1,024
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Carotene Degradation and Isomerization during Thermal Processing: A Review on the Kinetic Aspects

, , , &

REFERENCES

  • Achir, N., Randrianatoandro, V. A., Bohuon, P., Laffargue, A. and Avallone, S. (2010). Kinetic study of β-carotene and lutein degradation in oils during heat treatment. Eur. J. Lipid Sci. Tech. 112:349–361.
  • Achir, N., Pénicaud, C., Avallone, S. and Bohuon, P. (2011). Insight into β-carotene thermal degradation in oils with multiresponse modeling. J. Am. Oil Chem. Soc. 88:2035–2045.
  • Agostoni, C., Bresson, J., Fairweather-Tait, S., Flynn, A., Golly, I., Korhonen, H., Lagiou, P., Lovik, M., Marchelli, R., Martin, A., Moseley, B., Neuhauser-Berthold, M., Przyrembel, H., Salminen, S., Sanz, Y., Strain, S., Strobel, S., Tetens, I., Tomé, D., van Loveren, H. and Verhagen, H. (2011). Scientific opinion on the substantiation of health claims related to lycopene and protection of DNA, proteins and lipids from oxidative damage (ID 1608, 1609, 1611, 1662, 1663, 1664, 1899, 1942, 2081, 2082, 2142, 2374), protection of the skin from UV-induced (including photo-oxidative) damage (ID 1259, 1607, 1665, 2143, 2262, 2373), contribution to normal cardiac function (ID 1610, 2372), and maintenance of normal vision (ID 1827) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 9:2031–2059.
  • Aparicio-Ruiz, R., Minguez-Mosquera, M. I. and Gandul-Rojas, B. (2011). Thermal degradation kinetics of lutein, β-carotene and β-cryptoxanthin in virgin olive oils. J. Food Compos. Anal. 24:811–820.
  • Arrhenius, S. (1889). ⇐ber die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren. Zeitschrift Für Physikalische Chemie. 54:5910–5916.
  • Ax, K., Mayer-Miebach, E., Link, B., Schuchmann, H. and Schubert, H. (2003). Stability of lycopene in oil-in-water emulsions. Eng. Life Sci. 3:199–201.
  • Baldermann, S., Naim, M. Fleischmann, P. (2005). Enzymatic carotenoid degradation and aroma formation in nectarines (Prunus persica). Food Research International. 38:833–836.
  • Böhm, V., Puspitasari-Nienaber, N. L., Ferruzzi, M. G. and Schwartz, S. J. (2002). Trolox equivalent antioxidant capacity of different geometrical isomers of alpha-carotene, β-carotene, lycopene, and zeaxanthin. J. Agric. Food Chem. 50:221–226.
  • Bonnie, T. P. Y. and Choo, Y. M. (1999). Oxidation and thermal degradation of carotenoids. J. Oil Palm Res. 2:62–78.
  • Boon, C. S., Mc Clements, D. J., Weiss, J. and Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 50:515–532.
  • Box, G. E. P. and Draper, N. R. (1965). The Bayesian estimation of common parameters from several responses. Biometrika. 52:355–365.
  • Britton, G. (1995a). Structure and properties of carotenoids in relation to function. FASEB J. 9:1551–1558.
  • Britton, G. (1995b). UV/visible spectroscopy. In: Carotenoids Volume 1B: Spectroscopy, pp. 13–62. Britton, G., Liaaen-Jensen, S. and Pfander, H., Eds., Birkhäuser Verlag, Basel, Switzerland.
  • Chen, B. H., Chen, T. M. and Chien, J. T. (1994). Kinetic model for studying the isomerization of α--carotene and β-carotene during heating and illumination. J. Agric. Food Chem. 42:2391–2397.
  • Chen, B. H. and Huang, J. H. (1998). Degradation and isomerization of chlorophyl a and β-carotene as affected by various heating and illumination treatments. Food Chem. 62:299–307.
  • Cole, E. R. and Kapur, E. R. (1957a). The stability of lycopene. II -- Oxidation during heating of tomato pulps. J. Sci. Food Agric. 8:366–368.
  • Cole, E. R. and Kapur, N. S. (1957b). The stability of lycopene. I -- Degradation by oxygen. J. Sci. Food Agric. 8:360–365.
  • Colle, I., Lemmens, L., Van Buggenhout, S., Van Loey, A. and Hendrickx, M. (2010a). The effect of thermal processing on the degradation, isomerization and bioaccessibility of lycopene in tomato pulp. J. Food Sci. 75: C753–C759.
  • Colle, I. J. P., Lemmens, L., Tolesa, G. N., Van Buggenhout, S., De Vleeschouwer, K., Van Loey, A. M. and Hendrickx, M. E. (2010b). Lycopene degradation and isomerization kinetics during thermal processing of an olive oil/tomato emulsion. J. Agric. Food Chem. 58:12784–12789.
  • Colle, I., Lemmens, L., Van Buggenhout, S., Van Loey, A. and Hendrickx, M. (2013). Modeling lycopene degradation and isomerization in the presence of lipids. Food Bioprocess Tech. 6:909–918.
  • De Vleeschouwer, K., Van der Plancken, I., Van Loey, A. and Hendrickx, M. E. (2009). Modelling acrylamide changes in foods: From single-response empirical to multiresponse mechanistic approaches. Trends Food Sci. Tech. 20:155–167.
  • Draper, N. R. and Smith, H. (1981). Applied Regression Analysis. John Wiley, New York, NY.
  • During, A., Hussain, M. M., Morel, D. W. and Harrison, E. H. (2002). Carotenoid uptake and secretion by CaCo2 cells: β-carotene isomer selectivity and carotenoid interactions. J. Lipid Res. 43:1086–1095.
  • Edge, R., McGarvey, D. J. and Truscott, T. G. (1997). The carotenoids as anti-oxidants – A review. J. Photochem. Photobiol. B. 41:189–200.
  • El-Agamey, A., Lowe, G. M., McGarvey, D. J., Mortensen, A., Phillip, D. M., Truscott, T. G. and Young, A. J. (2004). Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch. Biochem. Biophys. 430:37–48.
  • Failla, M. L., Chitchumroonchokchai, C. and Ishida, B. K. (2008). In vitro micellarization and intestinal cell uptake of cis isomers of lycopene exceed those of all-trans lycopene. J. Nutr. 138:482–486.
  • Fleischmann, P., Studer, K. and Winterhalter, P. (2002). Partial purification and kinetic characterization of a carotenoid cleavage enzyme from quince fruit (Cydonia oblonga). J. Agric. Food Chem. 50:1677–1680.
  • Fujii, R., Furuichi, K., Zhang, J. P., Nagae, H., Hashimoto, H. and Koyama, Y. (2002). Cis-to-trans isomerization of spheroidene in the triplet state as detected by time-resolved absorption spectroscopy. J. Phys. Chem. A. 106:2410–2421.
  • Gao, G., Wei, C. C., Jeevarajan, A. S. and Kispert, L. D. (1996). Geometrical isomerization of carotenoids mediated by cation radical dication formation. J. Phys. Chem. 100:5362–5366.
  • Gaziano, J. M., Johnson, E. J., Russell, R. M., Manson, J. E., Stampfer, M. J., Ridker, P. M., Frei, B., Hennekens, C. H. and Krinsky, N. I. (1995). Discrimination in absorption or transport of beta-carotene isomers after oral supplementation with either all-trans- or 9-cis-beta-carotene. Am. J. Clin. Nutr. 61:1248–1252.
  • Giovannucci, E. (1999). Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J. Natl. Cancer Inst. 91:317–331.
  • Goulson, M. J. and Warthesen, J. J. (1999). Stability and antioxidant activity of β-carotene in conventional and high oleic canola oil. J. Food Sci. 64:996–999.
  • Guo, W. H., Tu, C. Y. and Hu, C. H. (2008). Cis-trans isomerizations of β-carotene and lycopene: A theoretical study. J. Phys. Chem. B. 112:12158–12167.
  • Henry, L. K., Catignani, G. and Schwartz, S. (1998). Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans β-carotene. J. Am. Oil Chem. Soc. 75:823–829.
  • Johnson, M. L. (1992). Why, when, and how biochemists should use least-squares. Anal. Biochem. 206:215–225.
  • Kaur, D., Sogi, D. S. and Wani, A. A. (2006). Degradation kinetics of lycopene and visual color in tomato peel isolated from pomace. Int. J. Food Prop. 9:781–789.
  • Kavanaugh, C. J., Trumbo, P. R. and Ellwood, K. C. (2007). The US food and drug administration's evidence-based review for qualified health claims: Tomatoes, lycopene, and cancer. J. Natl. Cancer Inst. 99:1074–1085.
  • Key, T. J. (2011). Fruit and vegetables and cancer risk. Brit. J. Cancer. 104:6–11.
  • Kloer, D. P. and Schulz, G. E. (2006). Structural and biological aspects of carotenoid cleavage. Cell Mol. Life Sci. 63:2291–2303.
  • Knockaert, G., Pulissery, S. K., Lemmens, L., Van Buggenhout, S., Hendrickx, M. and Van Loey, A. (2012). Carrot β-carotene degradation and isomerization kinetics during thermal processing in the presence of oil. J. Agric. Food Chem. 60:10312–10319.
  • Krinsky, N. I. and Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 26:459–516.
  • Lee, M. T. and Chen, B. H. (2002). Stability of lycopene during heating and illumination in a model system. Food Chem. 78:425–432.
  • Lemmens, L., De Vleeschouwer, K., Moelants, K. R. N., Colle, I. J. P., Van Loey, A. M. and Hendrickx, M. E. (2010). Beta-carotene isomerization kinetics during thermal treatments of carrot puree. J. Agric. Food Chem. 58:6816–6824.
  • Levin, G. and Mokady, S. (1995). Incorporation of all-trans-or 9-cis-β-carotene into mixed micellesin vitro. Lipids. 30:177–179.
  • Maiani, G., Caston, M. J. P., Catasta, G., Toti, E., Cambrodon, I. G., Bysted, A., Granado-Lorencio, F., Olmedilla-Alonso, B., Knuthsen, P., Valoti, M., Bohm, V., Mayer-Miebach, E., Behsnilian, D. and Schlemmer, U. (2009). Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 53: S194–S218.
  • Matulka, R. A., Hood, A. M. and Griffiths, J. C. (2004). Safety evaluation of a natural tomato oleoresin extract derived from food-processing tomatoes. Regul. Toxicol. Pharm. 39:390–402.
  • Narula, G., Kaur, D., Dps, O. and Ds, S. (2009). Thermal degradation kinetics of lycopene in oleoresin extracted from tomato paste. J. Food Sci. Technol. 46:75–76.
  • Nhung, D. T. T., Bung, P. N., Ha, N. T. and Phong, T. K. (2010). Changes in lycopene and beta carotene contents in aril and oil of gac fruit during storage. Food Chem. 121:326–331.
  • O'Sullivan, L., Galvin, K., isling Aherne, S., O'Brien, N. M. (2010). Effects of cooking on the profile and micellarization of 9-cis-, 13-cis- and all-trans-β-carotene in green vegetables. Food Res. Int. 43:1130–1135.
  • Pénicaud, C., Peyron, S., Gontard, N. and Guillard, V. (2011a). Oxygen quantification methods and application to the determination of oxygen diffusion and solubility coefficients in food. Food Rev. Int. 28:113–145.
  • Pénicaud, C., Achir, N., Dhuique-Mayer, C., Dornier, M. and Bohuon, P. (2011b). Degradation of ß-carotene during fruit and vegetable processing or storage: reaction mechanisms and kinetic aspects: A review. Fruits. 66:417–440.
  • Pesek, C. A., Warthesen, J. J. and Taoukis, P. S. (1990). A kinetic model for equilibration of isomeric β-carotenes. J. Agric. Food Chem. 38:41–45.
  • Porrini, M., Riso, P. and Testolin, G. (1998). Absorption of lycopene from single or daily portions of raw and processed tomato. Br. J. Nutr. 80:353–361.
  • Qiu, D., SHAO, S. X., ZHAO, B. O., WU, Y. C., SHI, L. F., ZHOU, J. C. and CHEN, Z. R. (2012). Stability of β-carotene in thermal oils. J. Food Biochem. 36:198–206.
  • Quintas, M., Guimaraes, C., Baylina, J., Brandao, T. R. S. and Silva, C. L. M. (2007). Multiresponse modelling of the caramelisation reaction. Innovat. Food Sci. Emerg. Tech. 8:306–315.
  • Rodriguez, E. B. and Rodriguez-Amaya, D. B. (2009). Lycopene epoxides and apo-lycopenals formed by chemical reactions and autoxidation in model systems and processed foods. J. Food Sci. 74:C674–C682.
  • Rodriguez-Amaya, D. B. (2001). A Guide to Carotenoid Analysis in Foods. International Life Sciences Institute Press, Washington DC.
  • Rodriguez-Amaya, D. B. and Kimura, M. (2004). HarvestPlus H andbook for C arotenoid A nalysis. International Food Policy Research Institute, Washington DC.
  • Schieber, A. and Carle, R. (2005). Occurrence of carotenoid cis-isomers in food: Technological, analytical, and nutritional implications. Trends Food Sci. Tech. 16:416–422.
  • Schierle, J., Bretzel, W., Bühler, I., Faccin, N., Hess, D., Steiner, K. and Schuep, W. (1997). Content and isomeric ratio of lycopene in food and human blood plasma. Food Chem. 59:459–465.
  • Shi, J. and Le Maguer, M. (2000). Lycopene in tomatoes: Chemical and physical properties affected by food processing. Crit. Rev. Biotech. 20:293–334.
  • Shi, J., Le Maguer, M., Bryan, M. and Kakuda, Y. (2003). Kinetics of lycopene degradation in tomato puree by heat and light irradiation. J. Food Process Eng. 25:485–498.
  • Shibasaki-Kitakawa, N., Kato, H., Takahashi, A. and Yonemoto, T. (2004). Oxidation kinetics of β-carotene in oleic acid solvent with addition of an antioxidant, α-tocopherol. J. Amer. Oil Chem. Soc. 81:389–394.
  • Sommerburg, O., Langhans, C. D., Arnhold, J., Leichsenring, M., Salerno, C., Crif∫, C., Hoffmann, G. F., Debatin, K. M. and Siems, W. G. (2003). β-carotene cleavage products after oxidation mediated by hypochlorous acid-a model for neutrophil-derived degradation. Free Radical Bio. Med. 35:1480–1490.
  • Stahl, W. and Sies, H. (1992). Uptake of lycopene and its geometrical isomers is greater from heat-processed than from unprocessed tomato juice in humans. J. Nutr. 122:2161–2166.
  • Takahashi, A., Shibasaki-Kitakawa, N. and Yonemoto, T. (2003). A rigorous kinetic model for β-carotene oxidation in the presence of an antioxidant, α-tocopherol. J. Amer. Oil Chem. Soc. 80:1241–1247.
  • Unlu, N. Z., Bohn, T., Francis, D. M., Nagaraja, H. N., Clinton, S. K. and Schwartz, S. J. (2007). Lycopene from heat-induced cis-isomer-rich tomato sauce is more bioavailable than from all-trans-rich tomato sauce in human subjects. Br. J. Nutr. 98:140–146.
  • USDA. (2010). USDA National Nutrient Database for Standard Reference, Release 23. USDA ARS, Washington DC.
  • Van Boekel, M. A. J. S. (1996). Statistical aspects of kinetic modeling for food science problems. J. Food Sci. 61:477–486.
  • Van Boekel, M. A. J. S. (1999). Testing of kinetic models: Usefulness of the multiresponse approach as applied to chlorophyll degradation in foods. Food Res. Int. 32:261–269.
  • Van Boekel, M. A. J. S. (2008). Kinetic modeling of food quality: A critical review. Compr. Rev. Food Sci. F. 7:144–158.
  • Van Boekel, M. A. J. S. (2009). Kinetic M odeling of R eactions in Foods. CRC Press, Boca Raton, FL.
  • Van Loey, A., Oey Indrawati, Smout, C. and Hendrickx, M. (2003). Inactivation of enzymes: From experimental design to kinetic modeling. In: Handbook of Food Enzymology, pp. 49–58. Whitaker, J. R., Voragen, A. G. J. and Wong, D. W. S., Eds., Marcel Dekker, New York, NY.
  • Winterhalter, P. and Rouseff, R. (2002). Carotenoid-derived aroma compounds: An introduction. In: Carotenoid-Derived Aroma Compounds, pp. 1–17. Eds., Winterhalter, P. and Rousseff R.L. American Chemical Society, Washington, DC.
  • Yeum, K. J., Leekim, Y. C., Yoon, S., Lee, K. Y., Park, I. S., Lee, K. S., Kim, B. S., Tang, G. W., Russell, R. M. and Krinsky, N. I. (1995). Similar metabolites formed from beta-carotene by human gastric-mucosal homogenates, lipoxygenase, or linoleic-acid hydroperoxide. Arch. Biochem. Biophys. 321:167–174.
  • Zechmeister, L. (1962). Cis-trans isomeric carotenoids, vitamin A, and arylpolyenes. Springer-Verlag, Wien, Austria.
  • Zepka, L. Q., Borsarelli, C. D., da Silva, M. A. A. P. and Mercadante, A. Z. (2009). Thermal degradation kinetics of carotenoids in a cashew apple juice model and its impact on the system color. J. Agric. Food Chem. 57:7841–7845.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.