6,743
Views
169
CrossRef citations to date
0
Altmetric
Original Articles

Potato Production, Usage, and Nutrition—A Review

&

REFERENCES

  • Akhtar, H. (2012). Reducing process induced toxins in foods. In: Green Technologies in Production and Processing- Food Engineering Series, pp. 571–605. Boye, J. I. and Arcand, Y., Eds., Springer, New York-Dordrecht-Heidelberg-London.
  • Anderson, P. K. (2010). The contribution of potatoes to global food security. Available from www.sweetpotatoeknowledge.org/projects-initiatives-pamelas-presentation-2011_05_26-valerie-gwinder.pdf. Accessed June, 2015.
  • Anonymous. (2008). World-wide potato production statistics. Available from http://www.potato2008.org/en/world/index.html. Accessed August 03, 2010.
  • Avendano, M. (2012). Correlation or causation? Income inequality and infant mortality in fixed effects models in the period 1960–2008 in 34 OECD countries. Soc. Sci. Med. 75:754–760.
  • Bagdonaite, K., Derler, K. and Murkovic, M. (2008). Determination of acrylamide during roasting of coffee. J. Agric. Food Chem. 56:6081–6086.
  • Barba, A. A., Calabretti, A., dAmore, M., Piccinelli, A. L and Rastrelli, L. (2008). Phenolic constituents levels in cv. Agria potato under microwave processing. LWT-Food Sci. Technol. 41:1919–1926.
  • Barda, J., Bartova, V., Zdrahal, Z. and Sedo, O. (2012). Cultivar variability of patatin biochemical characteristics.: Table versus processing potatoes. J. Agric. Food Chem. 60:4369–4378.
  • BASF. (2010). European Union approves Amflora starch potato. Available from http://www.basf.com/group/pressrelease/P-10-179; wikipedia.org/wiki/Amflora. Accessed June, 2015.
  • Becalski, A., Lau, B. P. Y., Lewis, D. and Seamen, S. W. (2003). Acrylamide in foods: Occurrence, sources, and modeling. J. Agric. Food Chem. 51:802–808.
  • Brown, C. R. (2005). Antioxidants in potato. Am. J. Potato Res. 82:163–172.
  • Brown, C. R. (2006). Anthocyanin and carotenoid contents in potato breeding for the specialty market. Proc. the Idaho Winter Commodity Schools 39:157–163.
  • Brown, C. R., Cully, D., Yang, C., Durst, R. and Wrolstad, R. (2005). Variation of anthocyanin and carotenoid contents and associated antioxidant values in potato breeding lines. J. Am. Soc. Hort. Sci. 130:174–180.
  • Brown, C. R., Wrolstad, R., Durst, R., Yang, C. P. and Clevidence, B. (2003). Breeding studies in potatoes containing high concentrations of anthocyanins. Am. J. Potato Res. 80:241–249.
  • Brown, C. R., Yang, C., Navarre, D. A. and Cully, D. (2004). Carotenoid and anthocyanin concentrations and associated antioxidant values in high pigment potatoes. Am. J. Potato Res. 81:48–52.
  • Camire, M. E., Kubow, S. and Donnelly, D. T. (2009). Potato and human health. Crit. Rev. Food Sci. Nutr. 49:823–840.
  • Carlsson-Kanyama, A. and Faist, M. (2010). Energy use in the food sector: A data survey. Available from ist.psu.edu/viewdoc/download?rep=rep1&type=pdf...1. Accessed June, 2015.
  • Castle, L. and Eriksson, S. (2005). Analytical methods used to measure acrylamide concentrations in foods. J. AOAC International 88:274–283.
  • CIP. (2008). Potato Center Report 2007, p28-29. Available at: https://books.google.ca/books?id=igoiAQAAIAAJ. Accessed June, 2015.
  • De Lagran, Z. M., de Frutos, F. J. O., de Arribas, M. G. and Vanaclocha-Sebastian, F. (2009). Contact urticaria to raw potatoes. Dermatol. Online J. 15:14–18.
  • De Swert. L. F. A., Cadot, P. and Ceuppens, J. L. (2007), Diagnosis and natural course of allergy to cooked potatoes in children. Allergy 62:750–757.
  • De Wilde, T., De Meulenaer, B., Mestdagh, F., Govaert, Y., Vandeburie, S., Ooghe, W., Fraselle, S., Demeulemeester, K., Van Peteghem, C., Calus, A., Degroodt, J. M. and Verhe, R. A. (2005). Influence of storage practices on acrylamide formation during potato frying. J. Agric. Food Chem. 53:6550–6557.
  • Eichhorn, S. and Winterhalter, P. (2005). Anthocyanins from pigmented potato (Solanum tuberosum L) varieties. Food Res. Int. 38:943–948.
  • El-Ziney, M. G., Al-Turki, A. A. and Tawfix, M. S. (2009). Acrylamide status in selected traditional Saudi foods and infant milk and food with estimation of daily exposure. Am. J. Food Technol. 4:177–191.
  • FAO. (2009). Food composition database of potato varieties: http://www.fao.org/infoods/index_en.stm. Accessed June, 2015.
  • FDE. (2013). Food Drink Europe Acrylamide Toolbox 2013 (September 30, 2011). Available from ec.europa.eu/food/food/.../docs/toolbox_acrylamide_201401_en.pdf. Accessed June, 2015.
  • Fossen, T., Ovstedal, D. O., Slimestad, R. and Andersen, Q. M. (2003). Anthocyanins from a Norwegian potato cultivar. Food Chem. 81:433–437.
  • Freedman, M. R. and Keast, D. R. (2011). White potatoes, including French fries, contribute shortfall nutrients to children's and adolescents’ diets. Nutr. Res. 31:270–277.
  • Friedman, M. (2006). Potato glycoalkaloids and metabolites: Role in the plant and in the diet. J. Agric. Food Chem. 54:8655–8681.
  • Friedman, M. and Levin, C. E. (2009). Analysis and biological activities of potato glycolakaloids, calystegine alkaloids, phenolic compounds and anthocyanins. In: Advances in Potato Chemistry and Technology, pp. 127–161. Singh, J. and Kaur, L., Eds., Elsevier Academic Press, USA.
  • Garcia-Alonso, A. and Goti, I. (2000). Effect of processing on potato starch: In vitro availability and glycemic index. Nahrung 44:19–22.
  • Geohive (2013). World potato production in metric tonnes. Available at www.geohive.com/charts/ag_potato.aspx. Accessed June 2015.
  • Granby, K. and Fagt, S. (2004). Analysis of acrylamide in coffee and exposure to acrylamide from coffee. Anal. Chim. Acta 520:177–182.
  • Griffiths, A. M., Cook, D. M., Eggett, D. L. and Christensen, M. J. (2012). A retail market study of organic and conventional potatoes (Solanum tuberosum): Mineral and nutritional implications. Int. J. Food Sci. Nutr. 63:393–401.
  • Groza, H. I., Bowen, B. D., Kichefski, D., Peloquin, S. J. and Jiang, J. (2004). Red Pearl: A new gourmet red potato variety. Am. J. Potato Res. 81:209–213.
  • Ha, M., Kwak, J. H., Kim, Y. and Zee, O. P. (2012). Direct analysis for the distribution of toxic glycoalkaloids in potato tuber tissues using matrix-assisted laser desorption/ionization mass spectroscopy. Food Chem. 133:1155–1162.
  • Halliwell, B. and Gutteridge, J. M. C. (2007). Free Radical in Biology and Medicine. 4th Edition, pp 888. Oxford University Press, London.
  • Health Canada. (2003). The determination of acrylamide in foods by LC-ESI-MS-MS. Available from www.hc-sc.gc.ca/fn-an/securit/chem-chim/food-aliment/acrylamide. Accessed June 2015.
  • Health Canada. (2008). Acrylamide levels in selected Canadian foods. Available from www.hc-sc.gc.ca/fn-an/securit/chem-chim/food-aliment/acrylamide. Accessed June 2015.
  • Health Canada. (2009a). Health Canada's acrylamide monitoring program. Available from www.hc-sc.gc.ca/fn-an/securit/chem-chim/food-aliment/acrylamide. Accessed June 2015.
  • Health Canada (2009b). Health Canada's proposal to amend the food and drug regulations to permit the use of a second source (Aspergillus niger ASP72) of the enzyme Asparaginase in certain food products (December 2009). Available from http://www.hc-sc.gc.ca/fn-an/consultation/init/_dec2009-asparaginase/asp-niger-draft-ebauche-eng.php
  • HEATOX. (2007). Project No. 506820. European Commission's 6th Framework programme on Research-Food Quality and Safety; April 2007. Available at 506820 959926 Heatox_Final_revised2_070924.pdf. Accessed June 2015.
  • Hejtmankova, K., Pivec, V., Trnkova, E., Hamouz, K. and Lachman, J. (2009). Quality of coloured varieties of potatoes. Czech J. Food Sci. 27:S310–S313.
  • Hijmans, R. J. and Spooner, D. M. (2001). Geographic distribution of wild potato species. Am. J. Bot. 88:2101–2112.
  • Hymen, L. and Neborsky, R. (2002). Risk factors for age-related macular degeneration: An update. Curr. Opin. Ophthalmol. 13:171–175.
  • IARC. (1994). Monographs on the evaluation of carcinogenic risks to human (Acrylamide). Int. Agency Res. Cancer 60:389–433.
  • IPPSC. (2011). International potato processing & storage convention, colorado, June 21–23. Available from http://www.potatoconvention.com/.
  • Jansen, G. and Flamme, W. (2006). Coloured potatoes (Solanum tuberosum L) anthocyanin content and tuber quality. Genet. Resour. Crop Evo. 53:1321–1331.
  • Kasper, K. L., Park, J. S., Brown, C. R., Mathison, B. D., Navarre, D. A. and Chew, B. P. (2011). Pigmented potato consumption alters oxidative stress and inflammatory damage in men. J. Nutr. 141:108–111.
  • Khachik, F., Beecher, G. R. and Smith, J. C. (1995). Lutein, lycopene, and their oxidative metabolite in chemoprevention of cancer. J. Cell. Biochem. 22:236–246.
  • Kim, S. H., Hwang, J. H. and Lee, K. G. (2011). Analysis of acrylamide using gas- chromatography-nitrogen-phosphorus detector (GN-NPD). Food Sci. Biotech. 20:835–839.
  • Lachman, J. and Hamouz, K. (2005). Red and purple coloured potatoes as a significant antioxidant source in human nutrition-a review. Plant Soil Environ. 51:477–482.
  • Lachman, J., Hamouz, K. and Orsak, M. (2005). Red and purple potatoes - A significant antioxidant source in human nutrition. Chem. Listy 99:474–482.
  • Lachman, J., Hamouz, K., Orsak, M., Pivec, V., Hejmankova, K., Pazderu, K., Dvorak, P. and Cepl, J. (2011). Impact of selected factors-cultivar, storage, cooking and baking on the contents of anthocyanins in coloured-flesh potatoes. Food Chem. 133:1107–1116.
  • Lachman, J., Hamouz, K., Sulc, M., Pivec, V., Hejmankova, A., Dvorak, P. and Cepl, J. (2009). Cultivar differences of total anthocyanins and anthocyanidins in red and purple coloured potatoes and their relation to antioxidant activity. Food Chem. 114:836–843.
  • Lee, C. M., Bioleau, A. C., Boileau, T.W., Williams, A. W., Swanson, K. S., Heintz, K. A. and Erdman, J. W. (1999). Review of animal models in carotenoids research. J. Nutr. 129:2271–2277.
  • Levine, R. A. and Ryan, S. M. (2009). Determining the effect of calcium cations on acrylamide formation in cooked wheat products using a model system. J. Agric. Food Chem. 57:6823–6829.
  • Lewis, C. E., Walker, J. R. L., Lancaster, J. E. and Sutton, K. H. (1998). Determination of anthocyanins, flavonoids and phenolic acids in potatoes. 1: Coloured cultivars of Solanum tuberosum L. J. Sci. Food Agric. 77:45–57.
  • Li, H., Deng, Z., Zhu, H., Hu, C., Liu, R., Young, J. C. and Tsao, R. (2012). Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Res. Int. 46:250–259.
  • Lineback, D. R., Coughlin, J. R. and Stadler, R. H. (2012). Acrylamide in food: A review of the science and future consideration. Ann. Rev. Food Sci. Technol. 3:15–35.
  • Luis, G., Rubio, C., Gonzalez-Weller, D., Gutierrez, A. J., Revert, C. and Hardisson, A. (2011). Comparative study of the mineral composition of several varieties of potatoes (Solonum tuberosom L) for different counties cultivated in Canary Island (Spain). Int. J. Food Sci. Technol. 46:774–780.
  • Mestdagh, F., Maertens, J., Cucu, T., Delporte, K., Van Peteghem, C. and De Meulenaer, B. (2008). Impact of additives to lower the formation of acrylamide in a potato model system through pH reduction and other mechanism. Food Chem. 107:26–31.
  • Monti, G., Viola, S., Tarasco, V., Lupica, M. M., Costentino, V. and Castagona, E. (2011). A case of severe allergic reaction to cooked potato. Acta Paedeiat. 100:e236–e238.
  • Mottram, D..S., Wedzicha, B. L. and Dodson, A. T. (2002). Acrylamide is formed in the Maillard reaction. Nature 419:448–449.
  • National Potato Council. (2011). Available from http://www.nationalpotatocouncil.org/NPC/potato_potatoproduction.cfm?potato±blue&cache±23110-1013548. Accessed February 16, 2011.
  • Nayak, B., Berrios, Jde. J., Powers, J. R. and Tang, J. (2011a). Thermal degradation of anthocyanins from purple potatoes (cv, Purple Majesty) and impact on antioxidant capacity. J. Agric. Food Chem. 59:11040–11049.
  • Nayak, B., Berrios, Jde. J., Powers, J. R., Tang, J. and Ji, Y. (2011b). Coloured potatoes (Solanum tuberosum L.) dried for antioxidant-rich value-added foods. J. Food Process. Preserv. 35:571–580.
  • Ou, S., Shi, J., Huang, C., Zhang, G., Teng, J., Jiang, Y. and Yang, B. (2010). Effect of antioxidants on elimination and formation of acrylamide in model reaction systems. J Hazard Mater. 182:863–868.
  • Park, J. S., Chew, B. P. and Wong, T. S. (1998). Dietary lutein from marigold extract inhibits mammary tumour development in BALB/c mice. J. Nutr. 128:1650–1656.
  • Pedreschi, F., Kaack, K. and Granby, K. (2004). Reduction in acrylamide formation in potato slices during frying. LWT-Food Sci. Technol. 37:679–685.
  • Pedreschi, F., Kaack, K., Granby, K. and Troncoso, E. (2007). Acrylamide reduction under different pre-treatments in French fries. J. Food Eng. 79:1287–1294.
  • Pedreschi, F., Mariotti, S., Granby, K. and Risum, J. (2011). Acrylamide reduction in potato chips by using commercial asparaginase in combination with conventional blanching. LWT-Food Sci. Technol. 44:1473–1476.
  • Pedreschi, F. and Zuniga, R. (2009). Acrylamide and oil reduction in fried potatoes: A review. Food 3:82–92.
  • Quirce, S., Diez-Gomez, M. L., Hinojosa, M., Cuveas, M., Urena, V., Rivas, M. F., Puyana, J., Cuesta, J. and Losada, E. (1989). Housewives with raw potato-induced bronchial asthma. Allergy 44:552–536.
  • Ramdath, D., Hawke, A., Liu, R., Padhi, E. and Cao, R. (2011). The Glycemic index of pigmented potatoes is related to their polyphenol content. App. Physiol. Nutr. Metab. 36:478.
  • Reyes, L.F., Miller, J. C. Jr. and Cisneros-Zevallos, L. (2005). Antioxidant capacity, anthocyanins and total phenolics in purple and red fleshed potato (Solanum tuberosum L) genotypes. Am. J. Potato Res. 82:271–277.
  • Rodringuez -Saona, L. E., Giusti, M. M. and Wrolstad, R. E. (1998). Anthocyanin pigment composition of red fleshed potatoes. J. Food Sci. 63:458–465.
  • Rothamsted Research (2009). Low acrylamide potatoes. Available from http://www.acrylamide-potato.org.uk.
  • Rytel, E., Peksa, A., Tajner-Czopek, A., Kita, A. and Lisinska, G. (2011). Anti-nutritional compounds in potatoes, depending on the type of raw material and conditions of processing potatoes into food products. In: Potato V Food (Special Issue 1), pp. 15–22). Yee, N. and Bussel, W., Eds.
  • Soares, C., Cunha, S. and Fernandes, J. O. (2006). Determination of acrylamide in coffee products by GC-MS using an improved SPE clean up. Food Addit. Contamin. 23:1276–1282.
  • Spivey, A. (2010). A matter of degrees: Advancing our understanding of acrylamide. Environ. Health Perspec. 118:A160–A167.
  • Stelljes, K. B. (2001). Colourful potatoes offer nutrition variety. Agric. Res. 49:6.
  • Sushnoff, C., Holm, P., Thompson, M., Jiang, W., Thompson, H., Joyce, N. and Wilson, P. (2008). Antioxidant properties of cultivars and selections from the colorado potato breeding program. Am. J. Potato Res. 85:267–276.
  • Tajner-Czopek., A., Rytel, E., Kita, A. and Peska, A. (2012). The influence of thermal process of coloured glycolakaloids in the potato products. Food Chem. 133:1117–1122.
  • Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. and Tornqvist, M. (2002). “Analysis of acrylamide, a carcinogen formed in heated foodstuffs.” J. Agric. Food Chem. 50:4998–5006.
  • Tsao, R. (2008). Phytochemical profiles of potato and their roles in human health and wellness. Food 3:125–135.
  • United Nation General Assembly Resolution (2005). 191 Session 60 international year of the potato 2008, page 1 on December 22, 2005. Available from http://www.undemocracy.com/A-RES-60-191/page_1/rect_230,647_688.680.
  • USDA. (2011). Nutritional Profiles of Potato. United States Department of Agriculture.
  • USDA-NIFA. (2011). USDA backs acrylamide reduction project for processed potatoes. Available from http://www.foodnavigator-usa.com/Science/USDA-backs-acrylamide-reduction-project-f.
  • USDA-Research. (2012). Improved breeding and variety evaluation methods to reduce acrylamide content and increase quality in processed potato products, Project No. 6645-41000-007-11 [Start date October 01, 2011, End date March 31, 2014]. Available from http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=422539.
  • Vinci, R.M., Mestdagh, F. and De Meulenaer, B. (2012), Acrylamide formation in fried potato products- Present and future, a critical review on mitigation strategies. Food Chem. 133:1138–1154.
  • Vinci, R.M., Mestdagh, F., Van Pouke, C., Kerkaert, B., De Muer, N., Denon, Q., Van Peteghem, C. and De Meulenaer, B. (2011). Implementation of acrylamide mitigation strategies on industrial production of French fries: Challenges and pitfall. J. Agric. Food Chem. 59:898–906.
  • Vinson, J. A., Demkosky, C. A., Navarre, D. A. and Smyda, M..A. (2012). High-antioxidant potatoes: Acute in vivo antioxidant source and hypotensive agent in humans after supplementation to hypertensive subjects. J. Agric. Food Chem. 60:6749–6754.
  • Wang, Q., Chen, Q., He, M., Mir, P., Su, J. and Yang, Q. (2011). Inhibitory effect of potatoes on the proliferation of human colon and liver cancer cells. Nutr.Cancer 63:1044–1052.
  • Wilcox, J. K., Ash, S. I. and Catignani, G. L. (2004). Antioxidant and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 44:275–295.
  • Woolfe, J. A. and Poats, S. V. (1987). The Potato in the Human Diet. New York.
  • Wu, L., Bhaskar, P. B., Zhang, R., Bethke, P. C., Busse, J. S. and Jiang, J. (2011). Developing cold-chipping potato varieties by silencing the vacuolar invertase gene. Crop Sci. 51:981–990.
  • Xinhua News. (2011). Can dutch potatoes solve the global food crisis. Available from http://news.xinhuanet.com/english2010/indepth/2011-08/22c_131067024.htm.
  • Yamazaki, K., Isagawa, S., Kibune, N. and Urushiyama, T. (2012). A method for the determination of acrylamide in a broad variety of processed foods by GC-MS using xanthhydrol derivatization. Food Addit. Contam. Part A: Chem. Anal Control Expo. Risk Assess. 29:705–715.
  • Zhang, J., Zhao, C. L. and Guo, H. C. (2009). Research advances in the molecular structures of the stem tuber anthocyanins of coloured potatoes. Nat. Prod. Res. Dev. 21:719–725.
  • Zhang, W. and Wang, S. Y. (2003). Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 51:502–509.
  • Zhang, Y., Zhang, G. and Zhang, Y. (2005). Occurrence and analytical methods for acrylamide in heat-treated foods-Review and recent developments. J. Chromatogr. A 1075:1–21.
  • Zhao, C. L., Guo, H. C., Liu, F. C. and Dong, W. H. (2007). Pigment component and content in the stem tuber of Solanum tuberosum L. Zhuanxinwu Acta Bot. Boreal-occident Sin 27:1953–1961.
  • Zhu, F., Cai, Y. Z., Ke, J. and Corke, H. (2011). Dietary plant materials reduce acrylamide formation in cookies and starch-based model systems. J. Sci. Food Agric. 91:2477–2483.
  • Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, L., Ewald, D. K., Gruber, D C., Morsch, T. R., Strothers, M. A., Rizzi, G. P. and Villagran, M. D. (2003). Acrylamide formation mechanism in heated food. J. Agric. Food Chem. 51:4782–4787.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.