2,313
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Application of Glass Transition in Food Processing

, , , &

REFERENCES

  • Abbas, K. A., Lasken, O. and Khalil, S. K. (2010). The significance of glass transition temperature in processing of selected fried food products: A review. Mod. Appl. Sci. 4:103–122.
  • Abiad, M. G., Carvajal, M. T. and Campanella, O. H. (2009). A review on methods and theories to describe the glass transition phenomenon: Applications in food and pharmaceutical products. Food Eng. Rev. 1:105–132.
  • Ablett, S., Darke, A. H. and Attenburrow, G. E. (1993). Studies of the glass transition in malto-oligomers. In: The Glassy State in Foods. pp. 189–206. Blanshard, J. M. V. and Lillford, P. J., Eds., Nottingham University Press, Loughborough, UK.
  • Adam, G. and Gibbs, J. H. (1965). On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43:139–146.
  • Aguilera, J. M., Levi, G. and Karel, M. (1993). Effect of water content of the glass transition and caking of fish protein hydrolyzates. Biotechnol. Prog. 9:651–654.
  • Ahmed J., Varshney S. K., Zhang J.-X. and Ramaswamy H. S. (2009). Effect of high pressure treatment on thermal properties of polylactides. J. Food Eng. 93:308–312.
  • Angell, C. A. (1985). Spectroscopy simulation and scattering, and the medium range order problem in glass. Journal of Non-Crystalline Solids. 73(1), 1–17.
  • Angell, C. A. (1988). Perspective on the glass transition. J. Phys. Chem. Solids. 49:863–871.
  • Angell, C. A. (1995). Formation of glasses from liquids and biopolymers. Science, 267(5206):1924–1935.
  • Arvanitoyannis, I., Blanshard, J. M. V., Ablett, S., Izzard, M. J. and Lillford, P. J. (1993). Calorimetric study of the glass transition occurring in aqueous glucose: Fructose solutions. J. Sci. Food Agric. 63:177–188.
  • Attenburrow, G. and Davies, A. P. (1993). The mechanical properties of cereal-based foods in and around the glassy state. In: The Glassy States in Foods, pp. 317–331, Blanshard, J. M. V. and Lillford, P. J., Eds., Nottingham University Press, Loughborough, UK.
  • Bell, L. N. (1996). Kinetics of nonenzymatic browning in amorphous solid systems: Distinguishing the effects of water activity and the glass transition. Food Res. Int. 28:591.
  • Bell, L. N., Touma, E., White, K. L. and Chen, Y. (1998). Glycine loss and Maillard browning as related to the glass transition in a model food system. J. Food Sci. 63(4):625–628.
  • Bellows, R. J. and King, C. J. (1973). Product collapse during freeze drying of liquid foods. AICHE Symp. Ser. 69:33–41.
  • Bengtzelius, U., Gotze, W. and Sjolander, A. (1984). Dynamics of supercooled liquids and the glass transition. J. Phys. C. 17:5915–5934.
  • Bhandari, B. R., Datta, N. and Howes, T. (1997). Problems associated with spray drying of sugar-rich foods. Drying Technol. 15(2):671–684.
  • Bhandari, B. R. and Howes, T. (1999). Implication of glass transition for the drying and stability of dried foods. J. Food Eng. 40:71–79.
  • Blanchard L. P., Hesse. J. and Malhotra S. L. (1974). Effect of molecular weight on glass transition by differential scanning calorimetry. J. Chem. 52:3170–3175.
  • Bosma, M., Ten Brinke, G. and Ellis, T. S. (1988). Polymer-polymer miscibility and enthalpy relaxations. Macromolecules. 21:1465–1470.
  • Brent, J. L., Mulvaney, S. J., Cohen, C. and Bartsch, J. A. (1997). Viscoelastic properties of extruded cereal melts. J. Cereal Sci. 26(3):313–328.
  • Brittain H. G and Bruce, R. D. (2006). Thermal analysis. In: Modern Analytical Techniques, Vol 47, pp. 63–109, Ahuja, S. and Jesperson. N., Eds., Amsterdam: Elsevier.
  • Busin, L., Buisson, P. and Bimbenet, J. J. (1996). Notion de transition vitreuse appliquee au sechage par pulverisation de solutions glucidiques. Sci Aliments. 16: 443–459.
  • Champion. D., Le Meste. M. and Simatos. D. (2000). Towards an improved understanding of glass transition and relaxations in foods: Molecular mobility in the glass transition range. Trends Food Sci. Technol. 11:41–55.
  • Chang, Y. P., Abd Karim, A. and Seow, C. C. (2006). Interactive plasticizing-antiplasticizing effects of water and glycerol on the tensile properties of tapioca starch films. Food Hydrocolloids. 20:1–8.
  • Chang, B. S., Beauvais, R. M., Dong, A. and Carpenter, J. F. 1996. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: Glass transition and protein conformation. Arch. Biochem. Biophys. 331:249–258.
  • Chaudhary, D. S., Adhikari B. P. and Kasapis S. (2011). Glass-transition behaviour of plasticized starch biopolymer system – A modified Gordon-Taylor approach. Food Hydrocolloids. 25: 114—121.
  • Chuy, L. E. and Labuza, T. P. (1994). Caking and stickiness of dairy-based food powders as related to glass transition. Journal of Food Science. 59(1), 43–46.
  • Cohen, Morrel H., and David Turnbull (1959). Molecular transport in liquids and glasses. The Journal of Chemical Physics. 31:1164–1169.
  • Cohen, M. H. and Grest, G. S. (1979). Liquid-glass transition, a free-volume approach. Phys. Rev. B. 20:1077–1098.
  • Del-Val, J. J., Alegria, A., Colmenero, J. and Barandiaran J. M. (1986). Thermally stimulated depolarization current (TSDC) study of molecular motions in the glass-transition region of polyarylate (PAr). Polymer. 27:1771–1776.
  • DiMarzio, E. A. (1990). The glass temperature of polymer blends. Polymer. 31:2294–2298.
  • Ding X-Z, Liu X-H, Wu Q-C and He Y-Z. (1999). Thermodynamic and kinetic characteristics of glass transition in an amorphous alloy Pd77.5Ni6.Si16.5. Chin. Phys. Lett. 16:358–360.
  • Downton, G. E., Flores-Luna, J. L. and King, C. J. (1982). Mechanism of stickiness in hygroscopic amorphous powders. Ind. Eng. Chem. Fund. 21:447–451.
  • Ediger, M. D. (2000). Spatially heterogeneous dynamics in supercooled liquids. Annual Review of Physical Chemistry, 51(1):99–128.
  • Ediger, M. D., Angell, C. A. and Nagel, S. R. (1996). Supercooled liquid and glasses. J. Phys. Chem. 100:13200–13212.
  • Ferry, J. D. (1980). Viscoelastic properties of polymers. 3rd ed, John Wiley, New York, NY.
  • Ferry, J. D. (1991). Some reflections on the early development of polymer dynamics: Viscoelasticity, dielectric dispersion, and self-diffusion. Macromolecules. 24:5237–5245.
  • Ferry, J. D. and Stratton, R. A. (1960). The free volume interpretation of the dependence of viscosities and viscoelastic relaxation times on concentration, pressure, and tensile strain. J. Colloid Polym. Sci. 171:107–111.
  • Flink, J. M. (1983). Structure and structure transitions in dried carbohydrate materials. In: Physical Properties of Foods, pp. 473–521, Peleg, M. and Bagley, E. B. Eds., AVI, Westport.
  • Forster, A., Hempenstall, J. and Rades, T. (2001). Investigation of drug/polymer interaction in glass solutions prepared by melt extrusion. Internet J. Vib. Spectrosc. 5:1–15.
  • Fox, T. G. and Flory, P. J. (1954). The glass temperature and related properties of polystyrene – Influence of molecular weight. J. Polym. Sci. 14:315–319.
  • Fox, T. G. and Loshaek, S. (1955). Influence of molecular weight and degree of cross linking on the specific volume and glass temperature of polymers. J. Polym. Sci. 15:371–390.
  • Fox, T. G. and Flory, P. J. (1950). Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21:581–591.
  • Giovambattista, N., Angell, C. A., Sciortino, F. and Stanley, H. E. (2004). Glass transition temperature of water: A simulation study. Phys. Rev. Lett. 93:47801
  • Hamano, M. and Aoyama, Y. (1974). Caking phenomena in amorphous food powders. Trends Food Sci. Technol. 6:149–155.
  • Hayashi, R. (1992). Utilization of pressure in addition to temperature in food science and technology. In: High Pressure and Biotechnology, Balny, C., Hayashi, R. and Colloque, K., Eds., INSERM/ John Libbey Eurotext, Montrouge, France.
  • Hayashi, R. (1992). Utilization of pressure in addition to temperature in food science and technology. Colloques-Institut National de la Sante et de la Recherche Medicale Colloques et Seminaires. 185.
  • Hill, V. L., Craig, D. Q. M. and Feely, L. C. (1998). Characterisation of spray-dried lactose using modulated differential scanning calorimetry. Int. J. Pharm. 161:95–107.
  • Höhne, G. W. H. and Blankenhorn, K. (1994). High pressure DSC investigations on n-alkanes, n-alkane mixtures and polyethylene. Thermochim Acta. 238:351–370.
  • Hsu, C. L., Heldman, D. R., Talyor, T. A. and Kramer, H. L. (2006). Influence of cooling rate on glass transition temperature of sucrose solution and rice starch gel. J. Food Sci. 68:1970–1975.
  • Iben, I. E. T., Braunstein, D., Doster, W., Frauenfelder, H., Hong, M. K., Johnson, J. B., Luck, S., Ormos, P., Schulte, A., Steinbach, P. J., Xie, A. H. and Young, R. D. (1989). Glassy behaviour of protein. Phys. Rev. Lett. 62:1916–1919.
  • Kalichevisky, M. T., Blanshard, J. M. V. and Tokarczuk, P. F. (1993). Effect of water and sugars on the glass transition of casein and sodium caseinate. Int. J. Food Sci. Technol. 28:139–151.
  • Kalichevisky, M. T., Jaroszkiewicz, E. M., Ablett, S., Blanshard, J. M. V. and Lillford, P. J. (1992a). The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohyd. Polym. 18:77–88.
  • Kalichevisky, M. T., Jaroszkiewicz, E. M. and Blanshard, J. M. V. (1992b. A study of the glass transition of amylopectin-sugar mixture. Polymer. 34(2):346–358.
  • Kalichevisky, M. T., Jaroszkiewicz, E. M. and Blanshard, J. M. V. (1992c). The glass transition of gluten. 2: The effect of lipids and emulsifiers. Int. J. Biol. Macromol. 14:267–273.
  • Kalichevisky, M. T., Jaroszkiewicz, E. M. and Blanshard, J. M. V. (1992d). The glass transition of gluten. 1: Gluten and gluten-sugar mixtures. Int. J. Biol. Macromol. 14:257–266.
  • Karel, M., Buera, M. P. and Roos, Y. (1993). Effects of glass transitions on processing and storage. In: The Science and Technology of the Glassy State in Foods, 13 pp, Blanshard, J. M. V. and Lillford, P. J., Eds., Nottingham University Press, Nottingham, UK.
  • Karmas, R., Buera, M. P. and Karel, M. (1992). Effect of glass transition on rates of nonenzymatic browning in food systems. J. Agric. Food Chem. 40:873–879.
  • Kingsly, A. R. P. and IIeleji, K. E. (2011). Glass transition behaviour of corn distillers dried grains with solubles (DDGS). J. Cereal Sci. 54:332–338.
  • Kou, Y., Molitor, P. F. and Schmidt, S. J. (1999). Mobility and stability characterization of model food systems using NMR, DSC, and Conidia germination techniques. J. Food Sci. 64(6):950–959.
  • Kwei, T. K. (1984). The effect of hydrogen bonding on the glass transition temperature of polymer mixtures. J. Polym. Sci. 22:307–313.
  • Labrousse, S., Roos, Y. and Karel, M. (1992). Collapse and crystallization in amorphous matrices with encapsulated compounds. Sci. Aliments. 12:757.
  • Lechuga-Ballesteros, D., Miller, D.P. and Zhang, J. (2002). Residual water in amorphous solids: Measurement and effects on stability. In: Amorphous Food and Pharmaceutical Systems, pp 1–8, Levine, H., Ed., Athenaeum, Manchester, UK,
  • Lees, R. (1965). Factors Affecting Crystallization in Boiled Sweets, Fondant and Other Confectionery, BFMIRA Scientific and Technical Surveys, Number 42, Leatherhead, Surrey, UK.
  • Le parlour, P., Dalmazzone, C., Heazhaft, B., Rousseae, L. and Mathonat, C. (2004). Characterization of gas hydrates formation using high pressure microDSC. J. Therm. Anal. Calorim. 78:165–172.
  • Levine, H. and Slade, L. (1986). A polymer physico-chemical approach to study the commercial starch hydrolysis products (SHPs). Carbohyd. Polym. 6(2):13–44.
  • Lin, A. A, Kwei, T. K. and Reiser, A. (1989). On the physical meaning of the Kwei equation for the glass transition temperature of polymer blends. Macromolecules. 22:4112–4119.
  • Liu, J., Deng, Q. and Jean, Y. C. (1993). Free-volume distributions of polystyrene probed by positron annihilation: Comparison with free-volume theories. Macromolecules. 26:7149–7155.
  • Lloyd, R. J., Chen, D. X. and Hargreaves, J. B. (1996). Glass transition and caking of spray dried lactose. Int. J. Food Sci. Technol. 31:305–311.
  • Ma, C-Y., Harwalkar, V. R., Maurice, T. J., (1990). Instrumentation and techniques of thermal analysis in food research. In: Thermal Analysis of Foods, pp 1-15, Harwalkar, V. R. and Ma, C-Y., Eds., Elsevier, London.
  • Madani, M., Maziad, N. A. and Khafagy, R. M. (2007). Thermally stimulated depolarization current and thermal analysis studies of gamma irradiated lithium-salt/polymer electrolyte blends. J. Macromol. Sci. Phys. 46:1191–1203.
  • Mansfield, M. L. (1993). An overview of theories of the glass transition. In: The Glassy State In Foods, Blanshard, J. M. V. and Lillford, P. J., Eds., Nottingham University Press, Leicestershire, UK.
  • Mansfield, M. L. (1993). An overview of theories of the glass transition. In J. M. V. Blanshard, P. J. Lillford (Eds.), The glassy state in foods (pp. 103–122). Nottingham University Press, Leicestershire.
  • Mazzobre, M. F., Hough, G. and Buera, P. (2003). Phase transitions and functionality of enzymes and yeasts in dehydrated matrices. Food Sci. Technol. Int. 9:163–172.
  • Mazzobre, M. F., Soto, G., Aguilera, J. M. and Buera, M. P. (2001). Crystallization kinetics of lactose in systems co-lyophilized with trehalose – Analysis by differential scanning calorimetry. Food Res. Int. 34:903–911.
  • Misra, S. and Mattice, W. L., (1993). Atomistic models of amorphous polybutadienes -3- static-free volume. Macromolecules. 26:7274–7281.
  • Moonan, W. K. and Tschoegl, N. W. (1985). The effect of pressure on the mechanical properties of polymers. IV Measurements in torsion. J. Polym. Sci. Polym. Phys. Ed. 23:623–651.
  • Moraru, C. I., Lee, T.-C., Karwe, M. V. and Kokini, J. L. (2002). Plasticising and antiplasticising effects of water and polyols on a meat–starch extruded matrix. J. Food Sci. 67(9):3396–3401.
  • Noel, T. R., Parker, R. and Ring, S. G. (2000). Effect of molecular structure and water content on the dielectric relaxation behaviour of amorphous low molecular weight carbohydrates above and below their glass transition. Carbohyd. Res. 329:839–845.
  • Ohkuma, C., Kawai, K., Viriyarattanasaka, C., Mahawanichc, T., Tantratianc, S., Takaia, R. and Suzuki, T. (2008). Glass transition properties of frozen and freeze-dried surimi products: Effects of sugar and moisture on the glass transition temperature. Food Hydrocolloids. 22: 255–262.
  • Orford, P. D., Parker, R., Ring, S. G. and Smith, A. C. (1989). Effect of water as a diluent on the glass transition behavior of maltooligosaccharides, amylose and amylopectin. Int. J. Biol. Macromol. 11:91–96.
  • Palzer, S. (2005). The effect of glass transition on the desired and undesired agglomeration of amorphous food powders. Chem. Eng. Sci. 60:3959–3968.
  • Papon P., Leblond, J., Herman, P. and Meijer, E. (2006). The Physics of Phase Transitions: Concepts and Application, 2nd Eds., Springer, Berlin, Germany.
  • Paradkar, A. R., Chauhan, B., Yamamura, S. and Pawar, A. P. (2003). Preparation and characterization of glassy celecoxib. Drug Dev. Ind. Pharm. 29:739–744.
  • Perez, J. (1994). Theories of liquid-glass transition. J. Food Eng. 22:89–114.
  • Pinal, R. (2008). Entropy of mixing and the glass transition of amorphous mixtures. Entropy. 10:207–223.
  • Rahman, M. S. (1995). Food Properties Handbook, CRC Press, Boca Raton, FL.
  • Rahman, M. S. (1999). Glass transition and other structural changes in foods. In: Rahman, M. S., (2006). State diagram of foods: Its potential use in food processing and product stability, Trends Food Sci. Technol. 17:129–141.
  • Rahman, M. S. (2001). Toward prediction of porosity in foods during drying: A brief review. Drying Technol. 19(1):1–13.
  • Rahman, M. S. (2004). State diagram of date flesh using differential scanning calorimetry (DSC). Int. J. Food Prop. 7(3):407–428.
  • Rahman, M. S. (2006). State diagram of foods: Its potential use in food processing and product stability. Trends Food Sci. Technol. 17:129–141.
  • Rahman, M. S. and Labuza, T. P. (1999). Water activity and food preservation. In: Handbook of Food Preservation, pp 339-382, Rahman, M. S., Ed., Marcel Dekker, New York, NY.
  • Raudonus, J., Bernard, J., Januen, H., Kowalczyk, J. and Carle, R. (2000). Effect of oligomeric or polymeric additives on glass transition, viscosity and crystallization of amorphous isomalt. Food Res. Int. 33:41–51.
  • Reading, M. (1993). Modulated differential scanning calorimetry – a new way forward in materials characterization. Trends Polym. Sci. 1:248–253.
  • Reading, M., Luget, A. and Wilson, R., (1994). Modulated differential scanning calorimetry. Thermochim. Acta. 238:295–307.
  • Roos, Y. (1995a). Phase Transitions in Foods, Academic Press, London.
  • Roos, Y. H. (1995b). Glass transition-related physicochemical changes in foods. Food Technol. 49:97–102.
  • Roos, Y. H. and Karel, M. (1990). DSC study of phase transitions affecting the quality of dehydrated materials. Biotechnol. Prog. 6:159–163.
  • Roos, Y. H and Karel, M. (1991). Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J. Food Sci. 56(6):1676–1681.
  • Roudaut, G., Simatos, D., Champion, D., Contreras-Lopez, E. and Le Meste, M. (2004). Molecular mobility around the glass transition temperature: A mini review. Innovative Food Sci. Emer. Technol. 5:127–134.
  • Sa, M. M. and Sereno, A. M. (1994). Glass transition and state diagrams for typical natural fruits and vegetables. Thermochim. Acta. 246:285–297.
  • Sahin, S. and Sumnu, S. G. (2006). Physical Properties of Foods, Springer, New York, NY
  • Sapru, V. and Labuza, T. P. (1993). Glass state in bacterial spores predicted by polymer glass-transition theory. J. Food Sci. 58:445.
  • Scott, W. J. (1953). Water relations of Staphylococcus aureus at 30°C. Aust. J. Biol. Sci. 6:549.
  • Senoussi, A., Dumoulin, E. D. and Berk, Z. (1995). Retention of diacetyl in milk during spray-drying and storage. J. Food Sci. 60(5):894–905.
  • Seo, J.-A., Oh, J., Kim, H. K. and Hwang, Y. H. (2005). Study of glass transition temperature in sugar mixtures. J. Kor. Phys. Soc. 46:606–609.
  • Shimada, Y., Roos, Y. and Karel, M. (1991). Oxidation of methyl linoleate encapsulated in amorphous lactose-based food models. J. Agric. Food Chem. 39:637.
  • Sjögren, L. and Sjölander, A. (1989). Some applications of the mode–mode coupling approach. International Journal of Quantum Chemistry. 35(6):851–867.
  • Slade, L., and Levine, H. (1987). Recent advances in starch retrogradation. Industrial Polysaccharides. 387–430.
  • Slade, L. and Levine, H. (1988). Structural stability of intermediate moisture foods-a new understanding. In: Food Structure – Its Creation and Evaluation, pp. 115–147, Blanshard, J. M. V. and Mitchell, J. R, Eds., Butterworths, London.
  • Slade, L. and Levine, L. (1991a). A food polymer science approach to structure property relationships in aqueous food systems: Non equilibrium behavior of carbohydrate–water systems. In: Water Relationships in Food, pp. 29–101, Levine, H. and Slade, L., Eds., Plenum Press, New York, NY.
  • Slade, L. and Levine, L. (1991b). Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30:115.
  • Sperling, L. H. (2006). Introduction to Physical Polymer Science, 4th edn, Wiley, Hoboken, UK.
  • Strahm, B. (1998). Fundamentals of polymer science as an applied extrusion tool. Cereal Foods World. 43(8):621–625.
  • Strahm, B., B. Plattner, G. Huber and G. Rokey. (2000). Applicationof food polymer science and capillary rheometry in evaluatingcomplex extruded products. Cereal Foods World. 45:300–302.
  • Strahm, B. and Plattner, B. (2000). Thermal profiling – predicting processing characteristics of feed materials. Feed Int. 21(4):26–29.
  • Sunooj, K. V., Radhakrishna, K., George J. and Bawa, A. S. (2009). Factors influencing the calorimetric determination of glass transition temperature in foods: A case study using chicken and mutton. J. Food Eng. 91:347–352.
  • To, E. C. and Flink, J. M. (1978). Collapse, a structural transition in freeze dried carbohydrates II: Effect of solute composition. J. Food Technol. 13:567–581.
  • Truong, V., Bhandari, B. R., Howes, T. and Adhikari, B. (2002). Analytical model for the prediction of glass transition temperature of food systems. In: Amorphous Foods and Pharmaceutical Systems, pp. 31–47, Levine, H., Ed. The Royal Society of Chemistry, Cambridge, pp. 31–58.
  • Tsourouflis, S., Flink, J. M. and Karel, M. (1976). Loss of structure in freeze-dried carbohydrates solutions: Effect of temperature, moisture content and composition. J. Sci. Food Agric. 27:509–519.
  • Turnbull, D. and Cohen, M. H. (1961). Free-volume model of the amorphous phase: Glass transition. J. Chem. Phys. 34:120–125
  • Volkov, A. A. and Prokhorov, A. S. (2003). Broadband dielectric spectroscopy of solids. Radiophys. Quantum Electron. 46:657–665.
  • Watson, E. S., O'Neill, M. J., Justin, J. and Brenner, N. (1964). A differential scanning calorimeter for quantitative differential thermal analysis. Analytical Chemistry. 36(7):1233–1238.
  • White, G. W. and Cakebread, S. H. (1966). The glassy state in certain sugar-containing food products. J. Food Technol. 1:73–82.
  • Williams, M. L., Landel, R. F. and Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77:3701–3707.
  • Wunderlich, B. (2005). Thermal Analysis of Polymeric Materials, Springer, Dordrecht, Netherlands.
  • Yu, L. and Christie, G. (2001). Measurement of starch thermal transitions using differential scanning calorimetry. Carbohyd. Polym. 46:179–184.
  • Yu, Z., Yahsi, U., McGervey, J. D., Jamieson, A. M. and Simha, R. (1994). Molecular weight-dependence of free volume in polystyrene studied by positron annihilation measurements. J. Polym. Sci. B. 32:2637–2644.
  • Zeleznak, K. J. and Hoseney, R. C. (1987). The glass transition in starch. Cereal Chem. 64:121–124.
  • Perkin Elmer. UV-DSC study on new double furnace DSC. Available from www.perkinelmer.com. Accessed July 10, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.