2,300
Views
111
CrossRef citations to date
0
Altmetric
Original Articles

Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota

, , &

REFERENCES

  • Arboleya, S., González, S., Salazar, N., Ruas-Madiedo, P., de los Reyes-Gavilán, C. G. and Gueimonde, M. (2012). Development of probiotic products for nutritional requirements of specific human populations. Eng. Life Sci. 12:368–376.
  • Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H. B., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E. G., Wang, J., Guarner, F., Pedersen, O., de Vos, W. M., Brunak, S., Doré, J. and MetaHIT Consortium. (2011). Enterotypes of the human gut microbiome. Nature. 473:174–180. [Erratum in: Nature. (2011). 474:666]
  • Ashida, H., Ogawa, M., Kim, M., Mimuro, H. and Sasakawa, C. (2012). Bacteria and host interaction in the gut epithelial barrier. Nat. Chem. Biol. 8:36–45.
  • Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. and Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science. 307:1915–1920.
  • Barrangou, R., Altermann, E., Hutkins, R., Cano, R. and Klaenhammer, T. R. (2003). Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc. Natl Acad. Sci. USA. 100:8957–8962.
  • Behare, P. V., Singh, R., Kumar, M., Prajapati, J..B. and Singh, R. P. (2009). Exopolysaccharides of latic acid bacteria: A review. J. Food Sci. Technol. 46:1–11.
  • Bergmaier, D., Champagne, C. P. and Lacroix, C. (2005). Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M. J. Appl. Microbiol. 98:272–284.
  • Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., Nikkila, J., Monti, D., Satokari, R., Franceschi, C., Brigidi, P. and De Vos, W. (2010). Through ageing and beyond: Gut microbiota and inflammatory status of seniors and centenarians. PLoS One. 5:e10667.
  • Bird, A. R., Conlon, M. A., Christophersen, C. T. and Topping, D. L. (2010). Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Microbes. 1:423–431.
  • Broadbent, J. R., McMahon, D. J., Welker, D. L., Oberg, C. J. and Moineau, S. (2003). Biochemistry, genetics and applications of exopolysaccharide production in Streptococcus thermophilus: A review. J. Dairy. Sci. 86:407–423.
  • Broekaert, W. F., Courtin, C. M., Verbeke, K., Van de Wiele, T., Verstraete, W. and Delcour, J. A. (2011). Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 51:178–194.
  • Candela, M., Maccaferri, S., Turroni, S., Carnevali, P. and Brigidi, P. (2010). Functional intestinal microbiome, new frontiers in prebiotic design. Int. J. Food Microbiol. 140:93–101.
  • Casci, T. and Rastall, R. A. (2006). Manufacture of prebiotic oligosaccharides. In: Prebiotics, Development and Application, pp. 29–56. Gibson, G. R. and Rastall, R. A., Eds., John Wiley, West Sussex, UK.
  • Cencic, A. and Langerholc, T. (2010). Functional cell models of the gut and their application in food microbiology – A review. Int. J. Food Microbiol. 141:S4–S14.
  • Cescutti, P. (2009). Bacterial capsular polysaccharides and exopolysaccharides. In: Microbial Glycobiology, Structures, Relevance and Applications, pp. 93–108. Moran, A. P., Holst, O., Brennan, P. J. and von Itzstein, M., Eds., Academic Press, Elsevier, London.
  • Charalampopoulos, D. and Rastall, R. A. (2012). Prebiotics in foods. Curr. Opin. Biotechnol. 23:197–191.
  • Chung, C. H. and Day, D. F. (2002). Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic. J. Indus. Microbiol. Biotechnol. 29:196–199.
  • Cinquin, C., Le Blay, G., Fliss, I. and Lacroix, C. (2006). Comparative effects of exopolysaccharides from lactic acid bacteria and fructo-oligosaccharides on infant gut microbiota tested in an in vitro colonic model with immobilized cells. FEMS Microbiol. Ecol. 57:226–238.
  • Crittenden, R. and Playne, M. J. (2009). Prebiotics. In: Handbook of Probiotics and Prebiotics, 2nd ed., pp. 535–562. Lee, Y. K. and Salminen, S., Eds., Wiley Interscience, New York, NY.
  • Cummings, J. H., Antoine, J. M., Azpiroz, F., Bourdet-Sicard, R., Brandtzaeg, P., Calder, P. C., Gibson, G. R., Guarner, F., Isolauri, E., Pannemans, D., Shortt, C., Sandra, S., Tuijtelaars, S. and Watzl, B. (2004). PASSCLAIM-Gut health and immunity. Eur. J. Nutr. 43:118–173.
  • Dal Bello, F., Walter, J., Hertel, C. and Hammes, W. P. (2001). In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. System. Appl. Microbiol. 24:232–237.
  • De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA. 107:14691–14696.
  • de los Reyes-Gavilán, C. G., Suárez, A., Fernández-García, M., Margolles, A., Gueimonde, M. and Ruas-Madiedo, P. (2011). Adhesion of bile-adapted Bifidobacterium strains to the HT29-MTX cell line is modified after sequential gastrointestinal challenge simulated in vitro using human gastric and duodenal juices. Res. Microbiol. 162:514–519.
  • De Vuys, L., de Vin, F., Vaningelgem, F. and Degeest, B. (2001). Recent development in the biodsynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11:687–707.
  • De Vuyst, L. and Leroy, F. (2011). Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int. J. Food Microbiol. 149:73–80.
  • Deggest, B., Vaningelgem, F. and De Vuyst, L. (2001). Microbial physiology, fermentation kinetics and process engineering of heteropolysaccharide production by lactic acid bacteria. Int. Dairy J. 11:747–757.
  • Delzene, N. M. and Kok, N. (2001). Effects of fructan-type prebiotics on lipid metabolism. Am. J. Clin. Nutr. 73:456–458.
  • Denou, E., Pridmore, R. D., Berger, B., Panoff, J. M., Arigoni, F. and Brüssow, H. (2008). Identification of genes associated with the long-gut persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomic and transcriptomic analysis. J. Bacteriol. 190:3161–3168.
  • Dethlefsen, L. and Relman, D. A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA. 108(Suppl. 1):4554–4561.
  • DuPont, A. W. and DuPont, H. L. (2011). The intestinal microbiota and chronic disorders of the gut. Nat. Rev. Gastroenterol. Hepathol. 8:523–531.
  • Falk, P. G., Hooper, L. V., Midvedt, T. and Gordon, J. I. (1998). Creating and maintaining the gastrointestinal ecosystem: What we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62:1157–1170.
  • Fanning, S., Hall, L. J., Cronin, M., Zomer, A., McSharry, J., Goulding, D., O´Connell-Motherway, M., Shanahan, F., Nally, K., Dougan, G. and van Sinderen, D. (2012). Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc. Natl Acad. Sci. USA. 109:2108–2113.
  • FAO/WHO. (2006). Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food and Nutritional Paper No. 85 (ISBN 92–5–105513–0).
  • FAO/WHO. (2007). FAO Technical Meeting on Prebiotics. WHO, Geneva, Switzerland. http.//www.fao.org/ag/agn/agns/files/Prebiotics_Tech_Meeting_Report.pdf.
  • Flint, H. J. (2012). The impact of nutrition on the human microbiome. Nutr. Rev. 70:S10–S13.
  • Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. and White, B. A. (2008). Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nature Rev. Microbiol. 6:121–131.
  • Fraher, M. H., O'Toole, P. W. and Quigley, E. M. M. (2012). Techniques used to characterize the gut microbiota: A guide for the clinician. Nature Rev. Gastroenterol. Hepatol. 9:312–322.
  • Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J. M., Topping, D. L., Suzuki, T., Taylor, T. D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M. and Ohno, H. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 469:543–549.
  • Gänzle, M. and Schwab, C. (2009). Ecology of exopolysaccharide formation by lactic acid bacteria: Sucrose utilization, stress tolerance and biofim formation. In: Bacterial Polysaccharides, Current Innovations and Future Trends, pp. 263–278. Ullrich, M., Ed., Caister Academic Press, Norfolk, UK.
  • Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., Cefalu, W. T. and Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 58:1509–1517.
  • Gibson, G. R. and Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125:1401–1412.
  • Gibson, G. R., Probert, H. M., Van Loo, J., Rastall, R. A. and Roberfroid, M. B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 17:259–275.
  • Hassan, A. N. (2008). Possibilities and challenges of exopolysaccharide-producing lactic cultures in dairy foods. J. Dairy Sci. 91:1282–1298.
  • Hidalgo-Cantabrana, C., López, P., Gueimonde, M., de los Reyes-Gavilán, C. G., Suárez, A., Margolles, A. and Ruas-Madiedo, P. (2012). Immune modulation capability of exopolysaccharides synthesized y lactic acid bacteria and bifidobacteria. Probiotics Antimicro. Prot. 4:227–237.
  • Hongpattarakere, T., Cherntong, N., Wichienchot, S., Kolida, S. and Rastall, R. A. (2012). In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohyd. Pol. 87:846–852.
  • Hyötyläinen, T. (2012). Novel methodologies in metabolic profiling with a focus on molecular diagnostic applications. Expert Rev. Mol. Diagn. 12:527–538.
  • International Association of Probiotics and Prebiotics (ISAPP). (2008). 6th Meeting of the International Scientific Association of Probiotics and Prebiotics, London, Ontario, Canada.
  • Jolly, L. and Stingele, F. (2001). Molecular organization and functionality of exopolysaccharide gene cluster in lactic acid bacteria. Int. Dairy J. 11:733–745.
  • Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight, R., Angenent, L. T. and Ley, R. E. (2011). Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA. 108(Suppl. 1):4578–4585.
  • Korakli, M. and Vogel, R. F. (2006). Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential for their synthesized glycans. Appl. Microbiol. Biotechnol. 71:790–803.
  • Korakli, M., Gänzle, M. G. and Vogel, R. F. (2002). Metabolism by bifidobacteria and lactic acid bacteria polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J. Appl. Microbiol. 92:958–965.
  • Lebeer, S., Claes, I. J. J., Verhoeven, T. L. A., Vanderleyden, J. and De Keersmaecker, S. C. J. (2010). Exopolysaccharide of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microbial Biotechnol. 4:368–374.
  • Leivers, S., Hidalgo-Cantabrana, C., Robinson, G., Margolles, A., Ruas-Madiedo, P. and Laws, P. L. (2011). Structure of the high molecular weight exopolysaccharide produceb by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence anlaysis of its putative eps cluster. Carbohydr. Res. 346:2710–2717.
  • Leroy F. and De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for food fermentation industry. Tren. Food Sci. Technol. 15:67–78.
  • Looijesteijn, P. J., Trapet, L., de Vries, E., Abee, T. and Hugenholtz, J. (2001). Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol. 64:71–80.
  • López, P., Monteserín, D. C., Gueimonde, M., de los Reyes-Gavilán, C. G., Margolles, A., Suárez, A. and Ruas-Madiedo, P. (2012). Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells. Food Res. Int. 46:99–107.
  • Margolles, A., Mayo, B. and Ruas-Madiedo, P. (2009). Screening, identification and characterization of Lactobacillus and Bifidobacterium strains. In: Handbook of Probiotics and Prebiotics, 2nd ed., pp. 4–24. Lee, Y. K. and Salminen, S., Eds., Wiley Interscience, New York, NY.
  • Martensson, O., Bifrklund, M., Lambo, A. M., Dueñas-Chasco, M., Irastorza, A., Holst, O., Norin, E., Welling, G., Öste, R. and Önning, G. (2005). Fermented, ropy, oat-based products reduce cholesterol levels and stimulate the bifidobacteria flora in humans. Nutr. Res. 25:429–442.
  • Marzorati, M., Van Den Abbeele, P., Possemiers, S., Benner, J., Verstraete, W. and Van De Wiele, T. (2011). Studying the host-microbiota interaction in the human gastrointestinal tract: Basic concepts and in vitro approaches. Ann. Microbiol. 61:709–715.
  • Monsan, P., Bozonnet, S., Albenne, C., Joucla, G., Willemot, R. M. and Remaud-Siméon, M. (2001). Homopolysaccharides from lactic acid bacteria. Int. Dairy J. 11:675–685.
  • Mozzi, F., Gerbino, E., Font de Valdez, G. and Torino, M. I. (2009). Functionality of exopolysaccharides produced by lactic acidbacteria in an in vitro gastric system. J Appl Microbiol. 107:56–64.
  • Mozzi, F., Vaningelgem, F., Hébert, E. M., van der Meulen, R., Foulquié-Moreno, M. R., Font de Valdez, G. and De Vuyst, L. (2006). Diversity of heteropolysaccharide producing lactic acid bacterium strains and their biopolymers. Appl. Environ. Microbiol. 72:4431–4435.
  • Mueller, S., Saunier, K, Hanisch, C., Norin, E., Alm, L., Midtvedt, T., Cresci, A., Silvi, S., Orpianesi, C., Verdenelly, M. C., Clavel, T., Koebrick, C., Zunft, H. H., Doré, J. and Blaut, M. (2006). Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Appl. Environ. Microbiol. 72:1027–1033.
  • Nikolic, M., López, P., Strahinic, I., Suárez, A., Kojic, M., Fernández-García, M., Topisirovic, L., Golic, N. and Ruas-Madiedo, P. (2012). Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. Int. J. Food Microbiol. 158:155–162.
  • Nugent, A. P. (2005). Health properties of resistant starch. Nutr. Bull. 30:27–54.
  • O'Connell-Motherway, M., Zomer, A., Leahy, S. C., Reunanen, J., Bottacini, F., Claesson, M. J., O'Brien, F., Flynn, K., Casey, P. G., Muñoz, J. A., Kearney, B., Houston, A. M., O'Mahony, C., Higgins, D. G., Shanahan, F., Palva, A., de Vos, W. M., Fitzgerald, G. F., Ventura, M., O'Toole, P. W. and van Sinderen, D. (2011). Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IV tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc. Natl Acad. Sci. USA. 108:11217–11222.
  • Peng, L., Li, Z-R., Green, R. S., Holzman, I. R. and Lin, J. (2009). Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 139:1619–1625.
  • Peso-Echarri, P., Marínez-Graciá, C., Ros-Berruezo, G., Vives, I., Ballesta, M., Solís, G., Vasallo-Morillas, I., de los Reyes-Gavilán, C. G., Margolles, A. and Gueimonde, M. (2011). Assessment of intestinal microbiota of full-term breast-fed infants from two different geographical locations. Early Hum. Dev. 87:511–513.
  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J. and MetaHIT Consortium. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464:59–65.
  • Roberfroid, M. B., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., Wolvers, D., Watzl, B., Szajewska, H., Stahl, B., Guarner, F., Respondek, F., Whelan, K., Coxam, V., Davicco, J. J., Létoing, L, Wittrant, J., Delzenne, N. M., Cani, P. D., Neyrinck, A. M. and Meheust, A. (2010). Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 104:S1–S63.
  • Rossi, M., Corradini, C., Amaretti, A., Nicolini, M., Pompei, A., Zanoni, S. and Matteuzzi, D. (2005). Fermentation of fructooligosaccharides and inulin by bifidobacteria: A comparative study of pure and fecal cultures. Appl. Environ. Microbiol. 71:6150–6158.
  • Round, J. L. and Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9:313–323.
  • Ruas-Madiedo, P., Moreno, J. A., Salazar, N., Delgado, S., Mayo, B., Margolles, A. and de los Reyes-Gavilán, C. G. (2007). Screening of exopolysaccharide-producing Lactobacillus and Bifidobacterium strains isolated from the human intestinal microbiota. Appl. Environ. Microbiol. 73:4385–4388.
  • Ruas-Madiedo, P., Salazar, N. and de los Reyes-Gavilán, G. C. (2009a). Biosynthesis and chemical composition of exopolysaccharides produced by lactic acid bacteria. In: Bacterial Polysaccharides, Current Innovations and Future Trends, pp. 279–310. Ullrich, M., Ed., Caister Academic Press, Norfolk, UK.
  • Ruas-Madiedo, P., Salazar, N. and de los Reyes-Gavilán, G. C. (2009b). Exopolysaccharides produced by lactic acid bacteria in food and probiotic applications. In: Microbial Glycobiology, Structures, Relevance and Applications, pp. 887–902. Moran, A. P., Holst, O., Brennan, P. J. and von Itzstein, M., Eds., Academic Press, London.
  • Ruas-Madiedo, P., Sánchez, B., Hidalgo-Cantabrana, C., Margolles, A. and Laws, A. (2012). Exopolysaccharides from lactic acid bacteria and bifidobacteria. In: Handbook of Animal-Based Fermented Food and Beverage Technology, 2nd ed., pp. 125–151. Hui, Y. H. and Evranuz, E. O., Eds., CRC Press, Boca Raton, FL.
  • Ruijssenaars, H. J., Stingele, F. and Hartmans, S. (2000). Biodegradability of food-associated extracellular polysaccharides. Curr. Microbiol. 40:194–199.
  • Salazar, N., Binetti, A., Gueimonde, M., Alonso, A., Garrido, P., González del Rey, C., González, C., Ruas-Madiedo, P. and de los Reyes-Gavilán, C. G. (2011). Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats. Int. J. Food Microbiol. 144:342–351.
  • Salazar, N., Gueimonde, M., Hernańdez-Barranco, A. M., Ruas-Madiedo, P. and de los Reyes-Gavilán, C. G. (2008). Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl. Environ. Microbiol. 74:4737–4745.
  • Salazar, N., Prieto, A., Leal, J. A., Mayo, B., Bada-Gancedo, J. C., de los Reyes-Gavilán, C. G. and Ruas-Madiedo, P. (2009a). Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. J. Dairy Sci. 92:4158–4168.
  • Salazar, N., Ruas-Madiedo, P., Kolida, S., Collins, M., Rastall, R. A., Gibson, G. R. and de los Reyes-Gavilan, C. G. (2009b). Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures. Int. J. Food Microbiol. 135:260–267.
  • Salminen, S. and Gueimonde, M. (2005). Gut microbiota in infants between 5 and 24 months of age. In: Feeding During Late Infancy and Early Childhood: Impact on Health. Nestle Nutrition Workshop Series Pediatric Program. 56, pp. 43–51. Hernell, O. and Schmitz, J. Eds. Nestec, Basel, Switzerland.
  • Sarbini, S. R., Kolida, S., Naeye, T., Einerhand, A., Brison, Y., Remaud-Simeon, M., Monsan, P., Gibson, G. R. and Rastall, R. A. (2011). In vitro fermentation of linear and α-1,2-branched dextrans by the human fecal microbiota. Appl. Environ. Microbiol. 77:5307–5315.
  • Saulnier, D. M. L., Kolida, S. and Gibson, G. R. (2009). Microbiology of the human intestinal tract and approaches for its dietary modulation. Curr. Parm. Des. 15:1403–1414.
  • Schell, M. A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M-C., Desiere, F., Bork, P., Delley, M., Pridmore, R. D. and Arigoni, F. (2002). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl Acad. Sci. USA. 99:14422–14427.
  • Sekirov, I., Russell, S. L., Antunes, L. C. and Finlay, B. B. (2010). Gut microbiota in health and disease. Physiol. Rev. 90:859–904.
  • Sela, D. A. and Mills, D. A. (2010). Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18:298–307.
  • Sela, D. A., Chapman, J., Adeuya, A., Kim, J. H., Chen, F., Whitehead, T. R., Lapidus, A., Rokhsar, D. S., Lebrilla, C. B., German, J. B., Price, N. P., Richardson, P. M. and Mills, D. A. (2008). The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl Acad. Sci. USA. 105:18964-18969.
  • Sonnenburg, J. L., Xu, J., Leip, D. D., Chen, C. H., Westover, B. P., Weatherford, J., Buhler, J. D. and Gordon, J. I. (2005). Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 307:1955–1959.
  • Tabernero, M., Venema, K., Maathuis, A. J. H. and Saura-Calixto, F. D. (2011). Metabolite production during in vitro colonic fermentation of dietary fiber: Analysis and comparison of two European diets. J. Agric. Food Chem. 59:8968–8975.
  • Tieking, M., Kaditzky, S., Valcheva, R., Korakli, M., Vogel, R. F. and Gänzle, M. G. (2005). Extracellular homopolysaccharides and oligosaccharides from intestinal lactobacilli. J. Appl. Microbiol. 99:692–702.
  • Tremaroli, V. and Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature. 489:242–249.
  • Turnbaugh, P. J. and Gordon, J. I. (2009). The core gut microbiome, energy balance, and obesity. J. Physiol. 587:4153–4158.
  • Turroni, F., Bottacini, F., Foroni, E., Mulder, I., Kim, J. H., Zomer, A., Sánchez, B., Bidossi, A., Ferrarini, A., Giubellini, V., Delledonne, M., Henrissat, B., Coutinho, P., Oggioni, M., Fitzgerald, G. F., Mills, D., Margolles, A., Kelly, D., van Sinderen, D. and Venura, M. (2010). Genome analysis of Bifidobacterium bifidum PRL2010 revels metabolic pathways for host-derived glycan foraging. Proc. Natl Acad. Sci. USA. 107:19514–9.
  • Van Calsteren, M. R., Pau-Roblot, C., Begin, A. and Roy, D. (2002). Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R. Biochem. J. 363:7–17.
  • Van de Wiele, T., Boon, N., Possemiers, S., Jacob, H. and Verstraete, W. (2007). Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J. Appl. Microbiol. 102:452–460.
  • Van den Abbeele, P., Grootaert, C., Marzorati, M., Possemiers, S., Verstraete, W., Gérard, P., Rabot, S., Bruneau, A., El Aidy, S., Derrien, M., Zoetendal, E., Kleerebezem, M., Smidt, H. and Van de Wiele, T. (2010). Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl. Environ. Microbiol. 76:5237–5246.
  • Van den Abbeele, P., Roos, S., Eeckhaut, V., MacKenzie, D. A., Derde, M., Verstraete, W., Marzorati, M., Possemiers, S., Vanhoecke, B., van Immerseel, F. and van de Wiele, T. (2012). Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb. Biotechnol. 5:106–115.
  • Van Geel-Schutten, G. H., Faber, E. J., Smit, E., Monting, K., Smith, M. R., Ten Brink, B., Kamerling, J. P., Vliegenthart, J. F. G. and Dijkhuizen, L. (1999). Biochemical and structural characterization of the glucan and fructan expolysaccharides synthesized by the Lactobacillus reuteri wild-type strain and by mutant strains. Appl. Environ. Microbiol. 65:3008–3014.
  • Van Hijum, S. A. F. T., Kralj, S., Ozimek, L. K., Dijkhuizen, L. and van Geel-Schutten, I. G. H. (2006). Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol. Mol. Bio. Rev. 70:157–176.
  • Vrieze, A., Holleman, F., Zoetendal, E. G., de Vos, W. M., Hoekstra, J. B. L. and Nieuwdorp, M. (2010). The environment within: How gut microbiota may influence metabolism and body composition. Diabetologia. 53:606–613.
  • Werning, M. L., Ibarburu, I., Dueñas, M. T., Irastorza, A., Navas, J. and López, P. (2006). Pediococcus parvulus gtf gene encoding the GTF glycosyltransferase and its application for specific PCR detection of β-D-glucan-producing bacteria in foods and beverages. J. Food Prot. 69:161–169.
  • Xiao, J. Z., Takahashi, S., Nishimoto, M., Odamaki, T., Yaeshima, T., Iwatsuki, K. and Kitaoka, M. (2010). Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strain. Appl. Environ. Microbiol. 76:54–59.
  • Yu, J., Peng, S., Luo, D. and March, J. C. (2012). In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol. Bioeng. 109:2173–2178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.