2,920
Views
75
CrossRef citations to date
0
Altmetric
Original Articles

Selective Effect of Pesticides on Plant—A Review

, , , &

REFERENCES

  • Abd-Alla, E. F., Sammour, E. A., Abd –Alla, S. A. and El-Sayed. (1993). Persistence of some organophosphate insecticide residue on tomato and bean plants. Bull. FAc. Agric. Cairo Univ. 44(2):462–476.
  • Ahmed, N. E., Kanan, H. O., Inanaga, S., Ma, Y. Q. and Sugimoto, Y. (2001). Impact of pesticide seed treatments on aphid control and yield of wheat in the Sudan. Crop. Prot. 20:929–934.
  • Akinloye, O. A., Adamson, I., Ademuyiwa, O. and Arowolo, T. A. (2011). Occurrence of paraquat residues in some Nigerian crops, vegetables and fruits. J. Environ. Chem. Ecotox. 3(7):195–198, July.
  • Aksoy, O. and Dane, F. (2007). The effects of fusillade (Fluazifop-p-butyl) on root and shoot growth of lentil (Lens culinaris Medik.) seedlings. J. App. Boil. Sci. 1(3):9–13.
  • Alonge, S. O. (2000). Effect of imazaquin applications on the growth, leaf chlorophyll and yield of soybean in the guinea savanna of Nigeria. J. Env. Sci. Health. Part B. 35:321–336.
  • Alam, M. M., Mondal, Z. H., Paul, D. K., Samad, A., Mamun, A., and Chowdhury, A. Z. (2011). etermination of Pesticide Residue (Cartap) in Brinjal. Proceedings of the Pakistan Academy of Sciences 48(2): 89–93.
  • Andersson, L. (1994). Effects of MCPA and tribenuronmethyl on seed production and seed size of annual weeds. Swed. J. Agr. Res. 24:42–56.
  • Andersson, L. (1996). Characteristics of seeds and seedlings from weeds treated with sublethal herbicide doses. Weed Res. 36:55–64.
  • Asada, K. (1999). The water-water cycle in chloroplasts scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol Biol. 50:601–639.
  • Baig, M. N., Darwent, A. L., Harker, K. N. and O’Donovan, J. T. (2003). Preharvest applications of lyphosate affect emergence and seedling growth of field pea (Pisum sativum). Weed Technol. 17:655–665.
  • Barry, P., Young, A. J. and Briton, G. (1990). Photodestruction in higher plants by herbicide action. J. Exp. Bot. 41:123–126.
  • Basantani, M., Srivastava, A. and Sen, S. (2011). Elevated antioxidant response and induction of tau-class glutathione S-transferase after glyphosate treatment in Vigna radiata (L.) Wilczek. Pest. Biochem. Physiol. 99:111–117.
  • Bashir, F. and Siddiqi, T. O., Mahmooduzzafar and Iqbal, M. (2007b). Effects of different concentrations of mancozeb on the morphology and anatomy of Lens culinaris L. Ind. J. Environ. Sci. 11(1):71–74.
  • Batish, D. R., Singh, H. P., Setia, N., Kaur, S. and Kohli, R. K. (2006). 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol. Biochem. 44:819–827.
  • Bhargava, S. (1993). Paraquat tolerance in a photomixotrophic culture of Chenopodium rubrum. Plant Cell Rep. 12:230–232.
  • Biniak, B. M. and Aldrich, R. J. (1986). Reducing velvetleaf (Abutilon theopbrasti) and giant foxtail (Setaria feberi) seed production with simulated – roller herbicide applications. Weed Sci. 34:256–259.
  • Boobis, A. R., Ossendorp, B. C., Banasiak, U., Hamey, P. Y., Sebestyen, I. and Moretto, A. (2008). Cumulative risk assessment of pesticide residues in food. Toxicol. Lett. 15:137–150.
  • Boonlertnirun, S., Boonlertnirun, K. and Sooksathan, I. (2005). In: Proceedings of 43rd Kasetsart University Annual Conference, pp. 37–43. Thailand, 1–4 February.
  • Bowler, C., Slooten, L., Vandenbranden, S., De Rycke, R., Botterman, J., Sybesma, C., Van Montagu, M. and Inze, D. (1991). Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO Journal.10:1723–1732.
  • Brecke, B. J. and Duke, W. B. (1980). Effect of glyphosate on intact bean plants (Phaseolus vulgaris L.) and isolated cells. Plant Physiol. 66:656–659.
  • Burns, E. R., Buchanan, G. A. and Carter, M. C. (1971). Inhibition of carotenoid synthesis as a mechanism of action of amitrole, dichlormate, and pyrichlor. Plant Physiology. 47:144–148.
  • Cali, I. O. (2008). The effects of fosetyl-Al application on morphology and viability of Lycopersicon esculentum Mill. Pollen. Plant, Soil and Environ. 54(8):336–340.
  • Chagas, R. M., Silveira, J. A. G., Ribeiro, R. V., Vitorello, A. V. and Carrer, H. (2008). Photochemical damage and comparative performance of superoxide dismutase and ascorbate peroxidase in sugarcane leaves exposed to paraquat-induced oxidative stress. Pestic. Biochem. Physiol. 90:181–188.
  • Camp, V. W., Van Montagu, M. and Inzè, D. (1994). Superoxide dismutases, In: Causes of Photooxidative Stress and Amelioration of Defense systems in Plants, pp. 318–341. Foyer, C. H. and Mullineaux, P. M., Eds., CRC Press, Boca Raton, FL.
  • Casano, L. M., Martín, M. and Sabater, B. (1994). Sensitivity of superoxide dismutase transcript levels and activities to oxidative stress is lower mature-senescent than in young barley leaves. Plant Physiol. 106:1033–1039.
  • Casino, L. M., Martin, M., Zapata, J. M. and Sabater, B. (1999). Leaf age and paraquat concentration-dependent effects on the levels of enzymes protecting against photooxidative stress. Plant Sci. 149:13–22.
  • Chang, A. J. and Kao, C. H. (1997). Paraquat toxicity is reduced by metal chelators in rice leaves. Physiol. Plant. 101:471–476.
  • Chibu, H., Shibayama, H. and Arimas, S., (2002). Effects of chitisan application on the shoot growth of rice and soybean. Jap. J. Crp. Sci. 71:206–211.
  • CODEX (2010). Codex alimentarius commission Pesticide residues in food and feed. Available from http://www.codexalimentarius.net/pestres/data/pesticides/index.html.
  • DAF (Department of Agriculture and Food's) under the terms of a service contract with FSAI (the Food Safety Authority of Ireland). (2006). Pesticide residues in food 2005. Pesticide control service, Back Weston Campus, young's cross, celbridge, co Kildare, Ireland.
  • Dalvi, R. R., Singh, B. and Salunkhe, D. K. (1972). Influence of selected pesticides on germination and associated metabolic changes in wheat and mungbean seeds. J. Agric. Food Chem. 20(5):1000–1003.
  • DelValle, T. B. G., Barden, J. A. and Byera, R. E. (1985). Thinning of peaches by temporary inhibition of photosynthesis with terbacil. J. Amer. Soc. Hort. Sci. 110:804–807.
  • Delvin, R. M. and Cunningham. (1970). The inhibition of gibberellic acid induction of α-amylase activity in barley endosperm by certain herbicides. Weed Res. 10:316–320.
  • Deshmukh, S. N., Bhalla, J. S. and Sharma, P. U. (1972). Studies on carbaryl, DDT and endosulphan residues on tomato fruits. Ind. J. Entomol. 34:31–34.
  • Deshmukh, S. N. and Singh, J. (1975). Dissipation of carbaryl and malathion from okra fruits. Ind. J. Entomol. 37(1):64–67.
  • Devine, M. D., Duke, S. O. and Fedtke, C. (1993). Herbicidal inhibition of photosynthetic electron transport. In: Physiology of Herbicide Action, p. 113. Prentice Hall, Englewood Cliffs, NJ.
  • Dhas, S. and Srivastava, M. (2010). An Assessment of Carbaryl Residues on Brinjal Crop in an Agricultural Field in Bikaner, Rajasthan (India). Asian J. Agric. Sci. 2(1):15–17.
  • Disegna, E. J. (1994). The use Terbacil as a Tool to Establish a Photosynthetic Threshold in Apples. Master's thesis, Michigan State University, East Lansing.
  • Dobozi, M. and Lehoczky, E. (2002). Influence of soil herbicides on the growth of potato. Acta. Biol. Szegediensis. 46(3–4):197–198.
  • Dubey, K. K. and Fulekar, M. H. (2011). Effect of pesticides on the Seed Germination of Cenchrus setigerus and Pennisetum pedicellatum as Monocropping and Co-cropping System: Implications for Rhizospheric Bioremediation. Rom. Biotechnol. Lett. 16(1):5909–5918.
  • Ekmekci, Y. and Terzioglu, S. (2005). Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pestic. Biochem. Physiol. 83:69–81.
  • Extoxnet (1996). Fluazifop-p-butyl. Pesticide information profiles. Extension Toxicology Network. Available from http://ace.ace.orst.edu/info/extonet/pips/fluazifop.htm
  • Falconer, K. and Hodge, I. (2000). Using economic incentives for pesticide usage reductions: responsiveness to input taxation and agricultural systems. Agric. Syst. 63(3):175–194.
  • FAO/WHO (1972). Pesticides in food. Report of 1971 joint meeting of the FAO working party of experts on pesticides residues and the WHO expert committee on pesticide residues, Geneva, 22–29, Nov., pp. 46.
  • Farag, R. S., Abdel Latif, M. S., Abd El-Gawad, A. E., and Dogheim, S. M. (2011). Monitoring of pesticide residues in some Egyptian herbs, fruits and vegetables. Int. Food Res. J. 18:659–665.
  • Fedtke, C. (1982). Biochemistry and Physiology of Herbicide Action. Springer-Verlag, Berlin.
  • Frank, L. Y. and Ralph, E. W. (1987). Efficacy of post harvest herbicides on Russian Thistle (Salsola iberica) control and seed germination. Weed Sci. 35:554–559.
  • Fuerst, E. P. and Norman, M. A. (1991). Interactions of herbicides with photosynthetic electron transport. Weed Sci. 39:458–464
  • Fujii, Y., Kurokawa, T., Inone, Y., Yamaguchi, I. and Misato, T. (1977). Inhibition of carotenoid biosynthesis as a possible mode of herbicidal action of 3,3-dimethyl-4-methoxydenzophenone (NK-049). J. Pestic. Sci. 2:431–437.
  • Garcia, P. C., Rivero R. M., Lopez-Lefebre, L. R., Sanchez, E., Ruiz, J. M. and Romero, L. (2001). Direct action of the biocide carbendazim on phenolic metabolism in tobacco plants. J. Agric. Food Chem. 49:131–137.
  • Gopi, R., Jaleel, C. A., Sairam, R., Lakshmanan, Gomathinayagam, M. and Panneerselvam. (2007). Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucas carota L. Colloids Surf B: Biointerfaces 60:180–186.
  • Hald, A. B. (1999). Germination of seeds from two non-target species subjected to sublethal herbicide dosages. In: Proceedings Brighton Conference, Weeds, p. 267–272.
  • Harper, D. B. and Harvey, B. M. R. (1978). Mechanism of paraquat tolerance in perennial ryegrass. II: Role of superoxide dismutase, catalase, and peroxidase. Plant Cell Environ. 1:211–215.
  • Hirase, K. and Molin, W. T. (2002). Effects of MT-101 and NOP on germination and seedling growth of hemp sesbania and rice. Weed Sci. 50:386–391.
  • Hassan, N. M. and Nemat Alla, M. M. (2005). Oxidative strees in herbicide treated broad bean and maize plants. Acta Physiol. Plant. 27:429–438.
  • Huang, He. and Xiong, Z. T. (2009). Toxic effects of cadmium, acetochlor and bensulfuron-methyl on nitrogen metabolism and plant growth in rice seedlings. Pestic. Biochem. Physiol. 94:64–67.
  • Isaacs, M. A., Edward, C. M., Joe, E. T. and Susan, U. W. (1989). Effects of late season herbicide applications on sicklepod (Cassia obtusifolia) seed production and viability. Weed Sci. 37:761–765.
  • Ismail, B. S., Chuah, T. S., Salmijah, S. and Hussin, K. H. (2001). Role of superoxide dismutase and peroxidase activities in paraquat- resistant redflower ragleaf Crassocephalum crepidioides (Benth. S. Moore). Aust. J. Agric. Res. 52:583–586.
  • Jaleel, C. A., Gopi, R., Manivannan, P. and Panneerselvam, R. (2008). Exogenous application of triadimefon affects the antioxidant defence system of Withania somnifera Dunal. Pestic. Biochem. Physiol. 91:170–174.
  • Jaleel, C. A., Gopi, R. and Pannerselvam, R. (2007). Alterations in lipid peroxidation electrolyte leakage, and proline metabolism in Catharanthus roseus under treatment with triadimefon, a systemic fungicide. C. R. Biol. 330:905–912.
  • Jan, S., Parween, T., Siddiqi, T. O. and Mahmooduzzafar (2012a). Effect of gamma radiation on morphological, biochemical and physiological aspects of plants and plant products. Environ. Rev. 20:17–39.
  • Jan, S., Parween, T., Siddiqi, T. O. and Mahmooduzzafar (2012b). Antioxidant modulation in response to gamma induced oxidative stress in developing seedlings of Psoralea corylifolia L. J. Environ. Radioac. 113:142–149.
  • Jiang, L. and Yang, H. (2009). Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol. Environ. Saf. 72:1687–1693.
  • Joy, M., Abit, M., and Al Khatib, K. (2013). Metabolism of quizalofop and rimsulfuron in herbicide resistant grain sorghum. Pestic. Biochem. Physiol. 105:24–27.
  • Jung, S., Chon, S. and Kuk, Y. (2006). Differential antioxidant responses in catalase-deficient maize mutants exposed to norflurazon. Biol. Plant. 50:383–388.
  • Kana, R., Spundova, M., Ilik, P., Lazar, D., Klem, K., Tomek, P., Naus, J. and Prasil, O. (2004). Effect of herbicide clomazone on photosynthetic processes in primary barley (Hordeum vulgare L.) leaves. Pesti. Biochem. Physiol. 78:161–170.
  • Kavadia, V. S. and Shanker, A. (1976). Malathion and carbaryl residues in/on tomato fruits. In: Proceedings All India Symp. on Modern Concepts in Plant Protection, March 26–28, pp. 73–74.
  • Kaushik, S. and Inderjit. (2006). Phytotoxicity of selected herbicides to mung bean (Phaseolus aureus Roxb.). Environ. Exp. Bot. 22:41–48.
  • Kintner, D. and Aldrich, R. J. (1984). Effects of post emergence chemicals on velvetleaf (Abutilon theobrasti Medic) seed production and germination. Weed Sci, Soc Am. Abstracts, 61–62.
  • Khan, H., Zeb, A., Ali, Z. and Shah, S. M. (2009). Impact of five insecticides on chickpea (Cicer arietinum L.) nodulation, yield and nitrogen fixing rhizospheric bacteria. Soil & Environ. 28:56–59.
  • Khan, M. S., Chaudhary, P., Wani, P. A. and Zaidi, A. (2006). Biotoxic effects of the herbicides on growth, seed yield and grain protein of green gram. J. Appl. Sci. Environ. Manage. 10(3):141–146.
  • Klennin, H. (1974). Inhibition of carotenoid synthesis in Myxococcus fulvus. Arch. Mikrobiol. 97:217–226.
  • Kuk, Y. I., Shin, J. S., Jung, H. I., Guh, J. O., Jung, S. and Burgos, N. R. (2006). Mechanism of tolerance to paraquat in cucumber leaves of various ages. Weed Sci. 54:6–15.
  • Latif, Y., Sherazi, S. T. H. and Bhanger, M. I. (2011). Assessment of pesticide residues in some fruits using Gas chromatography coupled with micro electron capture detector. Pak. J. Anal. Environ. Chem. 12:76–78.
  • Lei, J. and Hong, Y. (2009). Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol. Environ. Saf. 72(6):1687–1693.
  • Lukatkin, A. S., Gar’kova A. N., Bochkarjova, A. S., Olga V., Nushtaeva, O. V. and da Silva, J. A. (2013). Treatment with the herbicide TOPIK induces oxidative stress in cereal leaves. Pestic. Biochem. Physiol. 105:44–49.
  • Mackey, C. E., Hall, J. C., Hofstra, G. and Fletcher, R. A. (1990). Uniconazole induced changes in abscissic acid, total amino acids and proline in phaseolus vulgaris. Pestic. Biochem. Physiol. 37:71–82.
  • Makaraci, A. Z. and Flore, J. A. (2006). The effect of Terbacil on chlorophyll content of strawberry. J. Tekirdag Agri. Faculty. 3(1):50–54.
  • Mahmood, K. S. and Shah, Z. A. (2003). Screening of the best insecticide in reducing the chickpea pod borer damage infected by gram pod borer (H. armigera) in Faisalabad. Pak. J. Biol. Sci. 6:1156–1158.
  • Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M. A. and Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Collids Surf. B: Biointerfaces. 59:141–149.
  • Mathur, R. and Bohra, S. P. (1992). Effect of paclobutrazol on amino transferases; protein and proline content in Eruca sativa var. T-23 seedlings. J. Phytol. Res. 5:93–95.
  • Michalowicz, J., Posmyk, M. and Duda, W. (2009). Chlorophenols induce lipid peroxidation and change antioxidant parameters in the leaves of wheat (Triticum aestivum L.). J. Plant. Physiol. 166:559–568.
  • Mishra, V., Srivastava, G. and Prasad, S. M. (2009). Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Scien. Horti. 120:373–378.
  • Mishra, V., Srivastava, G., Prasad, S. M. and Abraham, G. (2008). Growth, photosynthetic pigments and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata) in response to UV-B and dimethoate. Pestic. Biochem. Physiol. 92:30–37.
  • Miyake, C. and Asada, K. (1996). Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate: hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol. 37:423–430.
  • Mondal, M. M. A., Malek, M. A., Puteh, A. B., Ismail, M. R., Ashrafuzzaman, M. and Naher, L. (2012). Effect of foliar application of chitosan on growth and yield in okra. Aust. J. Crop Sci. 6:918–921.
  • Moore, M. T. and Kroger, R. (2010). Effect of three insecticides and two herbicides on rice (Oryza sativa) seedling germination and growth. Arch. Environ. Contam. Toxicol. 59:574–581.
  • Mugo, H. M. (1989). Studies of insect pests of pigeon pea (Cajanus cajan Millsp) during the flowering and post flowering stage and their impact on seed yield in Kenya. M.Sc. Thesis, University of Nairobi, Nairobi.
  • Murthy, P. G., Mahadeva, P. G. and Sudarshana, M. S. (2005). Toxicity of different imbibitions periods of dimethoate on germination, chlorophyll a/b, and dry matter of Glycine max (L) Merrill. Cv. KHSB-2, during early seedlings growth. J. Physiol. Res. 18:199–201.
  • Mussarat, J. and Haseeb, A. (1999). Agrichemicals as antagonists of lectin mediated Rhizobium- legume symbiosis: Paradigm and prospects. Curr. Sci. 78:1–7.
  • Nadasy, E., Lehoczky, E., Lukacs, P. and Adam, P. (2000). Influence of different pre-emergent herbicides on the growth of soybean varieties. Zeit. Pflanzenkr. Pflanzensch. 17:635–639.
  • Nehru, S. D., Rangaiah, S., Ramarao, G. and Shekar, G. C. (1999). Effect of some herbicide on seed germination and seedling vigour in mungbean. Crop Res. 17:425–426.
  • Nemat Alla, M. M., Badawi, A. M., Hassan, N. M., El-Bastawisy, Z. M. and Badran, E. G. (2008). Effect of metribuzin, butachlor and chlorimuron-ethyl on amino acid and protein formation in wheat and maize seedlings. Pestic. Biochem. Physiol. 90(1):8–18.
  • Nemat Alla, M. M., Hassan, N. M. and El-Bastawisy, Z. M. (2007). Differential influence of herbicide treatments on activity and kinetic parameters of C4 photosynthetic enzymes from Zea mays. Pestic Biochem. Physio. 89:198–205.
  • Parween, T. (2012). Effect of agrochemical pollution on growth, structure and some physiochemical aspects of Vigna radiata L. Ph.D thesis. (Awarded) Department of Biosciences, Jamia Millia Islamia, New Delhi, India.
  • Parween, T., Jan, S., Mahmooduzzafar and Fatma, T. (2011a). Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos. Acta Physiol. Plant. 33:2321–2328.
  • Parween, T., Jan, S., Mahmooduzzafar and Fatma, T. (2011b). Assessing the impact of Chlorpyrifos on growth, photosynthetic pigments and yield in Vigna radiata L. at different phenological stages. Afr. J. Agric. Res. 6:4432–4440.
  • Parween, T., Jan, S., Mahmooduzzafar, and Fatma, T. (2012). Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. Int. J. Environ. Sci. Technol. 9(4):605–612.
  • Pimental, D. (1995). Amounts of pesticides reaching the target pests: Environmental impacts and ethics. J. Agric. Environ. Ethics 8:17–29.
  • Prasad, S. M., Kumar, D., and Zeeshan, M. (2005). Growth, Photosynthesis, active oxygen species and antioxidants responses of paddy field cyanobacterium Plectonema boryanum to endosulfan stress. J. Geb. Appl. Microbiol. 51:115–123.
  • Radetski, C. M., Cotelle, S. and Ferard, J.-F. (2000). Classical and biochemical endpoints in the evaluation of phytotoxic effects caused by the herbicide trichloroacetate. Environ Exp Bot. 44:221–229.
  • Radice, M. and Pesci, P. (1991). Effect of triazole fungicides on the membrane permeability and on FC-induced H +extrusion in higher plants. Plant Sci. 74:81–88.
  • Radwan, M. A., Shiboob, M. H., Abdel-Aal, A., and Abu-Elamayem, M. (2001). Resiue of Pirimiphos-methyl and fenitrothion in grapes, their effect on some quality properties and their dissipation during the removal and processing methods. J. Pest. Cont & Environ. Sci. 9(3):89–107.
  • Radwan, M. A., Youssef, M. M., Abd-El-All, El-Henawy, G. L. and Marei, A. (1995). Residue levels of pirimiphos- methyl and chlorpyrifos –methyl on tomato and faba bean plants in relation to their impact on some internal quality parameters. Alex. Sci. Exch. 16(3):389–404.
  • Rajashekhar, N., Prakasha and Murthy, T. C. S. (2012). Seed germination and physiological behavior of Maize (cv. Nac-6002) seedlings under abiotic stress (Pendimethalin) condition. Asian J. Crop Sci. 4(2):80–85.
  • Rehim, H. A. A., Hegazy, E. A. and El-Barbary, A. M. (2009). Radiation modification of natural polysaccharides for application in agriculture. Polymer. 50:1952–1957
  • Saladin, G., Magne, C. and Clement, C. (2003). Physiological stress responses of Vitis vinifera L. to the fungicides fludioxonil and pyrimethanil. Pesti. Biochem. Physiol. 77:125–137.
  • Sanborn, M., Cole, D., Kerr, K., Vakil, C., Sanin, L. H. and Basil, K. (2004). Systematic review of pesticides human health effects. The ontario, college of family physicians. Available from http://www.ocfp.on.ca/local/files/Communications/Current%20Issues.
  • Sankar, B., Jaleel, C. A., Manivannan, P., Kishorekumar, A., Somasundaram, R. and Panneerselvam, R. (2007). Drought induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.). Moench. Acta Bot. Croat. 66:43–56.
  • Sankhla, N., Upadhyaya, A., Davis, T. D. and Sankhla, D. (1992). Hydrogen peroxidase scavenging enzymes and antioxidants in Echinochloa frumentacea as affected by triazole growth regulators. Plant Growth Regul. 11:441–442.
  • Saraf, M. and Sood, N. (2002). Influence of monocrotophos on growth, oxygen uptake and exopolysaccharide production of rhizobium NCIM 2271 on chickpea. J. Indian Bot. Soc. 82:157–164.
  • Schultz, D. P. and Funderburk, H. H. J. (1967). Effect of herbicide trifluralin on nucleic acid of corn seedlings. Physiology. 42:50–51.
  • Sergiev, I. G., Alexieva, V. S., Ivanov, S. V., Moskova, I. A. and Karanov, E. N. (2006). The phenylurea cytokinin 4PU-30 protects maize plants against glyphosateaction. Pestic. Biochem. Physiol. 85:139–146.
  • Setia, R. C., Bhathai, G. and Setia, N. (1995). Influence of paclabutrazol on growth and yield of Brassica carinata. A Br., Plant Growth Regul. 16:121–127.
  • Sharples, C. R., Null, M. R. and Cobb, A. H. (1997). Growth and photosynthetic characteristics of two biotypes of the weed black-grass (Alopecurus myosuroides Huds) resistant and susceptible to the herbicide chlorotoluron. Ann. Bot. 79:455–461.
  • Shinde, L. P., Kolhatkar, D. G., Baig, M. M. V. and Chandra, S. (2012). Study of cypermethrin residue in okra leaves and fruits assessed by gcijrpc. Int. J. Res. Pharm. Chem. 2(2).
  • Shuma, J. M., Quick, W. A., Raju, M. V. S. and Hsiao, A. I. (1995). Germination of seeds from plants of Avena fatua L. treated with glyphosate. Weed Res. 35:249–255.
  • Siddiqui, Z. S. and Ahmad, S. (1996). Effect of systemic fungicide on germination, seedling growth and phenolic contents of Vigna radiata L. Pak. J. Bot. 28:191–193.
  • Siddiqui, Z. S., Ahmad, S. and Shaukat, S. S. (1999). Effect of systemic fungicide (Topsin-M) and insectide (Dimecron) on germination, seedling growth and phenolic content of Pennisetum americanum L. Pak. J. Biol. Sci. 2(1):182–184.
  • Sivakumaran, S. and Hall, M. A. (1978). Effects of age and water stress on endogenous levels of plant growth regulators in Euphorbia lathyrus L. J. Exp. Bot. 29:195–205.
  • Slooten, L., Capiau, K., Van Camp, W., Van Montagu, M., Subesma, C., and Inze. ́D. (1995). Factors affecting the enhancements of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiology. 107:737–750.
  • Song, N. H., Yin, X. L., Chen, G. F. and Yang, H., 2007. Biological responses of wheat (Triticumaestivum) plants to the herbicide chlorotoluron in soils. Chemosphere. 68(9):1779–1787.
  • Soliman, M. M. M. (1994). Efficiency of some insecticides against leguminous pod borer Etiella Zinckenella Treitschke on cowpea with special reference to pesticide residue. M.Sc. Thesis, Fac. Agric. Cairo Univ., Egypt.
  • Sridharan, R. and Panneerselvam, R. (2009). Triadimefon and Hexaconazole alters the antioxidant enzyme profile of radish. Middle East J. Scientific Res. 4:61–65.
  • Stajner, D., Popovic, M. and Stajner, M. (2003 /04). Herbicide induced oxidative stress in lettuce, beans, pea seeds and leaves. Biol. Plant. 47(4):575–579.
  • Stevens, M. M., Fox, K. M., Coombes, N. E. and Lewin, L. A. (1999). Effect of fipronil seed treatments on the germination and early growth of rice. Pest Sci. 55:517–523
  • Stevens, M. M., Reinke, R. F., Coombes, N. E., Helliwell, S. and Mo, J. (2008). Influence of imidacloprid seed treatments on rice germination and early seedling growth. Pest Manag. Sci. 64:215–222.
  • Steward, F. C. and Krikorion, A. D. (1971). Plants, chemicals and growth, New York and London. Academic Press, Stocks, Rome, 2001.
  • Suri, K. S. and Singh, G. (2011). Insecticide induced resurgence of the whitebacked planthopper Sogatella furcifera (Horvath) (Hemiptera: Delphacidae) on rice varieties with different levels of resistance. Crop Prot. 30:118–124.
  • Tort, N. and Turkyilmaz, B. (2003). Physiological effects of captan fungicide on pepper (Capsicum annuum L.). Pak J. Biol. Sci. 6(24):2026–2029.
  • Turcsanyi, E., Darko, E., Borbely, G. and Lehoczki, E. (1998). The activity of oxyradicaldetoxifying enzymes is not correlated with paraquat resistance in Conyza canadensis (L.) Cronq. Pestic. Biochem. Physiolol. 60:1–11.
  • Vasileva, V. and Ilieva, A. (2007). Effect of presowing treatment of seeds with insecticides on nodulation ability, nitrate reductase activity and plastid pigments content of Lucerne (Medicago sativa L.). Agro. Res. 5(1):87–92.
  • Wang, M., Zhou, Q., (2006). Effects of herbicides chlorimuron- ethyl on physiological mechanisms in wheat (Triticum aestivum). Eco. Env. Saf. 64(2):190–197.
  • Wang, W. (1994). Rice seed toxicity tests for organic and inorganic substances. Environ. Monit. Assess 29:101–107.
  • Wibawa, W., Mohamad, R. B., Puteh, A. B., Omar, D., Juraimi, A. S. and Abdullah, S. A. (2009). Residual phytotoxicity effects of paraquat, glyphosate and glufosinate-ammonium herbicides in soils from field treated plots. Int. J. Agric. Biol. 11:214–216.
  • William, R. D., Burrill, L. C., Ball, D., Miller, T. L., Parker, R., Al-Khatib, K., Callihan, R. H., Eberlein, C. and Morishita, D. W. (1995). Pacific Northwest Weed Control Handbook 1995. Oregon State University Extension Service, Corvallis, OR, p. 358.
  • Wu, X. Y. and Von, Tiedemann, A. (2002). Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ. Pollut. 116:37–47.
  • Yamato, S. M., Katagiri, H. and Ohkawa. (1994). Purification and characterization of a protoporphyrinogen-oxidizing enzyme with peroxidase activity and lightdependent herbicide resistance in tobacco cultured-cells. Pestic. Biochem. Physiol. 50:72–82.
  • Yoon, J. Y., Shin, J. S., Shin, D. Y., Hyun, K. H., Burgos, N. R. and Sungbeom, L. (2011). Tolerance to paraquat-mediated oxidative and environmental stresses in squash (Cucurbita spp.) leaves of various ages. Pestic. Biochem. Physiol. 99:65–76.
  • Yin, X. L., Jiang, L., Song, N. H. and Yang, H. (2008). Toxic reactivity of wheat (Triticum aestivum L.) plants to herbicide isoproturon. J. Agri. Food Chemistry. 56(12):4825–31.
  • Zhang, C. D., Han, S. K. and Zhang, A. Q. (2001). Effect of herbicide mefenacet on response of active oxygen scavenging system in rice plant. Agro. Environment. Protect. 20:411–413.
  • Zhang, J. and Cavers, P. B. (1994). Seedling emergence after maternal bentazone application to 10 cocklebur (Xanthium strumarium) populations. Can. J. Plant. Sci. 74:863–866.
  • Zhang, Z. L., Wei, N., Wu, Q. X. and Ping, M. L. (2007). Antioxidant response of cucumis sativus L. to fungicide carbendazim. Pestic. Biochem. Physiol. 89, 54–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.