977
Views
45
CrossRef citations to date
0
Altmetric
Article

Performance of antioxidative compounds under frying conditions: A review

, &

References

  • Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E. and El-Hamahmy, R. M. (2007). Egyptian mango by-product 2: Antioxidant and antimicrobial activities of extract and oil from mango seed kernel. Food Chem. 103:1141–1152.
  • Abd-ElGhany, M. E., Ammar, M. S. and Hegazy, A. E. (2010). Use of olive waste cake extract as a natural antioxidant for improving the stability of heated sunflower oil. World Appl. Sci. J. 11:106–113.
  • Achir, N., Randrianatoandro, V. A., Bohuon, P., Laffargue, A. and Avallone, S. (2010). Kinetic study of β-carotene and lutein degradation in oils during heat treatment. Eur. J. Lipid Sci. Technol. 112:349–361.
  • Adcox, C., Boyd, L., Oehrl, L., Allen, J. and Fenner, G. (2001). Comparative effects of phytosterol oxides and cholesterol oxides in cultured macrophage-derived cell lines. J. Agric. Food Chem. 49:2090–2095.
  • Aggelousis, S. and Lalas, S. (1997). Quality changes of selected vegetable oils during frying of doughnuts. Riv. Ita. Sostanze Gr. 74:559–562.
  • Akihisa, T., Yasukawa, K., Yamaura, M., Ukiya, M., Kimura, Y., Shimizu, N. and Arai, K. (2000). Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammmatory effects. J. Agric. Food Chem. 48:2313–2319.
  • Aladedunye, F. A. and Przybylski, R. (2009a). Degradation and nutritional quality changes of oil during frying. J. Am. Oil Chem Soc. 86:149–156.
  • Aladedunye, F. A. and Przybylski, R. (2009b). Protecting oil during frying: A comparative study. Eur. J. Lipid Sci.Technol. 111:893–901.
  • Aladedunye, F. A. and Przybylski, R. (2011). Rapid assessment of frying performance using small size samples of oils/fats. J. Am. Oil Chem Soc. 88:1867–1873.
  • Aladedunye, F. A. and Przybylski, R. (2012a). Frying performance of canola oil triacylglycerides as affected by vegetable oils minor components. J. Am. Oil Chem Soc. 89:41–53.
  • Aladedunye, F. A. and Przybylski, R. (2012b). Antioxidative properties of phenolic acids and interaction with endogeous minor components during frying. Eur. J. Lipid Sci.Technol. 113:1465–1473.
  • Aladedunye, F. A., Catel, Y. and Przybylski, R. (2012). Novel dihydrocaffeic acid amides: synthesis, radical scavenging activity, and evaluation as antioxidants under storage and frying conditions. Food Chem. 130:945–952.
  • Al-Bandak, G. and Oreopoulou, V. (2011). Inhibition of lipid oxidation in fried chips and cookies by Majorana syriaca. Int. J. Food Sci. Technol. 46:290–296.
  • Alemany, L., Laparra, J. M., Barbera, R. and Alegria, A. (2012). Evaluation of the cytotoxic effect of 7-keto-stigmasterol and 7-keto-cholesterol in human intestinal (caco-2) cells. Food Chem. Toxicol. 50:3106–3113.
  • Ali, R. F. M. (2010). Improvement the stability of fried sunflower oil by using different levels of pomposia (Syzyygium cumini). EJEAFChe 9:396–403.
  • Al-Khusaibi, M., Gordon, M. H., Lovegrove, J. A. and Niranjan, K. (2012). Frying of potato chips in a blend of canola oil and palm olein: changes in levels of individual fatty acids and tocols. Int. J. Food Sci. Technol. 47:1701–1709.
  • Amarowicz, R. (2009). Squalene: A natural antioxidant? Eur. J. Lipid Sci. Technol. 11:411–412.
  • Anese, M. and Fogliano, V. (2001). The Maillard reaction in foods: chemical, technological and nutritional aspects. Ind. Aliment-Italy 40:385–399.
  • Apak, R., Guclu, K., Demirata, B., Ozyurek, M., Celik, S. E., Bektasoglu, B., Berker, K. I. and Ozyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecule 12:1496–1547.
  • Aranha, C. P. M. and Jorge, N. (2012). Antioxidant potential of oregano extract (Origanum vulgare L.). Br. Food J. 114:954–965.
  • Asap, R. and Augustin, M. A. (1986). Effect of frying oil quality and TBHQ on the shelf-life of potato crisps. J. Sci. Food Agric. 37:1045–1051.
  • Augustin, M. A. and Berry, S.K. (1983). Efficacy of the antioxidants BHA and BHT in palm olein during heating and frying. J. Am. Oil Chem. Soc. 60:1520–1523.
  • Aydeniz B. and Yilmaz, E. (2012). Enrichment of frying oils with phenolic extracts to extend the usage. Eur. J. Lipid Sci. Technol. 114:933–941.
  • Balasundram, N., Sundram, K. and Samma, S. (2006). Phenolic compounds in plants and agric-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 99:191–203.
  • Bandarra, N. M., Campos, R. M., Batista, I., Nunes, M. L. and Empis, J. M. (1999). Antioxidant synergy of α-tocopherol and phospholipids. J. Am. Oil Chem. Soc. 76:905–913.
  • Bansal, G., Zhou, W., Barlow, P. J., Lo, H-L, and Neo, F-L. (2010). Performance of palm olein in repeated deep frying and controlled heating processes. Food Chem. 121:338–347.
  • Barrera-Arellano, D., Ruiz-Mendez, V., Velasco, J., Marquez-Ruiz, G. and Dobarganes, C. (2002). Loss of tocopherols and formation of degradation compounds at frying temperatures in oils differing in degrees of unsaturation and natural antioxidant content. J. Sci. Food Agric. 82:1696–1702.
  • Barrera-Arellano, D., Ruiz-Mendez, V., Velasco, J., Marquez-Ruiz, G. and Dobarganes, C. (1999). Loss of tocopherols and formation of degradation compounds in triacylglycerol model systems heated at high temperature. J. Sci. Food Agric. 79:1923–1928.
  • Belin, F., Barthelemy, P., Ruiz, K., Lacombe, J. M. and Pucci, B. (2003). Synthetic gallic acid derivatives as models for a comprehensive study of antioxidant activity. Helv. Chim. Acta. 86:247–265.
  • Betalleluz-Pallardel, I., Chirinos, R., Rogez, H., Pedreschi, R. and Campos, D. (2012). Phenolic compounds from andean mashua (Tropaeolum tuberosum) tubers display protection against soybean oil oxidation. Food Sci. Technol. Int. 18:271–280.
  • Boskou, D. and Katsikas, H. (1979). Effect of olive oil hydrocarbons and triterpene alcohols on the stability of heated cotton seed oil. Acta. Aliment. 8:317–320.
  • Botega, D. Z., Bastida, S., Marmesat, S., Pérez-Olleros, L., Ruiz-Roso, B. and Sánchez-Muniz, F. J. (2009). Carob fruit polyphenols reduce tocopherol loss, triacylglycerol polymerization and oxidation in heated sunflower oil. J. Am. Oil Chem. Soc. 86:419–425.
  • Britt, B., Gomaa, E. A. J., Ian Gray, J. I. and Booren, A. M. (1998). Influence of cherry tissue on lipid oxidation and heterocyclic aromatic amine formation in ground beef patties. J. Agric. Food Chem. 46:4891–4897.
  • Burton, G. W. and Ingold, K. U. (1984). β-Carotene: An unusual type of lipid antioxidant. Science 224:569–573.
  • Calvo, L., Cocero, M. J. and Diez, J. M. (1994). Oxidative stability of sunflower oil extracted with supercritical carbon dioxide. J. Am. Oil Chem. Soc. 71:1251–1254.
  • Catel, Y., Aladedunye, F.A. and Przybylski, R. (2010). Synthesis, radical scavenging activity, protection during storage, and frying by novel antioxidants. J. Agric. Food Chem. 58:11081–11089.
  • Catel, Y., Aladedunye, F.A. and Przybylski, R. (2012). Radical scavenging activity and performance of novel phenolic antioxidants in oils during storage and frying. J. Am. Oil Chem. Soc. 89:55–66.
  • Cercaci, L., Passalacqua, G., Poerio, A., Rodriguez-Estrada, M. T. and Lercker, G. (2007). Composition of total sterols (4-desmethyl-sterols) in extravirgin olive oils obtained with different extraction technologies and their influence on the oil oxidative stability. Food Chem. 102:66–76.
  • Cerecetto, H. and Lopez, G. V. (2007). Antioxidants derived from vitamin E: An overview. Mini Rev. Med. Chem. 7:315–338.
  • Chang, S. S., Peterson, R. J. and Ho, C. T. (1978). Chemical reactions involved in deep-fat frying of foods. J. Am. Oil Chem. Soc. 55:718–727.
  • Che Man, Y. B. and Jaswir, I. (2000). Effect of rosemary and sage extracts on frying performance of refined, bleached and deodorized (RBD) palm olein during deep-fat frying. Food Chem. 69:301–307.
  • Che Man, Y. B., Jialong, L. and Liu, J. L. (1999). The effects of TBHQ and α-tocopherol on quality characteristics of refined-bleached and deodorized palm olein (RBDPO) during deep-fat frying. J. Food Lipids, 6:117–129.
  • Chebil, L., Humeau, C., Falcimaigne, A., Engasser, J. M. and Ghoul, M. (2006). Enzymatic acylation of flavonoids. Process Biochem. 41:2237–2251.
  • Cheng, K-W., Qingli, W. U., Zheng, Z. P., Peng, X., Simon, J. E., Chen, F. and Wang, M. (2007). Inhibitory effect of fruit extracts on the formation of heterocyclic amines. J. Agric. Food Chem. 55:10359–10365.
  • Cheng, K-W., Shi, J-J., Ou, S-Y., Wang, M. and Jiang, Y. (2010). Effect of fruit extracts on the formation of acrylamide in model reactions and fried potato crisps. J. Agric. Food Chem. 58:309–312.
  • Chiou, A., Kalogeropoulos, N., Salta, F. N., Efstathiou, P. and Andrikopoulos, N. K. (2009). Pan-frying of French fries in three different edible oils enriched with olive leaf extract: Oxidative stability and fate of microconstituents. LWT – Food Sci. Technol. 42:1090–1097.
  • Chirinos, R., Haumán, M., Betalleluz-Pallardel, I., Pedreschi, R. and Campos, D. (2011). Characterisation of phenolic compounds of Inca muña (Clinopodium bolivianum) leaves and the feasibility of their application to improve the oxidative stability of soybean oil during frying. Food Chem. 128:711–716.
  • Choe, E. and Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Safety 5:169–186.
  • Choo, W-S. and Birch, E.J. (2009). Radical scavenging activity of lipophilized products from lipase-catalyzed transesterification of triolein with cinnamic and ferulic acid. Lipid 44:145–152.
  • Choo, W-S., Birch, E. J. and Stewart, I. (2009). Radical scavenging activity of lipophilized products from transesterification of flaxseed oil with cinnamic acid or ferulic acid. Lipid 44:807–815.
  • Chotimarkorn, C. and Silalai, N. (2008). Addition of rice bran oil to soybean oil during frying increases the oxidative stability of the fried dough from rice flour during storage. Food Res. Int. 41:308–317.
  • Chu, Y-H. (1991). A comparative study of analytical methods for evaluation of soybean oil quality. J. Am. Oil Chem. Soc. 68:379–384.
  • Collins, F. W., Fielder, D. A., Sarr, A. B., Redmond, M. J. and Attilio, D. (2002). Process for the isolation, recovery and purification of non-polar extractives. US Patent 6495140.
  • Corsini, M. S., Silva, M. G. and Jorge, N. (2009). Loss in tocopherols and oxidative stability during the frying of frozen cassava chips. Grasas y Aceites 60:77–81.
  • David L., Compton, D. L., Laszlo, J. A. and Evans, K.O. (2012). Antioxidant properties of feruloyl glycerol derivatives. Ind. Crop Prod. 36:217–221.
  • Decker, E. A., Warner, K., Richards, M. P. and Shahidi, F. (2005). Measuring antioxidant effectiveness in food. J. Agric. Food Chem. 53:4303–4310.
  • Dessi, M. A., Deiana, M., Day, B. W., Rosa, A., Banni, S. and Corongiu, F. P. (2002). Oxidative stability of polyunsaturated fatty acids: Effect of squalene. Eur. J. Lipid Sci. Technol. 104:506–512.
  • Dobarganes, M. C., Marquez-Ruiz, G. and Velasco, J. (2000). Interaction between fat and food during deep-frying. Eur. J. Lipid Sci. Technol. 102:521–528.
  • Dong, A., Lee, J. and Shin, H. S. (2011). Influence of natural food ingredients on the formation of heterocyclic amines in fried beef patties and chicken breasts. Food Sci. Biotechnol. 20:359–365.
  • Drusch, S., Groß, N. and Schwarz, K. (2008). Efficient stabilization of bulk fish oil rich in long-chain polyunsaturated fatty acids. Eur. J. Lipid Sci. Technol. 110:351–359.
  • Dutta, P. C. (1997). Studies on phytosterol oxides. II: Contents in some vegetable oils and in French fries prepared in these oils. J. Am. Oil Chem. Soc. 74:659–666.
  • Dutta, P. C. and Appelqvist, L. Å. (1996). Sterols and sterol oxides in the potato products, and sterols in the vegetable oils used for industrial frying operations. Grasas y Aceites. 47:38–47.
  • Dziedzic, S. Z. and Hudson, B. J. F. (1984). Phosphatidylethanolamine as a synergist for primary antioxidants in edible oils. J. Am. Oil Chem. Soc. 61:1042–1045.
  • Echavarria, A. P., Pagan, J. and Ibarz, A. (2012). Melanoidins formed by Maillard reaction in food and their biological activity. Food Eng. Rev. 4:203–223.
  • Edge, R., Land, E. J., McGarvey, D., Mulroy, L. and Truscott, T.G. (1998). Relative one-electron reduction potentials of carotenoid radical cations and the interactions of carotenoids with the vitamin E radical cation. J. Am. Chem. Soc. 120:4087–4090.
  • Elhamirad, A. H. and Zamanipoor, M. H. (2012). Thermal stability of some flavonoids and phenolic acids in sheep tallow olein. Eur. J. Lipid Sci. Technol. 114:602–606.
  • Fakourelis, N., Lee, E. C. and Min, D. B. (1987). Effects of chlorophyll and beta-carotene on the oxidation stability of olive oil. J. Food Sci. 52:234–235.
  • Fang, N. B., Yu, S. G. and Badger, T. M. (2003). Characterization of triterpene alcohol and sterol ferulates in rice bran using LC-MS/MS. J. Agric. Food Chem. 51:3260–3267.
  • Farhoosh, R. and Kenari, R. E. (2009). Anti-rancidity effects of sesame and rice bran oils on canola oil during deep frying. J. Am. Oil Chem. Soc. 86:539–544.
  • Fernandez-Bolanos, J. G., Lopez, O., Fernandez-Bolanos, J. and Rodriguez-Gutierrez, G. (2008). Hydroxytyrosol and derivatives: Isolation, synthesis, and biological properties. Curr. Org. Chem. 12:442–463.
  • Figueroa-Espinoza, M. C. and Villeneuve, P. (2005). Phenolic acids enzymatic lipophilization. J Agric. Food Chem. 53:2779–2787.
  • Filip, S., Hribar, J. and Vidrih, R. (2011). Influence of natural antioxidants on the formation of trans fatty-acid isomers during heat treatment of sunflower oil. Eur. J. Lipid. Sci. Technol. 113:224–230.
  • Frankel, E. N. (2007). Antioxidants in food and biology. Facts and fiction, Oily Press Lipid Library, Volume 20, Oily Press, Bridgwater, England.
  • Fritsch, C. W. (1981). Measurements of frying fat deterioration: A brief review. J. Am. Oil Chem. Soc. 58:272–274.
  • Fu, J., Cheng, K., Zhang, Z., Fang, R. and Zhu H. (2010). Synthesis, structure and structure-activity relationship analysis of caffeic acid amides as potential antimicrobials. Eur. J. Med. Chem. 45:2638–2643.
  • Fusakawa, R., Kanda, A. and Hara, S. (2009). Anti-oxidative effects of rooibos tea extract on autoxidation and thermal oxidation of lipids. J. Oleo Sci. 58:275–283.
  • Gertz, C., Klostermann, S. and Kochhar, P. S. (2000). Testing and comparing stability of vegetable oils and fats at frying temperature. Eur. J. Lipid Sci. Technol. 102:543–551.
  • Ghavami, M. and Morton, I. D. (1984). Effect of heating at deep-fat frying temperature on the sterol content of soya bean oil. J. Sci. Food Agric. 35:569–572.
  • Gordon, M. H. and Kourimska, L. (1995a). Effect of antioxidants on losses of tocopherols during deep-fat frying. Food Chem. 52:175–177.
  • Gordon, M. H. and Kourimska, L. (1995b). The effects of antioxidants on changes in oils during heating and deep frying. J Sci. Food Agric. 68:347–353.
  • Gordon, M. H. and Magos, P. (1983). The effect of sterols on the oxidation of edible oils. Food Chem. 10:141–147.
  • Gülçin, I. (2012). Antioxidant activity of food constituents. An overview. Arch. Toxicol. 86: 345–391.
  • Hamdi, N., Puerta, M. C. and Valerga, P. (2008). Synthesis, structure, antimicrobial and antioxidant investigations of dicoumarol and related compounds. Eur. J. Med. Chem. 43:2541–2548.
  • Hemalatha, S. and Ghafoorunissa  . (2007). Sesame lignans enhance the thermal stability of edible vegetable oils. Food Chem. 105:1076–1085.
  • Hidalgo, F. J. and Zamora, R. (2000). The role of lipids in nonenzymatic browning. Grasas y Aceites 51:35–49.
  • Hidalgo, F. J., León, M. M. and Zamora, R. (2006). Antioxidative activity of amino phospholipids and phospholipid/amino acid mixtures in edible oils as determined by the rancimat method. J. Agric Food Chem. 54:5461–5467.
  • Hidalgo, F. J., León, M. M. and Zamora, R. (2007). Effect of tocopherols in the antioxidative activity of oxidized lipid-amine reaction products. J. Agric Food Chem. 55:4436–4442.
  • Hidalgo, F. J., Nogales, F. and Zamora, R. (2005). Changes produced in the antioxidative activity of phospholipids as a consequence of their oxidation. J. Agric Food Chem. 53:659–662.
  • Hidalgo, F. J., Zamora, R., Alaiz, M., Maza, M.P., Millan, F. and Vioque, E. (1990). Nonenzymatic browning reactions of phospholipids. Fett. Wiss. Technol. 92:185–188.
  • Hosseinian, F. S., Muir, A. D., Westcott, N. D. and Krol, E. S. (2006). Antioxidant capacity of flaxseed lignans in two model systems. J. Am. Oil Chem. Soc. 83:835–840.
  • Houhoula, D. P., Oreopoulou, V. and Tzia, C. (2004). Antioxidant efficiency of oregano in frying and storage of fried products. Eur. J. Lipid Sci. Technol. 106:746–751.
  • Huang, D., Ou, B. and Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53:1841–1856.
  • Husain, S. R., Terao, J. and Matsushita, S. (1984). Comparison of phosphatidylcholine and phosphatidylethanolamine affecting the browning reaction of heated oil. In: Amino–Carbonyl Reactions in Food and Biological Systems, pp. 301–309. Fugimaki, M., Namiki, M. and Kato, H., Eds., Elsevier, New York.
  • Hwang, H-S., Winkler-Moser, J. K. and Liu, S. X. (2012). Structural effect of lignans and sesamol on polymerization of soybean oil at frying temperature. J. Am. Oil Chem. Soc. 89:1067–1076.
  • Jamilah, B., Che Man, Y. B. and Ching, T. L. (1998). Antioxidant activity of citrus hystrix peel extract in RBD palm olein during frying of fish crackers. J. Food Lipids 5:149–157.
  • Jaswir, I., Che Man, Y. B. and Kitts, D. D. (2000). Use of natural antioxidants in refined palm olein during repeated deep-fat frying. Food Res. Int. 33:501–508.
  • Jennings, B. H. and Akoh, C. C. (2009). Effectiveness of natural versus synthetic antioxidants in a rice oil-based structured lipid. Food Chem. 114:1456–1461.
  • Jiang, G., Lin, S., Wen, L., Jiang, Y., Zhao, M., Chen, F., Prasad, N., Duan, X. and Yang, B. (2013). Identification of a novel phenolic compound in litchi (Litchi chinensis sonn.) pericarp and bioactivity evaluation. Food Chem. 136:563–568.
  • Johnson, F. C. and Chichester, C. O. (1971). A Critical review of the safety of phenolic antioxidants in foods. Crit. Rev. Food Technol. 2(3)267–304.
  • Jorge, N., Márquez-Ruiz, G., Martín-Polvillo, M., Ruiz-Méndez, M. V. and Dobarganes, M. C. (1996). Influence of dimethylpolysiloxane addition to frying oils: Performance of sunflower oil in discontinuous and continuous laboratory frying. Grasas y Aceites 47:20–25.
  • Juárez, M. D., Osawa, C. C., Acuña, M. E., Sammán, N. and Gonçalves, L. A. G. (2011). Degradation in soybean oil, sunflower oil and partially hydrogenated fats after food frying, monitored by conventional and unconventional methods. Food Control 22:1920–1927.
  • Judde, A., Villeneuve, P., Rossignol-Castera, A. and Guillou, A. L. (2003). Antioxidant effect of soy lecithins on vegetable oil stability and their synergism with tocopherols. J. Am. Oil. Chem. Soc. 80:1209–1215.
  • Jung, M. Y. and Min, D. B. (1992). Effects of oxidized α-, γ-, and δ-tocopherols on the oxidative stability of purified soybean oil. Food Chem. 43:183–187.
  • Jung, Y-S., Kang, T-S., Yoon, J-H., Joe, B-Y., Lim, H-J., Seong, C-M., Park, W-K., Kong, J-Y., Cho J. and Park, N-S. (2002). Synthesis and evaluation of 4-hydroxyphenylacetic acid amides and 4-hydroxycinnamamides as antioxidants. Bioorg. Med. Chem. Lett. 12: 2599–2602.
  • Kalantzakis, G. and Blekas, G. (2006). Effect of Greek sage and summer savory extracts on vegetable oil thermal stability. Eur. J. Lipid Sci. Technol. 108:842–847.
  • Kalogianni, E. P., Karastogiannidou, C. K. and Karapantsios, T. D. (2010). Effect of potato presence on the degradation of extra virgin olive oil during frying. Int. J. Food Sci. Technol. 45:765–775.
  • Kamal-Eldin, A. and Appelqvist, L-A. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701.
  • Kanjilal, S., Shanker, K. S., Rao, K. S., Reddy, K. K., Rao, B. V. S. K., Kumar, K. B. S., Kantam, M. L. and Prasad, R. B. N. (2008). Chemo-enzymatic synthesis of lipophilic ferulates and their evaluation for antioxidant and antimicrobial activities. Eur. J. Lipid Sci. Technol. 110:1175–1182.
  • Karoui, I. J., Dhifi, W., Jemia, M. B. and Marzouk, B. (2011). Thermal stability of corn oil flavoured with Thymus capitatus under heating and deep-frying conditions. J. Sci. Food Agric. 91:927–933.
  • Kato, H. (1973). Antioxidative activity of amino-carbonyl reaction products. J. Food Hyg. Soc. Jpn. 14:343–351.
  • Katsoura, M. H., Polydera, A. C., Tsironis, L. D., Maria P., Petraki, M. P., Rajačić, K. S., Tselepis, A. D. and Stamatis, H. (2009). Efficient enzymatic preparation of hydroxycinnamates in ionic liquids enhances their antioxidant effect on lipoproteins oxidative modification. New Biotechnol. 26:83–91.
  • Khan, M. A. and Shahidi, F. (2000). Tocopherols and phospholipids enhance the oxidative stability of borage and evening primrose triacylglycerols. J. Food Lipids 7:143–150.
  • Khan, M. A. and Shahidi, F. (2001). Effects of natural and synthetic antioxidants on the oxidative stability of borage and evening primrose triacylglycerols. Food Chem. 75:431–437.
  • Kim M. C. and Pratt, D. E. (1992). Thermal-degradation of phenolic antioxidants. ACS Symposium Series 507:200–218.
  • Kim, H. and Choe, E. (2008). Effects of egg yolk powder addition to the flour dough on the lipid oxidation development during frying. LWT-Food Sci. Technol. 41:845–853.
  • Kim, M. A., Matoba, T. and Hasegawa, K. (1988). Relationship between the triacylglycerol composition and foaming of mixed coconut oil under deep-fat frying. Agric. Biol. Chem. 52:693–699.
  • King, M. F., Boyd, L. C. and Sheldon, B. W. (1992). Effects of phospholipids on lipid oxidation of a salmon oil model system. J. Am. Oil Chem. Soc. 69:237–242.
  • Kitryte, V., Adams, A., Venskutonics, P. R. and De Kimpe, N. Impact of lipid oxidation derived aldehydes and ascorbic acid on the antioxidant activity of model melanoidins. Food Chem. 135:1273–1283.
  • Kochhar, S. P. (2001). The Composition of Frying Oil. In: Frying: Improving Quality, pp. 87–114. Rossell, J. B., Ed., Woodhead, Cambridge, England.
  • Kochhar, S. P. and Gertz, C. (2004). New theoretical and practical aspects of the frying process. Eur. J. Lipid Sci. Technol. 106:722–727.
  • Koga, T. and Terao, J. (1994). Phospholipids increase radical-scavenging activity of vitamin E in a bulk oil model system. J. Agric. Food Chem. 43:1450–1454.
  • Koga, T. and Terao, J. (1995). Antioxidant activity of a novel phosphatidyl derivative of vitamin E in lard and its model system. J. Agric. Food Chem. 42:1291–1294.
  • Koga, T., Nagao, A., Terao, J., Sawada, K. and Mukai, K. (1994). Synthesis of a phosphatidyl derivative of vitamin E and its antioxidant activity in phospholipid bilayers. Lipids, 29:83–89.
  • Kourimska, L., Pokorny, J. and Réblová, Z. (1994). Phospholipids as inhibitors of oxidation during food storage and frying. Prehrambeno-Technol. Biotechnol. Rev. 32:91–94.
  • Krinsky, N. I. and Yeum, K. J. (2003). Carotenoid-radical interactions. Biochem. Biophys. Res. Commun. 305:754–760.
  • Lambelet, P. F., Saucy, B. and Loliger, J. (1994). Radical exchange reaction between vitamin E, vitamin C, and phospholipids in autooxidized polyunsaturated lipids. Free Rad. Res. 20:1–10.
  • Lampi, A. M. and Kamal-Eldin, A. (1998). Effect of α- and γ-tocopherols on thermal polymerization of purified high-oleic sunflower triacylglycerols. J. Am. Oil Chem. Soc. 75:1699–1703.
  • Lampi, A. M., Kemmo, S., Mäkelä, A., Heikkinen, S. and Piironen, V. (2009). Distribution of monomeric, dimeric, and polymeric products of stigmasterol during thermo-oxidation. Eur. J. Lipid Sci. Technol. 111:1027–1034.
  • Larsen, E., Abendroth, J., Partali, V., Schulz, B., Sliwka, H. R. and Quartey, E. G. K. (1998). Combination of vitamin E with a carotenoid: alpha-tocopherol and trolox linked to beta-apo-8′-carotenoic acid. Chem. Eur. J. 4:113–117.
  • Lee, E. C. and Min, D. B. (1988). Quenching mechanism of beta-carotene on the chlorophyll-sensitized photooxidation of soybean oil. J. Food Sci. 53:1894–1895.
  • Lee, J., Ozcelik, B. and Min, D. B. (2003). Electron donation mechanisms of β-carotene as a free radical scavenger. J. Food Sci. 68:861–865.
  • Lee, J., Kim, M. and Choe, E. (2007). Antioxidant activity of lignan compounds extracted from roasted sesame oil on the oxidation of sunflower oil. Food Sci. Biotechnol. 16:981–987.
  • Lee, J., Lee, Y. and Choe, E. (2008). Effects of sesamol, sesamin, and sesamolin extracted from roasted sesame oil on the thermal oxidation of methyl linoleate. LWT-Food Sci. Technol. 41:1871–1875.
  • Lee, K.G. and Shibamoto, T. (2002). Toxicology and antioxidant activities of non-enzymatic browning reaction products: Review. Food Rev. Int. 18:151–175.
  • Lengyel, J., Jan Rimarčik, J., Vagánek, A., Fedor, J., Lukeš, V. and Klein, E. (2012). Oxidation of sterols: Energetics of C–H and O–H bond cleavage. Food Chem. 133:1435–1440.
  • Li, W. (1996). Phytosterol and tocopherol changes in modified canola oils during frying and storage of fried products. M.Sc. Thesis, University of Manitoba, Canada.
  • LoNostro, P., Capuzzi, G., Pinelli, P., Mulinacci, N., Romani, A. and Vincieri, F. F. (2000). Self-assembling and antioxidant activity of some vitamin C derivatives. Colloid Surf. A-Physicochem. Eng. Asp. 167:83–93.
  • Lorentz, C., Dulac, A., Pencreac'h, G., Ergan, F., Richomme, P. and Soultani-Vigneron, S. (2010). Lipase-catalyzed synthesis of two new antioxidants:4-O- and 3-O-palmitoyl chlorogenic acids. Biotechnol. Lett. 32:1955–1960.
  • Magalhaes, L. M., Segundo, M. A., Reis, S. and Lima, J. L. F. C. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 613:1–19.
  • Maguire, L., Konoplyannikov, M., Ford, A., Maguire, A. R. and O'Brien, N. M. (2003). comparison of the cytotoxic effects of β-sitosterol oxides and a cholesterol oxide, 7β-hydroxycholesterol, in cultured mammalian cells. Br. J. Nutr. 90:767–775.
  • Malecka, M. (1991). The effect of squalene on the heat stability of rapeseed oil and model lipids. Nahrung 35:541–542.
  • Malecka, M. (1994). The effect of squalene on the thermostability of rapeseed oil. Nahrung 38: 135–140.
  • Manfredini, S., Vertuani, S., Manfredi, B., Rossoni, G., Calviello, G. and Palozza, P. (2000). Novel antioxidant agents deriving from molecular combinations of vitamins C and E analogues:3,4-dihydroxy-5(R)-[2(R,S)-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2(R,S)-yl-methyl)-[1,3]dioxolan-4(S)-yl]-5H-furan-2-one and 3-O-octadecyl derivatives. Bioorg. Med. Chem. 8:2791–2801.
  • Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C. and Leric1, C. R. (2001). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 11:340–346.
  • Marianova, E. M. and Yanishlieva N. V. (1994). Effect of lipid unsaturation on the antioxidant activity of some phenolic acids. J. Am. Oil Chem. Soc 71:427–434.
  • Marmesat, S., Morales, A., Velasco, J. and Dobarganes, M. C. (2010). Action and fate of natural and synthetic antioxidants during frying. Grasas y Aceites 61:333–340.
  • Marmesat, S., Velasco, J., Ruiz-Mendez, M. V., Fernandez-Martinez, J. M. and Dobarganes, M. C. (2008). Thermostability of genetically modified sunflower oils differing in fatty acid and tocopherol compositions. Eur. J. Lipid Sci. Technol. 110:776–782.
  • Mateos, R., Dominguez, M. M., Espartero, J. L. and Cert, A. (2003). Antioxidant effect of phenolic compounds, α-tocopherol, and other minor components in virgin olive oil. J. Agric. Food Chem. 51:7170–7175.
  • Matsuo, T., Kobayashi, T., Kimura, Y., Hosoda, A., Taniguchi, H. and Adachi, S. (2008). Continuous synthesis of glyceryl ferulate using immobilized Candida antarctica lipase. J Oleo Sci. 57:375–380.
  • Matthäus, B. (2006). Utilization of high-oleic rapeseed oil for deep-fat frying of French fries compared to other commonly used edible oils. Eur J Lipid Sci Technol. 108:200–211.
  • Messina, V., Biolatto, A., Descalzo, A., Sancho, A., Baby, R. and Walsöe de Reca, N. (2009). Effect of pan-frying in extra-virgin olive oil on odour profile, volatile compounds and vitamins. Int. J. Food Sci. Technol. 44:552–559.
  • Mezouari, S. and Eichner, K. (2007). Evaluation of the stability of blends of sunflower and rice bran oil. Eur. J. Lipid Sci. Technol. 109:531–535.
  • Miller, A. and Engel, K.H. (2006). Content of γ-oryzanol and composition of steryl ferulates in brown rice (Oryza sativa L.) of European origin. J. Agric. Food Chem. 54:8127–8133.
  • Miller, N. J., Sampson, J., Candeias, L. P., Bramley, P. M. and RiceEvans, C. A. (1996). Antioxidant activities of carotenes and xanthophylls. FEBS Lett. 384:240–242.
  • Miyagawa, K., Hirai, K. and Takezoe, R. (1991). Tocopherol and fluorescence levels in deep-frying oil and their measurement for oil assessment. J. Am. Oil Chem. Soc. 68:163–166.
  • Monu, E. (2007). Phytosterol antioxidant activity and effects on shelf life of fluid milk and yoghurt quality. M.Sc. Thesis, University of Manitoba, Canada.
  • Moon, J. K. and Shibamoto, T. (2009). Antioxidant assays for plant and food components. J. Agric Food Chem. 57:1655–1666.
  • Morisaki, K. and Ozaki, S. (1996). Design of novel hybrid vitamin C derivatives: Thermal stability and biological activity. Chem. Pharm. Bull. 44:1647–1655.
  • Moure, A., Cruz, J. M., Franco, D., Domínguez, J. M., Sineiro, J., Domínguez, H., Núñez, M. J., and Parajo, J. C. (2001). Natural antioxidants from residual sources. Food Chem. 72:145–171.
  • Murkovic, M., Wiltschko, B. and Pfannhauser, W. (1997). Formation of alpha-tocopherolquinone and alpha-tocopherolquinone epoxides in plant oil. Fett-Lipid. 99:165–169.
  • Naalsund, T., Malterud, K. E., Partali, V. and Sliwka, H. R. (2001). Synthesis of a triantioxidant compound: Combination of beta-apo-8′-carotenoic acid, selenacapryloic acid and trolox in a triglyceride. Chem. Phys. Lipids 112:59–65.
  • Nakayama, S., Manabe, A., Suzuki, J., Sakamoto, K. and Inagaki, T. (1987). Comparative effects of two forms of gamma-oryzanol in different sterol compositions on hyperlipidemia induced by cholesterol diet in rats. Jpn. J. pharmacol. 44:135–143.
  • Namiki, M. (1988). Chemistry of Maillard reactions: recent studies on the browning reaction mechanism and the development of antioxidants and mutagens. Adv. Food Res. 32:115–184.
  • Namiki, N. (1995). The chemistry and physiological functions of sesame. Food Rev. Int. 11: 281–329.
  • Nasibullin, R. S., Nikitina, T. I., Afanas'eva, Y. G., Nasibullin, T. R. and Spirikhin, L. V. (2001). Complex of 3,5,7,3′,4′-pentahydroxyflavonol with phosphatidylcholine. Pharm Chem. J. 36:33–36.
  • Navas, P. B., Carrasquero-Durán, A. and Flores, I. (2006). Effect of black tea, garlic and onion on corn oil stability and fatty acid composition under accelerated oxidation. Int. J. Food Sci. Technol. 41:243–247.
  • Naz, S., Siddiqi, R., Sheikh, H. and Sayeed, S. A. (2005). Deterioration of olive, corn and soybean oils due to air, light, heat and deep-frying. Food Res. Int. 38:127–134.
  • Neff, W. E. and El-Agaimy, M. A. (1996). Effect of linoleic acid position in triacylglycerols on their oxidative stability. Food Sci. Technol-LEB. 29:772–775.
  • Neff, W. E., Mounts, T. L., Rinsch, W. M., Konishi, H. and El-Agaimy, M. A. (1994). Oxidative stability of purified canola oil triacylglycerols with altered fatty-acid compositions as affected by triacylglycerol composition and structure. J. Am. Oil Chem. Soc. 71: 1101–1109.
  • Neff, W. E., Selke, E., Mounts, T. L., Rinsch, W., Frankel, E. N. and Zeitoun, M. A. M. (1992). Effect of triacylglycerol composition and structures on oxidative stability of selected soybean germplasm. J. Am. Oil Chem. Soc. 69:111–118.
  • Neff, W. E., Warner, K. and Eller, F. (2003). Effect of γ-tocopherol on formation of nonvolatile lipid degradation products during frying of potato chips in triolein. J. Am. Oil Chem. Soc. 80:801–806.
  • Nenadis, N., Zafiropoulou, I. and Tsimidou, M. (2003). Commonly used food antioxidants: A comparative study in dispersed systems. Food Chem. 82:403–407.
  • Nichols, J. A. and Kaliyar, S. K. (2010). Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant, and DNA repair mechanisms. Arch. Dermatol. Res. 302:71–83.
  • Nogala-Kalucka, M., Korczak, J., Elmada, I. and Wagner, K. H. (2005). Effect of α- and δ-tocopherol on the oxidative stability of a mixed hydrogenated fats under frying conditions. Eur. Food Res. Technol. 221:291–297.
  • Nor, F. M., Mohamed, S., Nor Aini Idris, N. A. and Ismail, R. (2008). Antioxidative properties of Pandanus amaryllifolius leaf extracts in accelerated oxidation and deep frying studies. Food Chem. 110:319–327.
  • Nor, F. M., Mohamed, S., Nor Aini Idris, N. A. and Ismail, R. (2009a). Antioxidative properties of Curcuma longa leaf extracts in accelerated oxidation and deep frying studies. J. Am. Oil Chem. Soc. 86:141–147.
  • Nor, F. M., Mohamed, S., Nor Aini Idris, N. A. and Ismail, R. (2009b). Antioxidative properties of Murraya koenigii leaf extracts in accelerated oxidation and deep frying studies. Int. J. Food Sci. Nutr. 60:1–11.
  • Normand, L., Eskin, N. A. M. and Przybylski, R. (2001). Effect of tocopherols on the frying stability of regular and modified canola oils. J. Am. Oil Chem. Soc. 78:369–373.
  • Nyaradzo, T. L., Chigorimbo-Murefu  , Sergio Riva, S. and Burton, S. G. (2009). Lipase-catalysed synthesis of esters of ferulic acid with natural compounds and evaluation of their antioxidant properties. J. Mol. Catal. B: Enzym. 56:277–282.
  • Nyström, L., Achrenius, T., Lampi, A. M., Moreau, R. A. and Piironen, V. (2007). A Comparison of the antioxidant properties of steryl ferulates with tocopherol at high temperature. Food Chem. 101:947–954.
  • O'Callaghan, Y. C., Foley, D. A., O'Connell, N. M., McCarthy, F. O., Maguire, A. R. and O'Brien, N. M. (2010). Cytotoxic and apoptotic effects of the oxidized derivatives of stigmasterol in the U937 human monocytic cell line. J. Agric. Food Chem. 58:10793–10798.
  • Oehrl, L. L., Hansen, A. P., Rohrer, C. A., Fenner, G. P. and Boyd, L. C. (2001). Oxidation of phytosterols in a test food system. J. Am. Oil Chem. Soc. 78:1073–1078.
  • Palozza, P. and Krinsky, N. I. (1992). Antioxidant effects of carotenoids in vitro and in vivo: An overview. Methods Enzymol. 213:403–420.
  • Palozza, P., Piccione, E. R., Avanzi, L., Ventuani, S., Calviello, G. and Manfredini, S. (2002). Design, synthesis, and antioxidant activity of FeAOX-6, a novel agent deriving from a molecular combination of the chromanyl and polyisoprenyl moieties. Free Radical Bio. Med. 33:1724–1735.
  • Pandey, K. B. and Rizvi, S. I. (2009). Plants polyphenols as dietary antioxidants in human health and disease. Oximed. 2:270–278.
  • Parrado, J., Miramontes, E., Jover, M., Marquez, J. C., Angeles Mejias, M., Collantes De Teran, L., Absi, E. and Bautista, J. (2003). Prevention of brain protein and lipid oxidation elicited by a water-soluble oryzanol enzymatic extract derived from rice bran. Eur. J. Nutr. 42:307–314.
  • Peled, M., Gutfinger, T. and Letan, A. (1975). Effect of water and BHT on stability of cottonseed oil during frying. J. Sci. Food Agric. 26:1655–1666.
  • Perron, N. R. and Brumaghim, J. L. (2009). A Review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophy. 53:75–100.
  • Petukhov, I, Malcolmson, L. J., Przybylski, R. and Armstrong, L. (1999). Frying performance of genetically modified canola oils. J. Am. Oil Chem. Soc. 76:627–632.
  • Piironen, V., Lindsay, D. G., Mieetinen, T. A., Toivo, J. and Lampi, A. M. (2000). Plant sterols, biosynthesis, biological function, and their importance to human nutrition. J. Sci. Food Agric. 80:939–966.
  • Poiana, M-A. (2012). Enhancing oxidative stability of sunflower oil during convective and microwave heating using grape seed extract. Int. J. Mol. Sci. 13:9240–9259.
  • Pokorny, J. (1981). Browning from lipid-protein interactions. Prog. Food Nutr. Sci. 5:421–428.
  • Pokorny, J. (2007). Are natural antioxidants better - and safer - than synthetic antioxidants? Eur. J. Lipid Sci. Technol. 109:629–642.
  • Pokorny, J., Luan, N. T. and Janicek, G. (1973). Non-enzymatic browning VII. Reaction of some tocopherol oxidation products with protein. Z. Lebensm. Unters. Forsch. 152:65–70.
  • Pokorny, J., Réblová, Z., Ranny, M., Kanova, J., Panek, J. and Davidek, J. (1992). Natural lecithins and phosphorylated acylglycerols as inhibitors of autoxidation of fats and oils. Nahrung 36:461–465.
  • Porter, W. L. (1980). Recent Trends in Food Applications of Antioxidants. In: Autoxidation in Food and Biological Systems, pp. 295–365. Simic, M. G. and Karel, M., Eds., Plenum Press, New York.
  • Procida, G., Cichelli, A., Compagnone, D., Maggio, R.M., Cerretani, L. and Carlo, M. D. (2009). Influence of chemical composition of olive oil on the development of volatile compounds during frying. Eur. Food Res. Technol. 230:217–229.
  • Psomiadou, E. and Tsimidou, M. (1999). On the role of squalene in olive oil stability. J. Agric Food Chem. 47:4025–4032.
  • Psomiadou, E. and Tsimidou, M. (2002a). Stability of virgin olive oil. 1. Autoxidation studies. J. Agric Food Chem. 50:716–721.
  • Psomiadou, E. and Tsimidou, M. (2002b). Stability of virgin olive oil. 2. Photo-oxidation studies. J. Agric Food Chem. 50:722–727.
  • Raederstorff, D. (2009). Antioxidant activity of olive polyphenols in humans: A review. Int. J. Vitam. Nutr. Res. 79:152–165.
  • Rajan, P., Vedernikova, I., Cos, P., Berghe, V. D., Augustyns, K. and Haemers, A. (2001). Synthesis and evaluation of caffeic acid amides as antioxidants. Bioorg. Med. Chem. Lett. 11:215–217.
  • Ramadan, M. F. (2008). Quercetin increases antioxidant activity of soy lecithin in a triolein model system. LWT Food Sci. Technol. 41:581–587.
  • Ramadan, M. F. (2012). Antioxidant characteristics of phenolipids (quercetin-enriched lecithin) in lipid matrix. Ind. Crops Prod. 36:363–369.
  • Rao, M. K. G. and Achaya, K. T. (1968). Antioxidant activity of squalene. J. Am. Oil Chem. Soc. 45:296–296.
  • Reddy, K. K., Ravinder, T. and Kanjilal, S. (2012). Synthesis and evaluation of antioxidant and antifugal activities of novel ricinoleate-based lipoconjugates of phenolic acids. Food Chem. 134:2201–2207.
  • Reddy, K. K., Shanker, K. S., Ravinder, T., Prasad, R. B. N. and Kanjilal, S. (2010). Chemo-enzymatic synthesis and evaluation of novel structured phenolic lipids as potential lipophilic antioxidants. Eur. J. Lipid Sci. Technol. 112:600–608.
  • Rennick, K. A. and Warner, K. (2006). Effect of elevated temperature on development of tocopherolquinones in oils. J. Agric. Food Chem. 54:2188–2192.
  • Rietjens, I. M. C. M., Boersma, M. G., de Haan, L., Spenkelink, B., Awad, H. M., Cnubben, N. H. P., van Zanden, J. J., van der Woude, H., Alink, G. M. and Koeman, J.H. (2002). The prooxidant chemistry of the natural antioxidants vitamin C, vitamin, E, carotenoids and flavonoids. Environ. Toxicol. Pharmcol. 11:321–333.
  • Romero, N., Robert, P., Masson, L., Ortiz, J., Gonzalez, K., Tapia, K. and Dobaganes, C. (2007). Effect of α-tocopherol, α-tocotrienol and rosa mosqueta shell extract on the performance of antioxidant-stripped canola oil (brassica sp.) at high temperature. Food Chem. 104:383–389.
  • Rossi, M., Alamprese, C. and Ratti, S. (2007). Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chem. 102:812–817.
  • Roy, L. G., Arabshahi-Delouee, S. and Urooj, A. (2010). Antioxidant efficacy of mulberry (Morus indica L.) leaves extract and powder in edible oil. Int. J. Food Prop. 13:1–9.
  • Rudzińska, M., Przybylski, R. and Wąsowicz, E. (2009). Products formed during thermo-oxidative degradation of phytosterols. J. Am. Oil Chem. Soc. 86:651–662.
  • Rudzińska, M., Przybylski, R., Zhao, Y. Y. and Curtis, J. M. (2010). Sitosterol thermo-oxidative degradation leads to the formation of dimers, trimers and oligomers: A study using combined size exclusion chromatography/mass spectrometry. Lipids 45:549–558.
  • Ryan, E., Chopra, J., McCarthy, F. O., Maguire, A. R. and O'Brien, N. M. (2005). Qualitative and quantitative comparison of the cytotoxic and apoptotic potential of phytosterol oxidation products with their corresponding cholesterol oxidation products. Br. J. Nutr. 94:443–451.
  • Ryan, E., McCarthy, F. O., Maguire, A. R. and O'Brien, N. M. (2009). Phytosterol oxidation products: Their formation, occurrence, and biological effects. Food Rev. Int. 25:157–174.
  • Sabally, K., Karboune, S., St-Louis, R. and Kermasha, S. (2006). Lipase-catalyzed transesterification of trilinolein or trilinolenin with selected phenolic acids. J. Am. Oil Chem. Soc. 83:101–107.
  • Sánchez-Muniz, F., Botega, D. Z., di Lorenzo, L., Marmesat, S., Bastida, S., Pérez-Olleros, L., and Ruiz-Roso, B. (2007). A non-extractable condensed-tannins fiber reduces thermal oxidation in oils at frying temperature. Eur. J. Lipid Sci. Technol. 109:1218–1225.
  • Schieber, A., Stintzing, F. C. and Carle, R. (2001). By-products of plant food processing as a source of functional compounds – recent developments. Trends Food Sci. Technol. 12:401–413.
  • Schroeder, M. T., Becker, E. M. and Skibsted, L. H. (2006). Molecular mechanism of antioxidant synergism of tocotrienols and carotenoids in palm oil. J. Agric. Food Chem. 54:3445–3452.
  • Seppanen, C. M., Song, Q. and Csallany, A. S. (2010). The Antioxidant functions of tocopherol and tocotrienol homologues in oils, fats, and food system. J. Am. Oil Chem. Soc. 87:469–481.
  • Serrano, J., Puupponen-Pimiä, R., Dauer, A., Aur,a A.M. and Saura-Calixto, F. (2009). Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res. 53: S310–S329.
  • Shahidi, F. and Naczk, M. (1995). Food Phenolics: Sources, Chemistry, Effects, Applications. Technomic, Lancaster, PA.
  • Shahidi, F. and Wanasundara, J. P. K. (1992). Phenolic Antioxidants. Crit. Rev. Food Sci. Nutr. 32:67–103.
  • Shahidi, F. and Wanasundara, U.N. (1999). Effects of processing and squalene on composition and oxidative stability of seal blubber oil. J. Food Lipids 6:159–172.
  • Shi, J., Nawaz, H., Pohorly, J., Mittal, G., Kakuda, Y. and Jiang, Y. M. (2005). Extraction of polyphenolics from plant material for functional foods - engineering and technology. Food Rev. Int. 21:139–166.
  • Shin, H. S., Strasburg, G. M. and Ustunol, Z. (2003). Influence of different unifloral honeys on heterocyclic aromatic amine formation and overall mutagenicity in fried ground-beef patties. J. Food Sci. 68:810–815.
  • Simonne, A. H. and Eitenmiller, R. R. (1998). Retention of vitamin E and added retinyl palmitate in selected vegetable oils during deep-fat frying and in fried breaded products. J. Agric. Food Chem. 46:5273–5277.
  • Sims, R., Fioriti, J. and Kanuk, M. (1972). Sterol additives as polymerization inhibitors for frying oils. J. Am. Oil Chem. Soc. 49:298–301.
  • Singh, A. (2013). Sitosterol as an antioxidant in frying oils. Food Chem. 137:62–67.
  • Singh, S. and Singh, R. P. (2008). In Vitro methods of assay of antioxidants: An overview. Food Rev. Int. 24:392–415.
  • Song, Q. X., Wei, D. Z., Zhou, W. Y., Xu, W. Q. and Yang, S. L. (2004). Enzymatic synthesis and antioxidant properties of L-ascorbyl oleate and L-ascorbyl linoleate. Biotechnol. Lett. 26:1777–1780.
  • Soupas, L., Huikko, L., Lampi, A. M. and Piironen, V. (2005). Esterification affects phytosterol oxidation. Eur. J. Lipid Sci. Technol. 107:107–118.
  • Soupas, L., Juntunen, L., Lampi, A. M. and Piironen, V. (2004). Effects of sterol structure, temperature, and lipid medium on phytosterol oxidation. J. Agric. Food Chem. 52: 6845–6491.
  • Steel, C.J., Dobarganes, M. C. and Barrera-Arellano, D. (2005). The influence of natural tocopherols during thermal oxidation of refined and partially hydrogenated soybean oils. Grasas y Aceites 56:46–52.
  • Struijs, K., Lampi, A. M., Ollilainen, V. and Piironen, V. (2010). Dimer formation during the thermo-oxidation of stigmasterol. Eur. J. Lipid Sci. Technol. 231:853–863.
  • Sun, S., Shan, L., Liu, Y., Jin, Q., Song, Y. and Wang, X. (2009). Solvent-free enzymatic synthesis of feruloylated diacylglycerols and kinetic study. J. Mol. Catal. B: Enzym. 57:104–108.
  • Tabee, E., Azadmard-Damirchi, S., Jägerstad, M. and Dutta, P. C. (2008). Effects of α-tocopherol on oxidative stability and phytosterol oxidation during heating in some regular and high-oleic vegetable oils. J. Am. Oil Chem. Soc. 85:857–867.
  • Tan, Z. and Shahidi, F. (2011). Chemoenzymatic synthesis of phytosteryl ferulates and evaluation of their antioxidant activity. J. Agric. Food Chem. 59:12375–12383.
  • Torres de Pinedo, A., Peãalver, P., Pérez-Victoria, I., Rondón, D. and Morales, J. C. (2007). Synthesis of new phenolic fatty acid esters and their evaluation as lipophilic antioxidants in an oil matrix. Food Chem. 105:657–665.
  • Torres, P., Kunamneni, A., Ballesteros, A. and Plou, F. J. (2008). Enzymatic modification for ascorbic acid and alpha-tocopherol to enhance their stability in food and nutritional applications. Open Food Sci. J. 2:1–9.
  • Touré, A. and Xueming, X. (2010). Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Compr. Rev. Food Sci. F. 9:261–269.
  • Tsaknis, J., Lalas, S. and Protopapa, E. (2002). Effectiveness of the antioxidants BHA and BHT in selected vegetable oils during intermittent heating. Grasas y Aceites 53:199–205.
  • Tsen, S. Y., Ameri, F. and Smith, J. S. (2006). Effects of rosemary extracts on the reduction of heterocyclic amines in beef patties. J. Food Sci. 71:C469–C473.
  • Valenzuela, A. and Nieto, S. (1996). Synthetic and natural antioxidants: food quality protectors. Grasas y Aceites 47:186–196.
  • Valls, J., Millan, S., Marti, M. P., Borras, E. and Arola, L. (2009). Advanced separation methods of food anthocyanins, isoflavones and flavanols. J. Chromatogr. A 43:7143–7172.
  • Verleyen, T., Verhe, R., Huyghebaert, A., Dewettinck, K. and Greyt, W. D. (2001). Identification of α-tocopherol oxidation products in triolein at elevated temperatures. J. Agric. Food Chem. 49:1508–1511.
  • Vhangani, L. N. and Van Wyk, J. (2013). Antioxidant activity of Maillard reaction products (MRPs) derived from fructose-lysine and ribose-lysine model systems. Food Chem 137:92–98.
  • Viskupicova, J., Ondrejovic, M. and Sturdik, E. (2009). The potential and practical applications of acylated flavonoids. Pharmazie 64:355–360.
  • Voisin-Chiret, A. S., Bazin, M. A., Lancelot, J. C. and Rault, S. (2007). Synthesis of new L-ascorbic ferulic acid hybrids. Molecules 12:2533–2545.
  • Wanasundara, P. K. J. P. D., Shahidi, F. and Shukla, V. K. S. (1997). Endogenous antioxidants from oilseeds and edible oils. Food Res. Int. 13:225–292.
  • Wang, A., Zhang, F., Huang, L., Yin, X., Li, H., Wang, Q., Zeng, Z. and Xie, T. (2010). New progress in biocatalysis and biotransformation of flavonoids. J. Med. Plants Res. 4:847–856.
  • Warner, K. (2004). Chemical and Physical Reactions in Oil During Frying. In: Frying Technology and Practices, pp. 77–90. Gupta, M. K., Warner, K. and White, P.J., Eds., Champaign, Illinois.
  • Warner, K. and Moser, J. (2009). Frying stability of purified mid-oleic sunflower oil triacylglycerols with added pure tocopherols and tocopherol mixtures. J. Am. Oil Chem. Soc. 86:1199–1207.
  • Weitkamp, P., Vosmann, K. and Weber, N. (2006). Highly efficient preparation of lipophilic hydroxycinnamates by solvent-free lipase-catalyzed transesterification. J. Agric. Food Chem. 54:7062–7068.
  • Weng, X. C. and Gordon, M. H. (1993). Antioxidant synergy between phosphatidyl ethanolamine and alpha-tocopherylquinone. Food Chem. 48:165–168.
  • White, P. J. and Armstrong, L. S. (1986). Effect of selected oat sterols on the deterioration of heated soybean oil. J. Am. Oil Chem. Soc. 63:525–529.
  • Winkler, J. K. and Warner, K. (2008a). The Effect of phytosterol concentration on oxidative stability and thermal polymerization of heated oils. Eur. J. Lipid Sci. Technol. 110:455–464.
  • Winkler, J. K. and Warner, K. (2008b). Effect of phytosterol structure on thermal polymerization of soybean oil. Eur. J. Lipid Sci. Technol. 110:1068–1077.
  • Winkler-Moser, J. K., Rennick, K. A., Palmquist, D. A., Berhow, M. A. and Vaughn, S. F. (2012). Comparison of the impact of γ-oryzanol and corn steryl ferulates on the polymerization of soybean oil during frying. J Am. Oil Chem. Soc. 89:243–252.
  • Woodall, A. A., Lee, S. W. M., Weesie, R. J., Jackson, M. J. and Britton, G. (1997). Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochim. Biophys. Acta 1336:33–42.
  • Xia, E. Q., Deng, G. F., Guo, Y. J. and Li, H. B. (2010). Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 11:622–646.
  • Xu, Z. and Godber, J. S. (1999). Purification and identification of components of γ-oryzanol in rice bran oil. J. Agric. Food Chem. 47:2724–2728.
  • Yamaguchi, N. (1969). Effect of the products of browning reaction from reducing sugars and amino acids on the stability of fats and oils. J. Jpn. Oil Chem. Soc. 18:111–117.
  • Yang, Z., Guo, Z. and Xu, X. (2012). Enzymatic lipophilisation of phenolic acids through esterification with fatty alcohols in organic solvents. Food Chem. 132:1311–1315.
  • Yanishlieva, N. V. and Marinova, E. M. (2001). Stabilisation of edible oils with natural antioxidants. Eur. J. Lipid Sci. Technol. 103:752–767.
  • Yanishlieva, N. V., Raneva, V. G. and Marinova, E. M. (2001). β-Carotene in sunflower oil oxidation. Grasas y Aceites 52:10–16.
  • Yao, L. H., Jiang, Y. M., Shi, J., Tomas-Barberan, F. A., Datta, N., Singanusong, R. and Chen, S. S. (2004). Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 59:113–122.
  • Yeo, J, Park, J. and Lee, J. (2011). Evaluation of antioxidant capacity of sesamol and free radical scavengers at different heating temperatures. Eur. J. Lipid Sci. Technol. 113: 910–915.
  • Yeo, J. D., Jeong, M. K., Park, C. U. and Lee, J. (2010). Comparing antioxidant effectiveness of natural and synthetic free radical scavengers in thermally-oxidized lard using DPPH method. J. Food Sci. 75: C258–C262.
  • Yoo, K. M., Kim, D. O. and Lee, C. Y. (2007). Evaluation of different methods antioxidantmeasurement. Food Sci. Biotechnol. 16:177–182.
  • Yoshida, H. (1994). Composition and quality characteristics of sesame seed (Sesamum indicum) oil roasted at different temperatures in electric oven. J. Sci. Food Agric. 65:331–336.
  • Yoshida, H., Tatsumi, M. and Kajimoto, G. (1991). Relationship between oxidative stability of vitamin-E and production of fatty-acids in oils during microwave-heating. J. Am. Oil Chem. Soc. 68:566–568.
  • Yuki, E. and Ishikawa, Y. (1976). Tocopherol contents of 9 vegetable frying oils, and their changes under simulated deep-fat frying conditions. J. Am. Oil Chem. Soc. 53:673–676.
  • Zamora, R., León, M. M. and Hidalgo, F. J. (2011). Free radical-scavenging activity of nonenzymatically-browned phospholipids produced in the reaction between phosphatidylethanolamine and ribose in hydrophobic media. Food Chem. 124:1490–1495.
  • Zeb, A. and Murkovic, M. (2010). Characterization of the effects of β-carotene on the thermal oxidation of triacylglycerols using HPLC-ESI-MS. Eur. J. Lipid Sci. Technol. 112:1218–1228.
  • Zhang, C. X., Wu, H. and Weng X. C. (2004). Two novel synthetic antioxidants for deep frying oils. Food Chem. 84:219–222.
  • Zhang, Y. and Zhang, Y. (2007). Study on reduction of acrylamide in fried bread sticks by addition of antioxidant of bamboo leaves and extract of green tea. Asia Pac. J. Clin. Nutr. 16:131–136.
  • Zheng, Y., Branfort-White, C., Wu, X-M., Wu, C-Y., Xie, J-G., Quan, J. and Zhu, L-M. (2010). Enzymatic synthesis of novel feruloylated lipids and their evaluation as antioxidants. J. Am. Oil Chem. Soc. 87:305–311.
  • Zhong, Y. and Shahidi, F. (2011). Lipophilized epigallocatechin gallate (EGCG) derivatives as novel antioxidants. J. Agric. Food Chem. 59:6526–6533.
  • Zhong, Y. and Shahidi, F. (2012). Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chem. 131:22–30.
  • Zhong, Y., Ma, C-M. and Shahidi, F. (2012). Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives. J. Funct. Foods 4:87–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.