2,554
Views
95
CrossRef citations to date
0
Altmetric
Original Articles

Food Safety Evaluation Based on Near Infrared Spectroscopy and Imaging: A Review

&

REFERENCES

  • Alishahia, A., Farahmanda, H., Prietob, N. and Cozzolino, D. (2010). Identification of transgenic foods using NIR spectroscopy: A review. Spectrochim. Acta Part A. 75:1–7.
  • Arana, I., Jarén, C., and Arazuri, S. (2005). Maturity, variety and origin determination in white grapes (Vitis Vinifera L.) using near infrared reflectance technology. J. Near Infrared Spectrosc. 13(6):349–357.
  • Ariana, D.P. and Lu, R. (2008). Detection of internal defect in pickling cucumbers using hyperspectral transmittance imaging. Trans. ASABE 51:705–713.
  • Baker, J. E., Dowell, F. E. and Throne, J. E. (1999). Detection of parasitized rice weevils in wheat kernels with near-infrared spectroscopy. Biol. Control. 16:88–90.
  • Balabin, R. M. and Smirnov, S.V. (2011). Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: a quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder. Talanta 85:562–568.
  • Berardo, N., Pisacane, V., Battilani, P., Scandolara, A., Pietri, A. and Marocco, A. (2005). Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy. J. Agr. Food Chem. 53:8128–8134.
  • Bertran, E., Blanco, M., Coello, J., Iturriaga, H., Maspoch, S. and Montoliu, I. (2000). Near infrared spectrometry and pattern recognition as screening methods for the authentication of virgin olive oils of very close geographical origins. J. Near Infrared Spectrosc. 8(1):45–52.
  • Bevilacqua, M., Bucci, R., Magri, A. D., Magri, A. L. and Marini, F. (2012). Tracing the origin of extra virgin olive oils by infrared spectroscopy and chemometrics: A case study. Anal.Chim. Acta. 717:39– 51.
  • Blanco, M., and Villarroya, I. (2002). NIR spectroscopy: a rapid-response analytical tool. Trends Anal. Chem. 21(4):240–250.
  • Bosco, G. L. (2010). James L. Waters symposium 2009 on near-infrared spectroscopy. Trends Anal. Chem. 29(3):197–208.
  • Buckley, M. and Reid A. (2010). Global food safety, keeping food safe from farm to table. A Report from the American Academy of Microbiology.
  • Casale, M., Casolino, C., Ferrari, G. and Forina, M. (2008). Near infrared spectroscopy and class modelling techniques for the geographical authentication of Ligurian extra virgin olive oil. J. Near Infrared Spectrosc. 16(1):39–47.
  • Casale, M., Casolino, C., Oliveri, P. and Forina, M. (2010). The potential of coupling information using three analytical techniques for identifying the geographical origin of Liguria extra virgin olive oil. Food Chem. 118:163–170.
  • Casale, M., Sinelli, N., Oliveri, P., Egidiob, V. D. and Lanteri, S. (2009). Chemometrical strategies for feature selection and data compression applied to NIR and MIR spectra of extra virgin olive oils for cultivar identification. Talanta 80:1832–1837.
  • Chao, K., Nou, X., Liu, Y., Kim, M. S., Chan, D. E., Yang, C. C., Patel, J. and Sharma, M. 2008. Detection of fecal/ingesta contaminants on poultry processing equipment surfaces by visible and near-infrared reflectance spectroscopy. Appl. Eng. Agr. 24(1):49–55.
  • Chen, L., Wang, J., Ye, Z., Zhao, J., Xue, X., Heyden, Y. V. and Sun, Q. (2012). Classification of Chinese honeys according to their floral origin by near infrared spectroscopy. Food Chem. 135:338–342.
  • Chu, X., Yuan, H. and Lu, W. (2004). Progress and application of spectral data pretreatment and vavelength selection methods in NIR analytical technique. Prog. Chem. 16(4):528–542.
  • Cozzolino, D., Cynkar, W. U., Shah, N. and Smith P.A. (2011). Can spectroscopy geographically classify Sauvignon Blanc wines from Australia and New Zealand? Food Chem. 126:673–678.
  • Cozzolino, D., Cynkar, W. U., Shah, N., Dambergs, R. G. and Smith P. A. (2009). A brief introduction to multivariate method in grape and wine analysis. Int. J. Wine Res. 1:123–130.
  • Cozzolino, D., Smyth, H. E. and Gishen, M. (2003). Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. J. Agr. Food Chem. 51:7703–7708.
  • Dong, Y., Tu, Z., Zhu, D., Liu Y., Wang, Y., Huang, J., Sun, B. and Fan, Z. (2009). Feasibility of using NIR spectroscopy to detect melamine in milk. Spectrosc. Spect. Anal. 29(11):2934–2938.
  • Dowell, F. E., Throne, J. E. and Baker, J. E. (1998). Automated nondestructive detection of internal insect infestation of wheat kernels by using near infrared spectroscopy. J. Econ. Entomol. 91:899–904.
  • Dowell, F. E., Throne, J. E., Wang, D. and Baker, J. E. (1999). Identifying stored-grain insects using near-infrared spectroscopy. J. Econ. Entomol. 92:165–169.
  • Elizabeth, B. M., Dowell, F. E., Baker, J. E. and Throne, J. E. (2002). Detecting single wheat kernels containing live or dead insects using near infrared reflectance spectroscopy. ASAE Paper No. 023067. Chicago, IL.
  • Elmasry, G., Kamruzzaman, M., Sun, D. and Allen, P. (2012). Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Crit. Rev. Food Sci. Nutr. 52:999–1023.
  • Filigenzi, M. S, Puschner, B., Aston, L. S. and Poppenga, R. H. (2008). Diagnostic determination of melamine and related compounds in kidney tissue by liquid chromatography/tandem mass spectrometry. J. Agr. Food Chem. 56:7593–7599.
  • Fu, X., Ying, Y., Zhou, Y. and Xu, H. (2007). Application of probabilistic neural networks in qualitative analysis of near infrared spectra: Determination of producing area and variety of loquats. Anal. Chim. Acta. 598:27–33.
  • Galtier, O., Abbas, O., Dréau, Y. L., Rebufa, C., Kister, J., Artaud, J. and Dupuy, N. (2011). Comparison of PLS1-DA, PLS2-DA and SIMCA for classification by origin of crude petroleum oils by MIR and virgin olive oils by NIR for different spectral regions. Vib. Spectrosc. 55:132–140.
  • Galtier, O., Dupuya, N., Dr´eau, Y. L., Ollivier, D., Pinatel, C., Kister, J. and Artaud, J. (2007). Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra. Anal. Chim. Acta. 595:136–144.
  • GB/22388-2008. Determination of melamine in raw milk and dairy products. Chinese National Standards.
  • Haff, R. P. and Pearson, T. (2006). Spectral band selection for optical sorting of pistachio nut defects. Trans. ASABE. 49(4):1105–1113.
  • Hennessy, S., Downey, G., and O’Donnell, C. (2009). Confirmation of food origin claims by fourier transform infrared spectroscopy and chemometrics: Extra virgin olive oil from liguria. J. Agr. Food Chem. 57:1735–1741.
  • Hennessy, S., Downey, G. and O’Donnell, C. (2008). Multivariate analysis of attenuated total reflection-fourier transform infrared spectroscopic data to confirm the origin of honeys. Appl. Spectrosc. 60(10):1115–1123.
  • Huang, H., Yu, H., Xu, H. and Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review. J. Food Eng. 87:303–313.
  • Hurburgh, C. R., Rippke, G. R., Heithoff, C., Roussel, S. A. and Hardy, C. L. (2000). Detection of genetically modified grains by near-infrared spectroscopy. Proceeding Pittcon, New Orleans, LA.
  • Kim, M. S., Chao, K., Chen, Y. R., Chan, D. and Mehl, P. (2000). Hyperspectral imaging system for food safety: Detection of fecal contamination an apples. Photonic Detection and Intervention Technologies for Safe Food, Proceed. SPIE. 4206:174–184.
  • Kim, M. S., Delwiche, S. R., Chao, K., Garrido-Varo, A., Pérez-Marín, D., Lefcourt, A. M. and Chan, D. E. (2011). Visible to SWIR hyperspectral imaging for produce safety and quality evaluation. Sens. Instrum. Food Qual. Safe. 5:155–164.
  • Kim, M. S., Lefcourt, A. M., Chao, K., Chen, Y. R., Kim, I. and Chan, D. E. (2002). Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging. Trans. ASAE. 45(6):2027–2037.
  • Kim, M. S., Lefcourt, A. M., Chen, Y. R. and Kang, S. (2004). Uses of hyperspectral and multispectral laser induced fluorescence imaging techniques for food safety inspection. Key Eng. Mater. 270–273:1055–1063.
  • Kim, S. S., Rhyu, M., Kim, J. M. and Lee, S. (2003). Authentication of rice using near-infrared reflectance spectroscopy. Cereal Chem. 80(3):346–349.
  • Knežević, Z. and Serdar, M. (2009). Screening of fresh fruit and vegetables for pesticide residues on Croatian market. Food Control 20:419–422.
  • Kuligowski, J., Carrión, D., Quintás, G., Garrigues, S. and Guardia M. (2012). Direct determination of polymerised triacylglycerides in deep-frying vegetable oil by near infrared spectroscopy using Partial Least Squares regression. Food Chem. 131:353–359.
  • Landau, S., Glasser, T. and Dvash, L. (2006). Monitoring nutrition in small ruminants with the aid of near infrared reflectance spectroscopy (NIRS) technology: A review. Small Ruminant Res. 61(1):1–11.
  • Lin, M., Al-Holy, M., Mousavi-Hesary, M., Al-Qadiri, H., Cavinato, A. G. and Rasco, B. A. (2004). Rapid and quantitative detection of the microbial spoilage in chicken meat by diffuse reflectance spectroscopy (600–1100 nm). Lett. Appl. Microbiol. 39:148–155.
  • Liu, Y. L., Chen, Y. R., Kim, M. S., Chan, D. E. and Lefcourt, A. M. (2007). Development of simple algorithms for the detection of fecal contaminants on apples from visible/near infrared hyperspectral reflectance imaging. J. Food Eng. 81:412–418.
  • Liu, L., Cozzolino, D., Cynkar, W. U., Dambergs, R. G., Janik, L., O’Neill, B. K., Colby, C. B. and Gishen, M. (2008). Preliminary study on the application of visible–near infrared spectroscopy and chemometrics to classify Riesling wines from different countries. Food Chem. 106:781–786.
  • Liu, L., Cozzolino, D., Cynkar, W. U., Gishen, M. and Colby, C. B. (2006). Geographic classification of spanish and australian tempranillo red Wines by visible and near-infrared spectroscopy combined with multivariate analysis. J. Agr. Food Chem. 54:6754–6759.
  • Liu, S. L., Tsai, Y. S., Ou, A. S. (2010). Classifying the variety, production area and season of taiwan partially fermented tea by near infrared spectroscopy. J. Food Drug Anal. 18(1):34–43.
  • Lu, C., Xiang, B., Hao, G., Xu, J., Wang, Z. and Chen, C. (2009). Rapid detection of melamine in milk powder by near infrared spectroscopy. J. Near Infrared Spectrosc. 17:59–67.
  • Luypaert, J., Massart, D. L. and Heyden, Y. V. (2007). Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta. 72:865–883.
  • Mauer, L. J., Chernyshova, A. A., Hiatt, A., Deering, A. and Davis, R. (2009). Melamine detection in infant formula powder using near- and mid-infrared spectroscopy. J. Agr. Food Chem. 57:3974–3980.
  • McGraw, L. C. (1998). NIR detects, destroys insect pests. Agr. Res. 14.
  • Munck, L., Møler, B., Jacobsen, S. and Sødergaard, S. (2004). Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1/3, 1/4)-b-glucan in barley. J. Cereal Sci. 40:213–222.
  • Naes, T., Isaksson, T., Fearn, T. and Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. NIR Publications, Chichester, UK.
  • Nakariyakul, S. and Casasent, D. P. (2007). Improved forward floating selection algorithm for chicken contaminant detection in hyperspectral imagery. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, Proc. SPIE 6565:65651.
  • Neethirajan, S., Karunakaran, C., Jayas, D. S. and White, N. D. G. (2007). Detection techniques for stored-product insects in grain. Food Control. 18:157–162.
  • Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I. and Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy:A review. Postharvest Biol. Technol. 46:99–118.
  • NY/T 1372-2007. Determination of melamine in feedstuffs. Chinese Ministry of Agriculture Standard.
  • Oliveri, P., Egidio, V. D., Woodcock, T. and Downey, G. (2010). Application of class-modelling techniques to near infrared data for food authentication purposes. Food Chem. 125:1450–1456.
  • Ortelli, D., Edder, P. and Corvi, C. (2006). Multiresidue analysis of 74 pesticides in fruit and vegetables by liquid chromatography-electrospraytandem mass spectrometry. Anal. Chim. Acta 520:33–45.
  • Perez-Mendoza, J., Throne, J. E., Maghirang, E. B., Dowell, F. E. and Baker, J. E. (2005). Insect fragments in flour: Relationship to lesser grain borer (Coleoptera: Bostrichidae) infestation level in wheat and rapid detection using near-infrared spectroscopy. J. Econ. Entomol. 98(6):2282–2291.
  • Petya, V., Tsvetelina, D., Stefka, A. and Roumiana, T. (2010). Detection of bacterial contamination in milk using NIR spectroscopy and two classification methods-SIMCA and neuro-fuzzy classifier. Third IFAC International Conference Agricontrol. 3(1), 10.3182/20101206-3-JP-3009.00039.
  • Prevolnik, M., Candek-Potokar, M. and Skorjanc, D. (2004). Ability of NIR spectroscopy to predict meat chemical composition and quality - a review. Czech J. Animal Sci. 49(11):500–510.
  • Prieto, N., Roehe, R., Lavin, P., Batten, G. and Andres, S. (2009). Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 83:175–186.
  • Reich, G. (2005). Near-infrared spectroscopy and imaging: basic principles and pharmaceutical application. Adv. Drug Deliv. Rev. 57:1109–1143.
  • Rinnan, A., Berg, F. V. D. and Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem. 28(10):1201–1222.
  • Riovanto, R., Cynkar, W. U., Berzaghi, P. and Cozzolino, D. (2011). Discrimination between Shiraz Wines from different australian regions: The role of spectroscopy and chemometrics. J. Agr. Food Chem. 59:10356–10360.
  • Roberts C. A. (2001). The food safety information handbook. ORYX press, USA.
  • Rodriguez-Saona, L. E., Khambaty, F. M., Fry, F. S. and Calvey, E. M. (2001). Rapid detection and identification of bacterial strains by fourier transform near-infrared spectroscopy. J. Agr. Food Chem. 49:574–579.
  • Roggo, Y., Chalus, P., Maurer, L., Lema-Martinez, C., Edmond, A. and Jent, N. (2007). A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 44:683–700.
  • Roussel, S. A., Hardy, C. L., Hurburgh, C. R. and Rippke, G. R. (2001). Detection of Roundup Ready™ soybeans by near-infrared spectroscopy. Appl. Spectrosc. 55(10):1425–1430.
  • Rui,Y., Luo, Y., Huang, K., Wang, W. and Zhang, L. (2005). Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn. Spectroscopy and Spectral Analysis. 25:1581.
  • Sánchez, M., Flores-Rojas, K., Guerrero, J. E., Garrido-Varo, A. and Pérez-Marín, D. (2010). Measurement of pesticide residues in peppers by near-infrared reflectance spectroscopy. Pest Manag. Sci. 66:580–586.
  • Saranwong, S. and Kawano, S. (2008a). System design for non-destructive near infrared analyses of chemical components and total aerobic bacteria count of raw milk. J. Near Infrared Spectrosc. 16(4):389–398.
  • Saranwong, S. and Kawano, S. (2008b). Interpretation of near infrared calibration structure for determining the total aerobic bacteria count in raw milk: interaction between bacterial metabolites and water absorptions. J. Near Infrared Spectrosc. 16(6):497–504.
  • Saranwong, S., Sornsrivichai, J. and Kawano, S. (2001). Improvement of PLS calibration for Brix value and dry matter of mango using information from MLR calibration. J. Near Infrared Spectrosc. 9:287−295.
  • Shen, F., Yan, Z. K., Ye, Z. Z. and Ying, Y. B. (2009). Application of near-infrared spectroscopy to detection of pesticide phoxim residues. Spectrosc. Spect. Anal. 29(9):2421–2424.
  • Shen, F., Yang, D., Ying, Y., Li, B., Zheng, Y. and Jiang, T. (2012). Discrimination between shaoxing wines and other chinese ricewines by near-infrared spectroscopy and chemometrics. Food Bioprocess Technol. 5:786–795.
  • Siesler, H. W., Ozaki, Y., Kawata, S. and Heise, H. M. (2007). Near-infrared Spectroscopy: Principles, Instruments, Applications. Publisherz: Willey-VCH Verlag GmbH.
  • Sivakesava, S., Irudayaraj, J. and DebRoy, C. (2004). Differentiation of microorganisms by FTIR-ATR and NIR spectroscopy. Trans. ASAE. 7(3):951–957.
  • Sun, S., Guo, B., Wei, Y. and Fan, M. (2011). Application of near infrared spectral fingerprint technique in lamb meat origin traceability. Spectrosc. Spect. Anal. 31(4):937–941.
  • Suthiluk, P., Saranwong, S., Kawano, S., Numthuam, S. and Satake, T. (2008). Possibility of using near infrared spectroscopy for evaluation of bacterial contamination in shredded cabbage. Int. J. Food Sci. Tech. 43:160–165.
  • Tateo, F. and Bononi, M. (2007). Identification of organic contaminants in disposable aluminium foil containers. Food Addit. Contam. 23(10):1030–1037.
  • Tewari, J. C., Dixit, V., Chob, B. and Malikc, K. A. (2008). Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy. Spectrochim. Acta A. 71:1119–1127.
  • Tsenkova, R., Atanassova, S., Morita, H., Ikuta, K., Toyoda, K., Iordanova, I. K. and Hakogi, E. (2006). Near infrared spectra of cow's milk for milk quality evaluation: disease diagnosis and pathogen identification. J. Near Infrared Spectrosc. 14(6):363–370.
  • Tsuchikawa, S. (2007). A review of recent near infrared research for wood and paper. Appl. Spectrosc. Rev. 42(1):43–71.
  • Tyan, Y. C., Yang, M. H., Jong, S. B., Wang, C. K. and Shiea, J. (2009). Melamine contamination. Anal. Bioanal. Chem. 395(3):729–735.
  • USDA. (1994). Enhanced Poultry Inspection. Proposed Rule. Fed. Reg. 59: 35659. Washington D.C.
  • U.S. Department of Food and Drug Administration, Health and Human Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition (CFSAN). (1998). Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables.
  • Wang, S., Xiang, B., Su, Y., Tang, Q. (2012). Direct determination of dichlorvos in water by partial least square-discriminant analysis. Environ. Chem. Lett. DOI 10.1007/s10311-012-0363-5.
  • Williams, P. C., Norris, K. H. and Zarowski, W. S. (1982). Influence of temperature on estimation of protein and moisture in wheat by near-infrared reflectance. Cereal Chem. 59:473– 476.
  • Windham, W. R., Lawrence, K. C., Park, B. and Buhr, R. J. (2003b). Visible/NIR spectroscopy for characterizing fecal contamination of chicken carcasses. Trans. ASAE. 46(3):747–751.
  • Windham, W. R., Lawrence, K. C., Park, B., Smith, D. P. and Poole, G. (2002). Analysis of reflectance spectra from hyperspectral images of poultry carcasses for fecal and ingesta detection. Imaging spectrometry, Proc. SPIE. 4816:317–324.
  • Windham, W. R., Smith, D. P., Park, B., Lawrence, K. C. and Feldner, P. W. (2003a). Algorithm development with visible/near-infrared spectra for detection of poultry feces and ingesta. Trans. ASAE. 46(6):1733–1738.
  • Woodcock, T., Downey, G. and O’Donnell, C. (2008). Confirmation of declared provenance of european extra virgin olive oil samples by NIR spectroscopy. J. Agr. Food Chem. 56:11520–11525.
  • World Health Organization. (2002). WHO global strategy for food safety: safer food for better health. ISBN 92 4 154574 7.
  • Xiccato, G., Trocino, A., Tulli, F. and Tibaldi, E. (2004). Prediction of chemical composition and origin identification of European sea bass (Dicentrarchus labrax L.) by near infrared reflectance spectroscopy (NIRS). Food Chem. 86:275–281.
  • Xie, L., Ying, Y., Chen, M. and Ying, T. (2010). Detection of transgenic tomato leaf with LeETR 1 antisense gene by near-infrared spectroscopy. Trans. ASABE. 53(1):313–318.
  • Xie, L., Ying, Y. and Ying, T. (2007b). Combination and comparison of chemometrics methods for identification of transgenic tomatoes using visible and near-infrared diffuse transmittance technique. J. Food Eng. 82(3):395–401.
  • Xie, L., Ying, Y. and Ying, T. (2009). Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-squares support vector machines and other chemometrics. J. Food Eng. 94(1):34–39.
  • Xie, L., Ying, Y., Ying, T., Yu, H. and Fu, X. (2007a). Discrimination of transgenic tomatoes based on visible/near-infrared spectra. Anal. Chim. Acta. 584:379–384.
  • Xu, X. M., Ren, Y. P., Zhu, Y., Cai, Z. X., Han, J. I., Huang, B. F. and Zhu, Y. (2009). Direct determination of melamine in dairy products by gas chromatography/mass spectrometry with coupled column separation. Anal. Chim. Acta. 650:39–43.
  • Yan, Y. (2005). Analytical Basics and Applications of Near infrared Spectroscopy. China Light industry Press, Bejing.
  • Yang, R., Liu, R. and Xu, K. (2012). Discriminant analysis of urea in milk based on near infrared spectroscopy. Food Sci. online 2012–04-17.
  • Yu, H., Zhou, Y., Fu, X., Xie, L. and Ying, Y. (2007). Discrimination between Chinese rice wines of different geographical origins by NIRS and AAS. Eur. Food Res. Technol. 225:313–320.
  • Zhou, Y. J., Xiang, B. R., Wang, Z. W. and Chen, C. Y. (2009). Determination of chlorpyrifos residue by near-infrared spectroscopy in white radish based on interval partial least square (iPLS) model. Anal. Lett. 42(10):1518–1526.
  • Zhou, Z. (1994). Agricultural Materials. Agriculture Press, Bejing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.