351
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Recent Research and Progress in Food, Feed and Nutrition with Advanced Synchrotron-based SR-IMS and DRIFT Molecular Spectroscopy

&

REFERENCES

  • Barth, A. (2007). Infrared spectroscopy of proteins. Biochim. Biophys. Acta. 1767(9):1073–1101.
  • Budevska, B. O. (2002). Vibrational spectroscopy imaging of agricultural products. In: Handbook of Vibrational Spectroscopy. pp. 3720–3732. Chalmers, J. M. and Griffiths, P. R., Eds. J. Wiley, Hoboken, NJ.
  • Davies, T. and Fearn, T. (2004). Back to basics: The principles of principal component analysis. Spectrosc. Eur. 16(6):20–23.
  • Dokken, K. M., Davis, L. C., Erickson, L. E., Castro-Diaz, S. and Marinkovic, N. S. (2005). Synchrotron fourier transform infrared microspectroscopy: A new tool to monitor the fate of organic contaminants in plants. Microchem. J. 81:86–91.
  • Dumas, P. and Miller, L. (2003). The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib. Spectrosc. 32(1):3–21.
  • Dumas, P., Sockalingum, G. D. and Sule-Suso, J. (2007). Adding synchrotron radiation to infrared microspectroscopy: What's new in biomedical applications? Trends Biotechnol. 25(1):40–44.
  • Dunteman, G. H. (1989). Principal Components Analysis. Sage Publications, Newbury Park, CA. 96 pp.
  • Gan, G., Ma, C. and Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications (ASA-SIAM Series on Statistics and Applied Probability). Society for Industrial and Applied Mathematics Philadelphia, PA. 466 pp.
  • Griffiths, P. R. and De Haseth, J. A. (1986). Fourier Transform Infrared Spectrometry. Wiley, New York. 656 pp.
  • Himmelsbach, D. S., Khalili, S. and Akin, D. E. (1998). FT-IR microspectroscopic imaging of flax (Linum usitatissimum L.) stems. Cell. Mol. Biol. (Noisy-Le-Grand). 44(1):99–108.
  • Homan, J. A., Radel, J. D., Wallace, D. D., Wetzel, D. L. and Levine, S. M. (2000). Chemical changes in the photoreceptor outer segments due to iron induced oxidative stress: Analysis by Fourier transform infrared (FT-IR) microspectroscopy. Cell. Mol. Biol. (Noisy-Le-Grand). 46(3):663–672.
  • Jackson, M. and Mantsch, H. H. (1991). Protein secondary structure from FT-IR spectroscopy: Correlation with dihedral angles from three-dimensional Ramachandran plots. Can. J. Chem. 69(11):1639–1642.
  • Jackson, M. and Mantsch, H. H. (2000). Infrared spectroscopy ex vivo tissue analysis. In: Encyclopedia of Analytical Chemistry, pp. 131–156. Myers, R. A. Ed., John Wiley & Sons Ltd, Chichester, England.
  • Jain, A. K., Murty, M. N. and Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys. 31(3):264–323.
  • Jolliffe, I. T. (2002). Principal Component Analysis. 2nd ed. Springer, New York, NY, 487 pp.
  • Jonker, A., Gruber, M. Y., Wang, Y., Coulman, B., McKinnon, J. J., Christensen, D. A. and Yu, P. (2012). Foam stability of leaves from anthocyanidin-accumulating Lc-alfalfa and relation to molecular structures detected by FTIR vibration spectroscopy. Grass and Forage Science (EU). 67:369–381.
  • Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York. 342 pp.
  • Levine, S. M. and Wetzel, D. L. B. (1993). Analysis of brain tissue by FT-IR microspectroscopy. Appl. Spectrosc. Rev. 28(4):385–412.
  • LeVine, S. M. and Wetzel, D. L. (1994). In situ chemical analyses from frozen tissue sections by Fourier transform infrared microspectroscopy. Examination of white matter exposed to extravasated blood in the rat brain. Am. J. Pathol. 145(5):1041–1047.
  • LeVine, S. M. and Wetzel, D. L. (1998). Chemical analysis of multiple sclerosis lesions by FT-IR microspectroscopy. Free Radic. Biol. Med. 25(1):33–41.
  • LeVine, S. M., Radel, J. D., Sweat, J. A. and Wetzel, D. L. (1999). Microchemical analysis of retina layers in pigmented and albino rats by Fourier transform infrared microspectroscopy. Biochim. Biophys. Acta 1473(2–3):409–417.
  • Liu, B., McKinnon, J. J., Thacker, P. and Yu, P. (2012). Molecular structure and metabolic characteristics of the proteins and energy in Triticale grains and dried distillers grains with solubles for dairy cows. J. Agric. Food Chem. 60:10064–10074.
  • Liu, N. and Yu, P. (2010). Characterize microchemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultraspatially resolved synchrotron-based infrared microspectroscopy. J. Agric. Food Chem. 58:7801–7810.
  • Marinkovic, N. S. and Chance, M. R. (2005). Synchrotron infrared microspectroscopy. In: Encyclopedia of Molecular Cell Biology and Molecular Medicine, pp. 671–708. Meyers, R., Ed. Wiley, New York.
  • Marinkovic, N. S., Huang, R., Bromberg, P., Sullivan, M., Sperber, E., Moshe, S., Miller, L. M., Jones, K., Chouparova, E. and Franzen, S. (2002). Center for Synchrotron Biosciences' U2B Beamline: An international resource for biological infrared spectroscopy. J. Synchrotron Rad. 9(Part 4):189–197.
  • Messerschmidt, R. G. and Harthcock, M. A. (1988). Infrared Microspectroscopy: Theory and Applications. H. Dekker, New York, NY. 282 pp.
  • Miller, L. M. (2002). Infrared microspectroscopy and imaging. National Synchrotron Light Source, Brookhaven National Laboratory, Internal publication. Available from http://www.nsls.bnl.gov/newsroom/publications/otherpubs/imaging/workshopmiller.pdf [July, 2009].
  • Miller, L. M. and Dumas, P. (2006). Chemical imaging of biological tissue with synchrotron infrared light. Biochim. Biophys. Acta. 1758(7):846–857.
  • Miller, L. M., Wang, Q., Smith, R. J., Zhong, H., Elliott, D. and Warren, J. (2007). A new sample substrate for imaging and correlating organic and trace metal composition in biological cells and tissues. Anal. Bioanal. Chem. 387(5):1705–1715.
  • Nelson, D. L. and Cox, M. M. (2005). Lehninger principles of biochemistry. New York: WH Freeman.
  • Pietrzak, L. N. and Miller, S. S. (2005). Microchemical structure of soybean seeds revealed in situ by ultraspatially resolved synchrotron Fourier transformed infrared microspectroscopy. J. Agric. Food Chem. 53(24):9304–9311.
  • Raab, T. K. and Martin, M. C. (2001). Visualizing rhizosphere chemistry of legumes with mid-infrared synchrotron radiation. Planta. 213(6):881–887.
  • Romesburg, H. C. (1984). Cluster Analysis for Researchers. Lifetime Learning Publications, Belmont, CA. 334 pp.
  • Stuart, B. (2004). Infrared Spectroscopy: Fundamentals and Applications. J. Wiley, Chichester, West Sussex, England; Hoboken, NJ.
  • Wetzel, D. L. (1993). Molecular mapping of grain with a dedicated integrated fourier transform infrared microspectrometer. Dev. Food Sci. 32:679–679.
  • Wetzel, D. L. (1998). Metabolically deuterated species determined in rat cerebella by FT-IR microspectroscopy as a novel probe of brain metabolism. AIP conference proceedings. American Institute of Physics, New York, pp 294.
  • Wetzel, D. L. (2000). Infrared spectroscopy goes microscopic. Chem. Ind. (London). 9(8):308–313.
  • Wetzel, D. L. and LeVine, S. M. (1993). In situ FT-IR microspectroscopy and mapping of normal brain tissue. Spectroscopy. 8:40–45.
  • Wetzel, D. L., Eilert, A. J., Pietrzak, L. N., Miller, S. S. and Sweat, J. A. (1998a). Ultraspatially-resolved synchrotron infrared microspectroscopy of plant tissue in situ. Cell. Mol. Biol. (Noisy-Le-Grand). 44(1):145–168.
  • Wetzel, D. L., Reffner, J. A., Carr, G. L. and Cho, L. 1998b. Synchrotron powered FT-IR microspectroscopy permits small spot ATR sampling of fiber finish and other materials. In: Fourier Transform Spectroscopy, pp. 657–660. Haseth, J. A. D., Ed. American Institute of Physics, Woodbury, NY.
  • Wetzel, D. L., Slatkin, D. N. and Levine, S. M. 1998c. FT-IR microspectroscopic detection of metabolically deuterated compounds in the rat cerebellum: A novel approach for the study of brain metabolism. Cell. Mol. Biol. (Noisy-Le-Grand). 44(1):15–27.
  • Wetzel, D. L. and LeVine, S. M. (2000). Infrared microbeam analysis of intricate biological specimens. Inst. Phys. Conf. Ser. 165:65–66.
  • Wetzel, D. L. and LeVine, S. M. (2001). Biological applications of infrared microspectroscopy. In: Infrared and Raman Spectroscopy of Biological Materials, pp. 101–142. Gremlich, Hans-Ulrich and Yan, Bing, Eds., Marcel Dekker Inc., NY.
  • Yu, P. (2004). Application of advanced synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science: A novel approach. Br. J. Nutr. 92(6):869–885.
  • Yu, P., Christensen, D. A., Christensen, C. R., Drew, M. D., Rossnagel, B. G. and McKinnon, J. J. 2004a. Use of synchrotron FTIR microspectroscopy to identify chemical differences in barley endosperm tissue in relation to rumen degradation characteristics. Can. J. Anim. Sci. 84(3):523–528.
  • Yu, P., McKinnon, J. J., Christensen, C. R. and Christensen, D. A. (2004b). Imaging molecular chemistry of Pioneer corn. J. Agric. Food Chem. 52(24):7345–7352.
  • Yu, P., McKinnon, J. J., Christensen, C. R. and Christensen, D. A. (2004c). Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure: Comparison with other feed protein sources. J. Agric. Food Chem. 52(24):7353–7361.
  • Yu, P., McKinnon, J. J., Christensen, C. R. and Christensen, D. A. (2004d). Using synchrotron transmission FTIR microspectroscopy as a rapid, direct, and non-destructive analytical technique to reveal molecular microstructural-chemical features within tissue in grain barley. J. Agric. Food Chem. 52(6):1484–1494.
  • Yu, P. (2005a). Application of cluster analysis (CLA) in feed chemical imaging to accurately reveal structural-chemical features of feeds and plants within cellular dimension. J. Agric. Food Chem. 53(8):2872–2880.
  • Yu, P. (2005b). Applications of hierarchical cluster analysis (CLA) and principal component analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-based Fourier transform infrared (FTIR) microspectroscopy. J. Agric. Food Chem. 53(18):7115–7127.
  • Yu, P. (2005c). Multicomponent peak modeling of protein secondary structures: Comparison of Gaussian with Lorentzian analytical methods for plant feed and seed molecular biology and chemistry research. Appl. Spectrosc. 59(11):1372–1380.
  • Yu, P., Christensen, C. R., Christensen, D. A. and McKinnon, J. J. (2005). Ultrastructural-chemical make-up of yellow-seeded (Brassica rapa) and brown-seeded (Brassica napus) canola within cellular dimensions, explored with synchrotron reflection FTIR microspectroscopy. Can. J. Plant Sci. 85(3):533–542.
  • Yu, P. (2006a). An emerging method for rapid characterization of feed structures and feed component matrix at a cellular level and relation to feed quality and nutritive value. Arch. Anim. Nutr. 60(3):229–244.
  • Yu, P. (2006b). Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions. Spectroscopy. 20(5):229–251.
  • Yu, P. (2007a). Molecular chemical structure of barley proteins revealed by ultra-spatially resolved synchrotron light sourced FTIR microspectroscopy: Comparison of barley varieties. Biopolymers. 85(4):308–317.
  • Yu, P. (2007b). Protein secondary structures (α-helix and β-sheet) at a cellular level and protein fractions in relation to rumen degradation behaviours of protein: A new approach. Br. J. Nutr. 94(05):655–665.
  • Yu, P. (2007c). Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies. Spectroscopy. 21(4):183–192.
  • Yu, P., Block, H., Niu, Z. and Doiron, K. (2007). Rapid characterization of molecular chemistry, nutrient make-up and microlocation of internal seed tissue. J. Synchrotron. Rad. 14(part 4):382–390.
  • Yu, P. (2008). Modeling protein structures in feed and seed tissues using novel synchrotron-based analytical technique. Anim. Feed Sci. Technol. 140(1–2):199–206.
  • Yu, P., Doiron, K. and Liu, D. (2008). Shining light on the differences in molecular structural chemical make-up and the cause of distinct degradation behavior between malting-and feed-type barley using synchrotron FTIR microspectroscopy: A novel approach. J. Agric. Food Chem. 56(9):3417–3426.
  • Yu, P., Block, H. C. and Doiron, K. (2009a). Understanding the differences in molecular conformation of carbohydrate and protein in endosperm tissues of grains with different biodegradation kinetics using advanced synchrotron technology. Spectroc. Acta Pt.A-Molec. Biomolec. Spectr. 71(5):1837–1844.
  • Yu, P., Jonker, A. and Gruber, M. 2009b. Molecular basis of protein structure in proanthocyanidin and anthocyanin-enhanced Lc-transgenic alfalfa in relation to nutritive value using synchrotron-radiation FTIR microspectroscopy: A novel approach. Spectroc. Acta Pt.A-Molec. Biomolec. Spectr. 73(5):846–853.
  • Yu, P. (2010). Plant-based food and feed protein structure changes induced by gene-transformation, heating and bio-ethanol processing: A novel synchrotron-based molecular structure and nutrition research program. Molecul. Nutr. Food Res. 54:1535–1545.
  • Yu, P. (2011). Microprobing molecular spatial distribution and structural architecture of sorghum seed tissue (Sorghum Bicolor L.) with SR-IMS technique. J. Synchrotron. Radiation. 18:790–801.
  • Yu, P. (2012). Invited article: Effect of heat processing method on molecular structure and images of biological tissues using advanced synchrotron-based technique (SR-IMS). Biomed. Spectros. Imaging. In Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.