotensin I-converting enzyme (ACE) inhibitory activity. Food Chem. 118:870–875.
  • Larsen, R., Eilertsen, K.E. and Elvevoll, E.O. (2011). Health benefits of marine foods and ingredients. Biotechn. Adv. 29(5):508–518.
  • Lee, D. H., Kim, J.H., Park, J.S., Choi, Y.J. and Lee. J.S. (2004). Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum. Peptides. 25:621–627.
  • Lee, N. Y., Kim, Y., Choi, I., Cho, S., Hyun, J., Choi, J., Park, K., Kim, K. and Lee, M. (2010). Biological activity of barley ( Hordeum vulgare L.) and barley byproduct extracts. Food Sci. Biotechnol. 19:785–791.
  • Lee, S.-H., Qian, Z.-J. and Kim, S.-K., (2010). A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolyzate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 118:96–102.
  • Lee, Y.-M., Skurk, T., Hennig, M. and Hauner, H. (2007). Effect of a milk drink supplemented with whey peptides on blood pressure in patients with mild hypertension. Eur. J. Nutr. 46:21–27.
  • Li, G., Qu, M., Wan, J. and You, J. (2007). Antihypertensive effect of rice protein hydrolyzate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pac. J. Clin. Nutr. 16:275–280.
  • Li, G., Shi, Y., Liu, H. and Le, G. (2006). Antihypertensive effect of alcalase generated mung bean protein hydrolyzates in spontaneously hypertensive rats. Eur. Food Res. Technol. 222:733–736.
  • Li, H. and Aluko, R. E. (2010). Identification and inhibitory properties of multifunctional peptides from pea protein hydrolyzate. J. Agric. Food Chem. 58:11471–11476.
  • Li, H., Prairie, N., Udenigwe, C. C., Adebiyi, A. P., Tappia, P..S., Aukema, H. M., Jones, P. J. H. and Aluko, R. E. (2011). Blood pressure lowering effect of a pea protein hydrolyzate in hypertensive rats and humans. J. Agric. Food Chem. 59:9854–9860.
  • Lignitto, L., Cavatorta, V., Balzan, S., Gabai, G., Galaverna, G., Novelli, E., Sforza, S. and Segato, S. (2010). Angiotensin-converting enzyme inhibitory activity of water-soluble extracts of Asiago d’allevo cheese. Int. Dairy J. 20:11–17.
  • Lin, F., Chen, L., Liang, R., Zhang, Z., Wang J., Cai, M. and Li, Y. (2011). Pilot-scale production of low molecular weight peptides from corn wet milling byproducts and the antihypertensive effects in vivo and in vitro. Food Chem. 124:801–807.
  • Lin, L., Lv, S. and Li, B. (2012). Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolyzates. Food Chem. 131:225–230.
  • Liu, C. F., Tung, Y. T., Wu, C. L., Lee, B.-H., Hsu, W.-H. and Pan, T. M. (2011). Antihypertensive effects of lactobacillus-fermented milk orally administered to spontaneously hypertensive rats. J. Agric. Food Chem. 59:4537–4543.
  • Liu, J., Yu, Z., Zhao, W., Lin, S., Wanga, E., Zhang, Y., Hao, H., Wang, Z. and Chen, F. (2010). Isolation and identification of angiotensin-converting enzyme inhibitory peptides from egg white protein hydrolyzates. Food Chem. 122:1159–1163.
  • Liu, L., Zhang, S. and He, D. (2009). Detection of an angiotensin converting enzyme inhibitory peptide from peanut protein isolate and peanut polypeptides by western blot and dot blot hybridization. Eur. Food Res. Technol. 230:89–94.
  • Lo, W. M. Y. and Li-Chan, E. C. Y. (2005). Angiotensin I converting enzyme inhibitory peptides from in vitro pepsin-pancreatin digestion of soy protein. J. Agric. Food Chem. 53:3369–3376.
  • Lopez-Fandino, R., Otte, J. and van Camp, J. (2006). Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int. Dairy J. 16:1277–1293.
  • Luna-Suarez, S., Medina-Godoy, S., Cruz-Hernandez, A. and Paredes-Lopez, O. (2010). Modification of the amaranth 11S globulin storage protein to produce an inhibitory peptide of the angiotensin I converting enzyme, and its expression in Escherichia coli. J. Biotechnol. 148:240–247.
  • Madadlou, A., Sheehan, D., Emam-Djomeh, Z. and Mousavi, M. E. (2011). Ultrasound-assisted generation of ACE-inhibitory peptides from casein hydrolyzed with nanoencapsulated protease. J. Sci. Food Agric. 91:2112–2116.
  • Mahato, R. I., Narang, A. S., Thoma, L. and Miller, D..D. (2003). Emerging trends in oral delivery of peptide and protein drugs. Crit. Rev. Ther. Drug. Carrier. Syst. 20:153–214.
  • Majumder, K. and Wu, J. (2009). Angiotensin I converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of cooked eggs. J. Agric. Food Chem. 57:471–477.
  • Majumder, K. and Wu, J. (2010). A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Res. Int. 43:1371–1378.
  • Makinen, S., Kelloniemi, J., Pihlanto, A., Makinen, K., Korhonen, H., Hopia, A. and Valkonen, J. P. T. (2008). Inhibition of angiotensin converting enzyme i caused by autolysis of potato proteins by enzymatic activities confined to different parts of the potato tuber. J. Agric. Food Chem. 56:9875–9883.
  • Marambe, P. W., Shand, P. J. and Wanasundara, J. P. D. (2008). An in-vitro investigation of selected biological activities of hydrolyzed flaxseed ( Linum usitatissimum L. ) proteins. J. Am. Oil Chem. Soc. 85:1155–1164.
  • Marczak, E. D., Usui, H., Fujita, H., Yang, Y., Yokoo, M., Lipkowski, A. W. and Yoshikawa, M. (2003). New antihypertensive peptides isolated from rapeseed. Peptides. 24:791–798.
  • Maruyama, S., Mitachi, H., Awaya, J., Kunoro, M., Tomizuka, N. and Suzuki, H. (1987). Angiotensin I-converting enzyme inhibitory activity of the C-terminal hexapeptide of as1-casein. Agric. Biol. Chem. 51:2557–2561.
  • Matsui, T., Yukiyoshi, A,, Doi, S., Sugimoto, H., Yamada, H. and Matsumoto, K. (2002). Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR. J. Nutr. Biochem. 13:80–86.
  • Miguel, M., Aleixandre, M. A., Ramos, M. and Lopez-Fandino, R. (2006). Effect of simulated gastrointestinal digestion on the antihypertensive properties of ace-inhibitory peptides derived from ovalbumin. J. Agric. Food Chem. 54:726–731.
  • Miguel, M., Contreras, M..M., Recio, I. and Aleixandre, A. (2009). ACE-inhibitory and antihypertensive properties of a bovine casein hydrolyzate. Food Chem. 112:211–214.
  • Miguel, M., Gomez-Ruiz, J..A., Recio I. and Aleixandre, A. (2010). Changes in arterial blood pressure after single oral administration of milk-casein-derived peptides in spontaneously hypertensive rats. Mol. Nutr. Food Res. 54:1422–1427.
  • Miguel, M., Lopez-Fandino, R., Ramos, M. and Aleixandre, M. A. (2005). Blood pressure lowering effect of products derived from egg white in hypertensive rats after single oral administration. Brit. J. Nutr. 94:731–737.
  • Miguel, M., Recio, I., Gomez-Ruiz, J. A., Ramos, M. and Lopez-Fandino, R. (2004). Agiotensin I converting enzyme-inhibitory activity of peptides derived from egg white proteins by enzymatichydrolysis. J. Food Protect. 67:1914–1920.
  • Motoi, H. and Kodama, T. (2003). Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides from wheat gliadin hydrolyzate. Nahrung/Food 47:354–358.
  • Muguruma, M., Ahhmed, M. A., Katayama, K., Kawahara, S., Maruyama, M. and Nakamura, T. (2009). Identification of pro-drug type inhibitory peptide sourced from porcinemyosin B: Evaluation of its antihypertensive effects in vivo. Food Chem. 114:516–522.
  • Murray, B.A. and FitzGerald, R.J. (2007). Angiotensin converting enzyme inhibitory peptides derived from food proteins: Biochemistry, bioactivity and production. Curr. Pharm. Design. 13:773–791.
  • Nakajima, K., Yoshie-Stark, Y. and Ogushi, M. (2009). Comparison of ACE-inhibitoryand DPPH radical scavenging activities of fish muscle hydrolyzates. Food Chem. 114:844–851.
  • Nakamura, T., Yoshida, A., Komatsuzaki, N., Kawasumi, T. and Shima, J. (2007). Isolation and characterization of a low molecular weight peptide contained in sourdough. J. Agric. Food Chem. 55:4871–4876.
  • Naknukool, S., Hayakawa, S. and Ogawa, M. (2011). Multiple biological functions of novel basic proteins isolated from duck egg white: Duck basic protein small 1 (dBPS1) and 2 (dBPS2). J. Agric. Food Chem. 59:5081–5086.
  • Ngo, D.-H., Ryu, B., VO, T.-S., Himaya, S.W.A., Wijesekara, I. and Kim, S.-K. (2011). Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. Int. J. Biol. Macromol. 49:1110–1116.
  • Nielsen, M. S., Martinussen, T., Flambard, B., Sorensen, K. I. and Otte, J. (2009). Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: Effect of bacterial strain, fermentation pH, and storage time. Int. Dairy J. 19:155–165.
  • Nogata, Y., Nagamine, T., Yanaka, M. and ohta, H. (2009). Angiotensin I converting enzyme inhibitory peptides produced by autolysis reactions from wheat bran. J. Agric. Food Chem. 57:6618–6622.
  • Ong, l. and Shah, N.P. (2008). Influence of probiotic lactobacillus acidophilus and L. helveticus on proteolysis, organic acid profiles, and ACE- inhibitory activity of cheddar cheeses ripened at 4, 8, and 12°C. J. Food Sci. 73: M111–M120.
  • Ono, S., Hosokawa, M. Miyashita, K. and Takahashi, K. (2003). Isolation of peptides with angiotensin I-converting enzyme inhibitory effect derived from hydrolyzate of upstream chum salmon muscle. J. Food Sci. 68:1611–1614.
  • Otte, J., Lenhard, T., Flambard, B. and Sorensen, K. I. (2011). Influence of fermentation temperature and autolysis on ACE-inhibitory activity and peptide profiles of milk fermented by selected strains of Lactobacillus helveticus and Lactococcus lactis. Int. Dairy J. 21:229–238.
  • Otte, J., Shalaby, S. M..A., Zakora, M. and Nielsen, M. S. (2007). Fractionation and identification of ACE-inhibitory peptides from α-lactalbumin and ⇓-casein produced by thermolysin-catalysed hydrolysis. Int. Dairy J. 17:1460–1472.
  • Page, D. and Duc, G., (1999). Peas, a promising source of protein. Oleagineux Corps Gras Lipides (OCL). 6:518–523.
  • Pan, D. and Guo, Y. (2010). Optimization of sour milk fermentation for the production of ACE-inhibitory peptides and purification of a novel peptide from whey protein hydrolyzate. Int. Dairy J. 20:472–479.
  • Pan, D., Cao, J., Guo, H. and Zhao, B. (2012). Studies on purification and the molecular mechanism of a novel ACE-inhibitorypeptide from whey protein hydrolyzate. Food Chem. 130:121–126.
  • Papadimitriou, C. G., Vafopoulou-Mastrojiannaki, A., Silva, S. V., Gomes, A., Malcata, F. X. and Alichanidis, E. (2007). Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I-converting enzyme (ACE)-inhibitory activity. Food Chem. 105:647–656.
  • Pihlanto, A., Akkanen, S., Korhonen, H. J. (2008). ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chem. 109:104–112.
  • Pihlanto, A., Virtanen, T. and Korhonen, H. (2010). Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk. Int. Dairy J. 20:3–10.
  • Pihlanto-Lepala, A. (2001). Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory peptides. Trends Food Sci. Tech. 11:347–356.
  • Pins, J. J. and Keenan, J. M. (2006). Effects of whey peptides on cardiovascular disease risk factors. J. Clin. Hypertens. 8:775–782.
  • Pins, J..J., Geleva, D., Leemam, K., Frazer, C., O’Connor, P..J. and Cherney, L..M. (2002) Do whole-grain oat cereals reduce the need for antihypertensive medications and improve blood pressure control?. J. Family Practice. 51:353–359.
  • Pritchard, S. R., Phillips, M., Kailasapathy, K., (2010). Identification of bioactive peptides in commercial Cheddar cheese. Food Res. Int. 43:1545–1548.
  • Qu, W., Maa, H., Pan, Z., Luo, L., Wanga, Z. and He, R. (2010). Preparation and antihypertensive activity of peptides from Porphyra yezoensis. Food Chem. 123:14–20.
  • Quiroga, A.V., Aphalo, P., Ventureira, J. L., Martinez, E. N. and Anon, M. C. (2012). Physicochemical, functional and angiotensin converting enzyme inhibitory properties of amaranth ( Amaranthus hypochondriacus ) 7S globulin. J. Sci. Food Agric. 92:397–403.
  • Quiros, A., Contreras, M. M., Ramos, M., Amigo, L. and Recio, I. (2009). Stability to gastrointestinal enzymes and structure–activity relationship of b-casein-peptides with antihypertensive properties. Peptides. 30:1848–1853.
  • Quist, E. E., Phillips, R..D. and Saalia, F. K. (2009). Angiotensin converting enzyme inhibitory activity of proteolytic digests of peanut (Arachis hypogaea L.) flour. Food Sci. Technol. (LWT). 42:694–699.
  • Raghavan, S. and Kristinsson, H. G. (2009). ACE-inhibitory activity of tilapia protein hydrolyzates. Food Chem. 117:582–588.
  • Ramchandran, L. and Shah, N. P. (2011). Yogurt can beneficially affect blood contributors of cardiovascular health status in hypertensive rats. J. Food Sci. 76: H131–H136.
  • Ramchandran, L. and Shah, N. P. (2010). Influence of addition of Raftiline HP→ on the growth, proteolytic, ACE- and α-glucosidase inhibitory activities of selected lactic acid bacteria and bifidobacterium. Food Sci. Technol. (LWT). 43:146–152.
  • Ramchandran, L. and Shah, N.P. (2008). P roteolytic profiles and angiotensin-i converting enzyme and α -glucosidase inhibitory activities of selected lactic acid bacteria. J. food sci. 73: M75–M81.
  • Rao, S., Ju, T., Sun, J., Su, Y.-J., Xu, R. and Yang, Y. (2011). purification and characterization of angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolyzate of hen egg white lysozyme. Food Res. Int. 46(1):127–134.
  • Ren, F., Zhang, S., Guo, H. and Jiang, L. (2011). Systemic screening of milk protein-derived ACE inhibitors through a chemically synthesised tripeptide library. Food Chem. 128:761–768.
  • Rho, S. J., Lee, J., Chung, Y. I., Kim, Y. and Lee, H. G. (2009). Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem. 44:490–493.
  • Ricci, I., Artacho, R. and Olalla, M. (2010). Milk protein peptides with angiotensin I-converting enzyme inhibitory (ACE I) activity. Crit. Rev. Food Sci. Nutr. 50:390–402.
  • Rosa, A.P., Montoya, A. B., Martinez-Cuevas, P., Hernandez-Ledesma, B., Leon-Galvan, M. F., Leon-Rodriguez, A. D. and Gonzalez, C. (2010). Tryptic amaranth glutelin digests induce endothelial nitric oxide production through inhibition of ACE: Antihypertensive role of amaranth peptides. Nitric Oxide. 23:106–111.
  • Rousseau-Ralliard, D., Goirand, F., Tardivel, S., Lucas, A., Algaron, F., Molle, D., Robert, V., Auchere, D., Boudier, J..F., Gaillard, J..L., Monnet, V., Tauzin, J. and Grynberg, A. (2010). Inhibitory effect of αS1- and αS2-casein hydrolyzates on angiotensin I-converting enzyme in human endothelial cells in vitro, rat aortic tissue ex vivo, and renovascular hypertensive rats in vivo. J. Diary Sci. 93:2906–2921.
  • Ruiz-gimenez, P., Ibanez, A., Salom, J. B., Marcos, J. F., lopez-diez, J. J., Valles, S., Torregrosa, G., Alborch, E. and Manzanares, P. (2010). Antihypertensive properties of lactoferricin B-derived peptides. J. Agric. Food Chem. 58:6721–6727.
  • Ruiz-Giménez, P., Salom, J. B., Marcos, J. F., Vallés, S., Martinez-Maqueda, D., Recio, I., Torregrosa, G., Alborch, E..and Manzanares, P. (2012). Antihypertensive effect of a bovine lactoferrin pepsin hydrolyzate: Identification of novel active peptides. Food Chem. 131:266–273.
  • Saiga, A., Okumura, T., Makihara, T., Katsuta, S., Shimizu, T., Yamada, R. and Nishimura, T. (2003). Angiotensin I-converting enzyme inhibitory peptides in a hydrolyzed chicken breast muscle extract. J. Agric. Food Chem. 51:1741–1745.
  • Saiga, A., Iwai, K., Hayakawa, T., Takahata, Y., Kitamura, S., Nishimura, T. and Morimatsu, F. (2008). Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolyzate. J. Agric. Food Chem. 56:9586–9591.
  • Saito, T. (2008). Antihypertensive peptides derived from bovine casein and whey proteins. In: Bioactive Components of Milk. Z. Bosze, Ed., Springer, New York, pp. 295–317.
  • Sakamoto, Y., Takeuchi, A., Sato, T., Obara, K., Takai, K., Fujino, K., Hirose, T. and Inagaki, Y. (2001). Identification of antihypertensive substance in an aqueous extract from fruit body of Mycoleptodonoides aitchisonii. Oyo Yakuri. Pharmacometrics. 61:221–229.
  • Saltzman, E., Das, S. K., Lichtenstein, A. H., Dallal, G. E., Corrales, A., Schaefer, E..J, Greenberg, A. S. and Roberts, S..B., (2001). An oat-containing hypocaloric diet reduces systolic blood pressure and improves lipid profile beyond effects of weight loss in men and women. J. Nutr. 131:1465–1470.
  • Segura-Campos, M. R., Chel-Guerrero, L. A. and Betancur-Ancona, D. A. (2011). Purification of angiotensin I-converting enzyme inhibitory peptides from a cowpea (Vigna unguiculata) enzymatic hydrolyzate. Process Biochem. 46:864–872.
  • Sentandreu, M..A. and Toldra, F. (2007). Evaluation of ACE-inhibitoryactivity of dipeptides generated by the action of porcine muscle dipeptidyl peptidases. Food Chem. 102:511–515.
  • Seppo, L., Jauhiainen, T., Poussa, T. and Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77:326–330.
  • Séverin, S. and Wenshui, X. (2005). Milk biologically active components as neutraceuticals. Crit. Rev. Food Sci. Nutr. 45:645–656.
  • Shamtsyan, M. (2010). Bioactive Compounds in Mushrooms. In: Encyclopedia of Biotechnology in Agriculture and Food, Vol. 1, pp. 76–81. D. R. Heldman, D. G. Hoover, and M. B. Wheeler, Eds., Taylor & Francis, Boca Raton, FL.
  • Sheih, I., Fang, T. J. and Wu, T. (2009). Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chem. 115:279–284.
  • Shiozaki, K., Shiozaki, M., Masuda, J., Yamauchi, A., Ohwada, S., Nakano, T., Yamaguchi, T., Saito, T., Muramoto, K. and Sato, M. (2010). Identification of oyster-derived hypotensive peptide acting as angiotensin-I-converting enzyme inhibitor. Fish. Sci. 76:865–872.
  • Shuangquan, Tsuda, H. and Miyamoto, T. (2008). Angiotensin I-converting enzyme inhibitory peptides in skim milk fermented with Lactobacillus helveticus 130B4 from camel milk in Inner Mongolia, China. J. Sci. Food Agric. 88:2688–2692.
  • Smith J. G. (Ed.) (2010). General, Organic, and Biological Chemistry. McGraw-Hill, New York, NY, 675 pp.
  • Suetsuna, K. and Nakano, T. (2000). Identification of an antihypertensive peptide from peptic digest of wakame ( Undaria pinnatifida ). J. Nutr. Biochem. 11:450–454.
  • Suetsuna, K., Maekawa, K. and Chen, J. R. (2004). Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J. Nutr. Biochem. 15:267–272.
  • Sun, Y., Hayakawa, S., Ogawa, M., Naknukool, S., Guan, Y. and Matsumoto, Y. (2011). Evaluation of angiotensin I-converting enzyme (ACE) inhibitory activities of hydrolyzates generated from byproducts of freshwater clam. Food Sci. Biotechnol. 20:303–310.
  • Takaki-Doi, S., Hashimoto, K., Yamamura, M. and Kamei, C. (2009). Antihypertensive activities of royal jelly protein hydrolyzate and its fractions in spontaneously hypertensive rats. Acta Med. Okayama. 63:57–64.
  • Tavares, T., del Mar Contreras, M., Amorim, M., Pintado, M. Recio, I., Malcata, F. X. (2011a). Novel whey-derived peptides with inhibitory effect against angiotensin converting enzyme: In vitro effect and stability to gastrointestinal enzymes. Peptides. 32:1013–1019.
  • Tavares, T., Sevilla, M., Montero, M., Carron, R. and Malcata, F. X. (2011b). Acute effect of whey peptides upon blood pressure of hypertensive rats and relationship with their angiotensin-converting enzyme inhibitory activity. Mol. Nutr. Food Res. 55:1–9.
  • Tavares, T.G., Contreras, M.M., Amorim, M., Martín-Álvarez, P.J., Pintado, M.E., Recio, I. and Malcata, F.X. (2011c). Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolyzates obtained with cardoon extract. Int. Dairy J. 21:926–933.
  • Terashima, M., Baba, T., Ikemoto, N., Katayama, M., Morimoto, T. and Matsumura, S. (2010). Novel angiotensin-converting enzyme (ACE) inhibitory peptides derived from boneless chicken leg meat. J. Agric. Food Chem. 58:7432–7436.
  • Thewissen, B. G., Pauly, A., Celus, I., Brijs, K. and Delcour, J. A. (2011). Inhibition of angiotensin I-converting enzyme by wheat gliadin hydrolyzates. Food Chem. 127:1653–1658.
  • Tiengo, A., Faria, M. and Netto, F..M. (2009). Characterization and ACE-inhibitory activity of amaranth proteins. J. Food Sci. 74: H121–H126.
  • Tighe, P., Duthie G., Vaughan, N., Brittenden, J., Simpson, W. G., Duthie, S., Mutch, W., Wahle, K., Horgan, G. and Thies, F. (2010). Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: A randomized controlled trial. Am. J. Clin. Nutr. 92:733–740.
  • Tokunaga, K..H, Yoshida, C., Suzuki, K..M., Maruyama, H., Futamura, Y., Araki, Y. and Mishima, S. (2004). Antihypertensive effect of peptides from royal jelly in spontaneously hypertensive rats. Biol. Pharm. Bull. 27:189–192.
  • Tovar-Pérez, E. G., Guerrero-Legarreta, I., Farrés-Gonzalez, A. and Soriano-Santos, J. (2009). Angiotensin I-converting enzyme-inhibitory peptide fractions from albumin 1 and globulin as obtained of amaranth grain. Food Chem. 15:437–444.
  • Tsai, J., Chen, J. and Pan, B. S. (2008). ACE-inhibitory peptides identified from the muscle protein hydrolyzate of hard clam (Meretrix lusoria). Process Biochem. 43:743–747.
  • Tsai, J.S., Li, T.C., Chen, J.L. and Pan, B.S. (2006). The inhibitory effects of freshwater clam (Corbicula fluminea, Muller) muscle protein hydrolyzates on angiotensin I converting enzyme. Process Biochem. 41:2276–2281.
  • Udenigwea, C. C., Linb, Y.S., Houc, W.C. and Alukoa, R. E. (2009). Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolyzate fractions. J. Funct. Foods. 1:199–207.
  • USDA, (2000). US Department of Agriculture, Department of Health and Human Services. Dietary Guidelines for Americans. US Government Printing Office, Washington, DC.
  • USDA, (2005). US Department of Agriculture. Department of Health and Human Services. Nutrition and Your Health: Dietary Guidelines for Americans. US Government Printing Office, Washington, DC.
  • Vaštag, Z., Popovic´, L., Popovic´, S., Petrovic´, L. and Pericin, D. (2010). Antioxidant and angiotensin-I converting enzyme inhibitory activity in the water-soluble protein extract from Petrovac Sausage (Petrovská Kolbása). Food Control. 21:1298–1302.
  • Vecchi, B. and Añón, M..C., (2009). ACE-inhibitory tetrapeptides from Amaranthus hypochondriacus 11S globulin. Phytochemistry. 70:864–870.
  • Vermeirssen, V., Bent, A., Camp, J..V., Amerongen, A. and Verstraete, W. A. (2004). Q uantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochemistry. 86:231–239.
  • Vermeirssen, V., Van Camp, J. and Verstraete, W. (2005). Fractionation of angiotensin I converting enzyme inhibitory activity from pea and whey protein in vitro gastrointestinal digests. J. Sci. Food Agric. 85:399–405.
  • Wakasa, Y., Zhao, H., Hirose, S., Yamauchi, D., Yamada, Y., Yang, L., Ohinata, K., Yoshikawa, M. and Takaiwa, F. (2011). Antihypertensive activity of transgenic rice seed containing an 18-repeat novokinin peptide localized in the nucleolus of endosperm cells. Plant Biotechnol. J. 9:729–735.
  • Walsh, D. J., Bernard, H., Murray, B. A., MacDonald, J., Pentzien, A.-K., Wright, G. A., Wal, J. M., Struthers, A.D., Meisel, H. and FitzGerald, R.J. (2004). In vitro generation and stability of the lactokinin b-lactoglobulin fragment f(142–148). J. Dairy Sci. 87:3845–3857.
  • Wang, C., Tian, J. and Wang, Q. (2011). ACE-inhibitoryand antihypertensive properties of apricot almond meal hydrolyzate. Eur. Food Res. Technol. 232:549–556.
  • Wang, J., Hu, J., Cui, J., Bai, X., Dua, Y., Miyaguchi, Y. and Lin, B. (2008). Purification and identification of a ACE-inhibitorypeptide from oyster proteins hydrolyzate and the antihypertensive effect of hydrolyzate in spontaneously hypertensive rats. Food Chem. 111:302–308.
  • Wang, L., Gaziano, J.M. Liu, S., Manson, J.E, Buring, J.E. and Sesso, H.D. (2007). Whole and refined-grain intakes and the risk of hypertension in women. Am. J. Clin. Nutr. 86:472–479.
  • Wang, L., Mao, X., Cheng, X., Xiong, X. and Ren, F. (2010). Effect of enzyme type and hydrolysis conditions on the in vitro angiotensin I-converting enzyme inhibitory activity and ash content of hydrolyzed whey protein isolate. Int. J. Food Sci. Technol. 45:807–812.
  • Wang, Y., He, H., Chen, X., Sun, C., Zhang, Y. and Zhou, B. (2008). Production of novel angiotensin I-converting enzyme inhibitory peptides by fermentation of marine shrimp Acetes chinensis with Lactobacillus fermentum SM 605. Appl. Microbiol. Biotechnol. 79:785–791.
  • WHO. (2002). The World Health Report 2002 – Reducing Risks, Promoting Healthy Life. World Health Organization, Geneva, Switzerland.
  • WHO. (2003). 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J. Hyperten. 21:1983–1992.
  • Wijesekara, I., Pangestuti, R. and Kim, S.-K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 84:14–21.
  • Wijesekara, I. and Kim, S..K. (2010). Angiotensin-I- c onverting e nzyme (ACE) inhibitors from marine resour ces: Prospects in the p harmaceutical i ndustry. Marine Drugs. 8:1080–1093.
  • Wilson, J., Hayes, M. and Carney, B. (2011). Angiotensin-I-converting enzyme and prolyl endopeptidase inhibitory peptides from natural sources with a focus on marine processing by-products. Food Chem. 129:235–244.
  • Wolf, G. and Ritz, E. (2005). Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: Pathophysiology and indications. Kidney Intl. 67:799–812.
  • Wu, H., He, H.L., Chen, X.L., Sun, C.Y., Zhang, Y.Z. and Zhou, B.C. (2008). Purification and identification of novel angiotensin-I converting enzyme inhibitory peptides from shark meat hydrolyzate. Process Biochem. 43:457–461.
  • Wu, J., Aluko, R. E. and Muir, A. D. (2009). Production of angiotensin I-converting enzyme inhibitory peptides from defatted canola meal. Bioresource Technology. 100:5283–5287.
  • Yang, R., Zou, Y., Yu, N. and Gu, Z. (2011). Accumulation and identification of angiotensin-converting enzyme inhibitory peptides from wheat germ. J. Agric. Food Chem. 59:3598–3605.
  • Yang, Y., Marczak, E. D., Usui, H., Kawamura, Y., |and Yoshikawa, M. (2004). Antihypertensive properties of spinach leaf protein digests. J. Agric. Food Chem. 52:2223–2225.
  • Yang, Y., Marczak, E..D., Yokoo, M., Usui, H. and Yoshikawa, M. (2003). Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach rubis co. J. Agric. Food Chem. 51:4897–4902.
  • Yang, Y., Tao, G., Liu, P. and Liu, J. (2007). Peptide with a ngiotensin I- c onverting enzyme inhibitory activity from hydrolyzed corn gluten meal. J. Agric. Food Chem. 55:7891–7895.
  • Yoshiia, H., Tachia, N., Ohba, R., Sakamura, O., Takeyama, H. and Itani, T. (2001). Antihypertensive effect of ACE-inhibitoryoligopeptides from chicken egg yolks. Comp. Biochem. Phys. C. 128:27–33.
  • You, S. and Wu, J. (2011). Angiotensin-I converting enzyme inhibitory and antioxidant activities of egg protein hydrolyzates produced with gastrointestinal and non-gastrointestinal enzymes. J. Food Sci. 76: C801–C807.
  • Yu, Z., Zhao, W., Liu, J., Liu, J. and Chen, F. (2011). QIGLF, a novel angiotensin I-converting enzyme-inhibitory peptide from egg white protein. J. Sci. Food Agric. 91:921–926.
  • Yust, M. M., Pedroche, J., Giron-Calle, J., Alaiz, M., Francisco, M. and Vioque, J. (2003). Production of ACE-inhibitorypeptides by digestion of chickpea legumin with alcalase. Food Chem. 81:363–369.
  • Zhang, F., Wang, Z., Xu, S., (2009). Macroporous resin purification of grass carp fish (Ctenopharyngodon idella) scale peptides with in vitro angiotensin-I converting enzyme (ACE) inhibitory ability. Food Chem. 117:387–392.
  • Zhang, J.H., Tatsumi, E., Ding, C.H. and Li, L..T. (2006). Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product. Food Chem. 98:551–557.
  • Zhan-li, W., Sai-sai, Z., Wei, W., Feng-qin, F. and Wei-guang, S. (2011). A novel angiotensin I converting enzyme inhibitory peptide from the milk casein: Virtual screening and docking studies. Agric. Sci. China. 10:463–467.
  • Zhao, X. and Li, Y. (2009). An approach to improve ACE-inhibitory activity of casein hydrolyzates with plastein reaction catalyzed by Alcalase. Eur. Food Res. Technol. 229:795–805.
  • Zhao, Y., Li, B., Dong, S., Liu, Z., Zhao, X., Wang, J. and Zeng, M. (2009). A novel ACE-inhibitorypeptide isolated from Acaudina molpadioidea hydrolyzate. Peptides. 30:1028–1033.
  • Zhao, Y., Li, B., Liu, Z., Dong, S., Zhao, X. and Zeng, M. (2007). Antihypertensive effect and purification of an ACE-inhibitorypeptide from sea cucumber gelatin hydrolyzate. Process Biochem. 42:1586–1591.
  • Zhu, Z., Qiu, N. and Yi, J. (2010). Production and characterization of angiotensin converting enzyme (ACE) inhibitory peptides from apricot ( Prunus armeniaca L.) kernel protein hydrolyzate. Eur. Food Res. Technol. 231:13–19.
  • Zhuang, Y., Sun, L. and Li, B. (2010). Production of the Angiotensin-I-converting enzyme (ACE)-inhibitory peptide from hydrolyzates of jellyfish (Rhopilema esculentum) collagen. Food Bioprocess Tech. 5(5):1–8.
  • Zhuang, Y., Sun, L. and Li, B. (2012). Production of the Angiotensin-I-converting enzyme (ACE)-inhibitory peptide from hydrolyzates of jellyfish 2480 (Rhopilema esculentum) collagen. Food Bioprocess Tech. 5:1622–1629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.